organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o985-o986

(R)-2-[1-(2,6-Di­chloro-3,4,5-trimeth­­oxy­benzo­yl)pyrrolidin-2-yl]-4,4,5,5-tetra­methyl-4,5-di­hydro-1H-imidazole-1-oxyl 3-oxide

aDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032 Xi-An, People's Republic of China, and bDepartment of Pharmacy, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, People's Republic of China
*Correspondence e-mail: xiaoli_sun@yahoo.cn

(Received 13 March 2011; accepted 18 March 2011; online 26 March 2011)

In the title compound, C21H28Cl2N3O6, the nitronyl nitroxide ring displays a half-chair conformation, whereas the pyrrolidine ring has an envelope conformation. These two rings are twisted to each other with N—C—C—N torsion angles around the connecting C—C bond of 48.9 (6) and −127.0 (5)°. The benzene ring is nearly perpendicular to the pyrrolidine ring, with torsion angles around the connecting C—C bond of 86.3 (6) and −97.7 (6)°. The crystal structure is stabilized by C—H⋯O and C—H⋯π hydrogen bonds, which build up a three-dimensional network.

Related literature

For the chemical and physical properties of nitronyl nitroxides, see: Minguet et al. (2001[Minguet, M., Amabilino, D. B., Wurst, K. & Veciana, J. (2001). J. Solid State Chem. 159, 440-450.]); Osiecki & Ullman (1968[Osiecki, J. H. & Ullman, E. F. (1968). J. Am. Chem. Soc. 90, 1078-1079.]); Shemsi et al. (2007[Shemsi, A. M., El Ali, B., Ziq, K. A., Morsy, M., Keene, T. D., Decurtins, S. & Fettouhi, M. (2007). Inorg. Chem. Commun. 10, 1355-1359.]); Wu et al. (2006[Wu, Y. H., Bi, L. R., Bi, W., Li, Z., Zhao, M., Wang, C., Ju, J. F. & Peng, S. Q. (2006). Bioorg. Med. Chem. 14, 5711-5720.]). For related structures, see: Shimono et al. (2004[Shimono, S., Tamura, R., Ikuma, N., Takimoto, T., Kawame, N., Tamada, O., Sakai, N., Matsuura, H. & Yamauchi, J. (2004). J. Org. Chem. 69, 475-481.]); Minguet et al. (2001[Minguet, M., Amabilino, D. B., Wurst, K. & Veciana, J. (2001). J. Solid State Chem. 159, 440-450.]); Tian et al. (2011[Tian, M., Xiang, Z., Zhou, S.-Y., Jing, L.-L., Wang, H.-B. & Sun, X.-L. (2011). Acta Cryst. E67, o425.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C21H28Cl2N3O6

  • Mr = 489.36

  • Orthorhombic, P 21 21 21

  • a = 10.975 (2) Å

  • b = 12.255 (3) Å

  • c = 17.741 (4) Å

  • V = 2386.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.38 × 0.27 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.892, Tmax = 0.952

  • 12018 measured reflections

  • 4252 independent reflections

  • 2217 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.131

  • S = 1.02

  • 4252 reflections

  • 297 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1834 Friedel pairs

  • Flack parameter: 0.01 (10)

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O3i 0.96 2.54 3.498 (8) 173
C11—H11A⋯O1ii 0.97 2.36 3.281 (6) 159
C21—H21B⋯O2iii 0.96 2.44 3.403 (6) 178
C4—H4A⋯Cg3i 0.96 2.86 3.619 (7) 136
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitronyl nitroxides, stable organic radicals, synthesized more than 30 years ago (Osiecki et al., 1968), have received considerable attention recently because of their capability of magnetism, anticancer, antiradiation and antioxidation in biological chemistry and magnetic material fields (Shemsi et al., 2007; Wu et al., 2006). Chiral nitroxides are well chosen as potential precursors of chiralmolecule-based magnets. However, chiral nitronyl nitroxide radicals with the chiral centers sitting very close to the oxyl group are relatively few in the literature (Minguet et al., 2001; Shimono et al., 2004; Tian et al., 2011).

In the title compound, the nitronyl nitroxide ring displays half-chair conformation with puckering parameters, Q2 = 0.096 (5)Å and ϕ = 272 (3)° (Cremer & Pople, 1975) whereas the pyrrolidine ring has an envelope conformation with puckering parameters Q(2)= 0.393 (6) Å and ϕ = 104.3 (7)°. The N3—C12—C13—C14, -97.7 (6)°, and N3—C12—C13—C18, 86.3 (6)°, torsion angles the involving the ketone bridging group show that the phenyl and the pyrrolidine rings are nearly perpendicular (Fig. 1). The bond distances and bond angles within the molecule agree with values reported in the Cambridge Structural Database (Allen, 2002).

Intermolecular C—H···O and C—H···π hydrogen bonds stabilize the packing building up a three dimensionnal network (Table 1).

.

Related literature top

For the chemical and physical properties of nitronyl nitroxides, see: Minguet et al. (2001); Osiecki & Ullman (1968); Shemsi et al. (2007); Wu et al. (2006). For related structures, see: Shimono et al. (2004); Minguet et al. (2001); Tian et al. (2011). For puckering parameters, see Cremer & Pople (1975). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

2,6-dichloro-3,4,5-trimethoxybenzoylchloride (2.98 g, 10.0 mmol), Et3N (3.1 ml) were added to in dry CH2Cl2 with vigorous stirring in an ice bath. To this mixture, a solution of prolinol (1.0 g, 10 mmol) in dry CH2Cl2was added dropwise over a period of 20 min. The mixture was warmed to room temperature and stirred for 2 h. Then the reaction mixture was treated with water and extracted with CH2Cl2. The organic layer wasdried over anhydrous MgSO4 and concentrated. The crude product was purified by column chromatography on silica gel using ethyl acetate/petroleum ether (3:1) as eluant, giving a colorless oil product (3.1 g, 83.8%). To a reaction mixture of this product (3.61 g, 10 mmol), TEMPO (0.025 g, 0.16 mmol) and trichloroisocyanuric acid (TCCA, 3.7 g, 16 mmol), CH2Cl2 was added. Then the mixture was stirred for 20 min and filtered on Celite. The precipitate was purified by column chromatography on silica gel using ethyl acetate/petroleumether/triethylamine (2:1:0.1) as eluant, giving the product 1-(2,6-dichloro-3,4,5-trimethoxybenzoyl)pyrrolidine-2-carbaldehyde (3.10 g, 85.0%). 2,3-Dimethyl-2,3-bis(hydroxylamino) butane (0.74 g, 10.0 mmol) and 1-(2,6-dichloro-3,4,5- trime thoxybenzoyl) pyrrolidine-2-carbaldehyde (1.81 g, 5.0 mmol) were dissolved in methanol. The reaction was stirred for 10 h at reflux temperature, then cooled to room temperature and filtered. The cake was suspended in CH2Cl2 (150.0 ml) and cooled at ice bath for 10 min. Then the reaction mixture was added to an aqueous solution of NaIO4 stirring for 15 min. The aqueous phase was extracted with CH2Cl2 and the organic layer was combined and dried over MgSO4. Then the solvent wasremoved to give a amaranthine residue which was purified by a flash columnchromatography with the elution of n-hexane/ethyl acetate (1:1) to yield thetitle compound (I) as a dark amaranthine powder. Single crystals of compound (I) were obtained from the 1/1 mixed solution of n-heptane and dichloromethane.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene) and 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
(R)-2-[1-(2,6-Dichloro-3,4,5-trimethoxybenzoyl)pyrrolidin-2-yl]-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-1-oxyl 3-oxide top
Crystal data top
C21H28Cl2N3O6F(000) = 1028
Mr = 489.36Dx = 1.362 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1127 reflections
a = 10.975 (2) Åθ = 2.3–16.9°
b = 12.255 (3) ŵ = 0.31 mm1
c = 17.741 (4) ÅT = 296 K
V = 2386.2 (8) Å3Block, blue
Z = 40.38 × 0.27 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
4252 independent reflections
Radiation source: fine-focus sealed tube2217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1312
Tmin = 0.892, Tmax = 0.952k = 1214
12018 measured reflectionsl = 1821
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.040P)2 + 0.1713P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.24 e Å3
4252 reflectionsΔρmin = 0.16 e Å3
297 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0025 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1834 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (10)
Crystal data top
C21H28Cl2N3O6V = 2386.2 (8) Å3
Mr = 489.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.975 (2) ŵ = 0.31 mm1
b = 12.255 (3) ÅT = 296 K
c = 17.741 (4) Å0.38 × 0.27 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
4252 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2217 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.952Rint = 0.067
12018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.131Δρmax = 0.24 e Å3
S = 1.02Δρmin = 0.16 e Å3
4252 reflectionsAbsolute structure: Flack (1983), 1834 Friedel pairs
297 parametersAbsolute structure parameter: 0.01 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.54734 (13)0.50531 (12)0.00306 (8)0.0831 (5)
Cl20.85841 (13)0.71203 (11)0.18279 (8)0.0843 (5)
N10.6828 (4)0.9676 (3)0.1322 (2)0.0620 (11)
N20.4878 (4)0.9819 (3)0.1078 (2)0.0610 (11)
N30.6736 (3)0.7723 (3)0.03080 (19)0.0511 (10)
O10.3875 (3)0.9782 (3)0.0717 (2)0.0963 (13)
O20.7966 (3)0.9505 (3)0.1213 (2)0.0897 (12)
O30.5442 (3)0.7190 (3)0.12213 (17)0.0648 (9)
O40.6903 (4)0.3135 (3)0.0339 (2)0.0835 (11)
O50.8841 (4)0.3034 (3)0.1329 (2)0.0840 (11)
O60.9682 (3)0.4954 (3)0.2006 (2)0.0741 (10)
C10.6747 (6)0.9565 (5)0.2688 (3)0.106 (2)
H1A0.65840.88090.25910.160*
H1B0.63070.97940.31280.160*
H1C0.76050.96660.27690.160*
C20.6345 (5)1.0242 (4)0.2016 (2)0.0634 (13)
C30.6941 (6)1.1358 (4)0.2038 (3)0.104 (2)
H3A0.78101.12740.20560.157*
H3B0.66701.17450.24770.157*
H3C0.67191.17600.15940.157*
C40.4234 (6)0.9421 (6)0.2350 (4)0.137 (3)
H4A0.41870.96800.28600.205*
H4B0.46430.87280.23410.205*
H4C0.34270.93390.21490.205*
C50.4950 (5)1.0246 (4)0.1868 (3)0.0706 (15)
C60.4332 (7)1.1325 (5)0.1905 (4)0.129 (3)
H6A0.46991.18120.15470.194*
H6B0.44161.16210.24030.194*
H6C0.34841.12370.17880.194*
C70.5945 (5)0.9425 (4)0.0838 (3)0.0547 (12)
C80.6088 (4)0.8744 (3)0.0148 (2)0.0523 (12)
H80.52790.85710.00530.063*
C90.6861 (5)0.9281 (4)0.0482 (3)0.0736 (15)
H9A0.63490.96660.08400.088*
H9B0.74510.97860.02730.088*
C100.7487 (5)0.8315 (5)0.0850 (3)0.0785 (17)
H10A0.69460.79460.11990.094*
H10B0.82180.85400.11160.094*
C110.7795 (4)0.7592 (4)0.0183 (3)0.0674 (15)
H11A0.78930.68380.03380.081*
H11B0.85340.78350.00650.081*
C120.6345 (4)0.7020 (4)0.0830 (3)0.0527 (12)
C130.7062 (4)0.5988 (4)0.0917 (3)0.0496 (11)
C140.6708 (4)0.5020 (4)0.0577 (2)0.0594 (12)
C150.7333 (5)0.4047 (4)0.0686 (3)0.0593 (14)
C160.8309 (5)0.4042 (4)0.1181 (3)0.0604 (13)
C170.8696 (4)0.4979 (4)0.1537 (2)0.0546 (11)
C180.8091 (5)0.5945 (4)0.1389 (3)0.0565 (12)
C190.7769 (6)0.2553 (6)0.0120 (5)0.133 (3)
H19A0.84000.30440.02800.199*
H19B0.73630.22590.05540.199*
H19C0.81210.19700.01680.199*
C201.0077 (5)0.2909 (5)0.1148 (4)0.115 (2)
H20A1.02240.31930.06520.172*
H20B1.02870.21490.11600.172*
H20C1.05650.32990.15070.172*
C210.9414 (5)0.4668 (5)0.2767 (3)0.106 (2)
H21A0.88760.52020.29810.159*
H21B1.01560.46440.30530.159*
H21C0.90300.39640.27790.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0821 (9)0.0807 (9)0.0865 (10)0.0042 (8)0.0286 (8)0.0133 (8)
Cl20.0864 (11)0.0714 (9)0.0951 (10)0.0046 (8)0.0274 (9)0.0111 (7)
N10.049 (3)0.071 (3)0.066 (3)0.003 (2)0.003 (2)0.011 (2)
N20.049 (3)0.062 (3)0.072 (3)0.003 (2)0.006 (2)0.024 (2)
N30.047 (2)0.055 (2)0.052 (2)0.009 (2)0.0078 (19)0.0005 (19)
O10.056 (2)0.103 (3)0.130 (3)0.015 (2)0.017 (2)0.052 (2)
O20.054 (2)0.110 (3)0.105 (3)0.001 (2)0.014 (2)0.015 (2)
O30.056 (2)0.074 (2)0.065 (2)0.0052 (19)0.0137 (19)0.0060 (18)
O40.088 (3)0.059 (2)0.103 (3)0.005 (2)0.010 (2)0.013 (2)
O50.073 (3)0.061 (2)0.118 (3)0.007 (2)0.001 (2)0.018 (2)
O60.053 (2)0.090 (2)0.079 (3)0.006 (2)0.0084 (19)0.012 (2)
C10.141 (6)0.108 (5)0.070 (4)0.009 (4)0.021 (4)0.014 (3)
C20.085 (4)0.053 (3)0.053 (3)0.005 (3)0.006 (3)0.007 (2)
C30.145 (6)0.073 (4)0.095 (5)0.035 (4)0.014 (4)0.013 (3)
C40.110 (6)0.158 (7)0.142 (6)0.001 (5)0.067 (5)0.019 (5)
C50.089 (4)0.061 (4)0.062 (3)0.010 (3)0.003 (3)0.015 (3)
C60.146 (6)0.113 (5)0.129 (6)0.061 (5)0.032 (5)0.064 (5)
C70.050 (3)0.060 (3)0.054 (3)0.002 (3)0.004 (3)0.001 (2)
C80.051 (3)0.058 (3)0.048 (3)0.004 (2)0.004 (2)0.006 (2)
C90.092 (4)0.067 (4)0.062 (3)0.013 (3)0.009 (3)0.006 (3)
C100.083 (4)0.087 (4)0.065 (4)0.014 (3)0.029 (3)0.011 (3)
C110.071 (4)0.065 (4)0.066 (4)0.011 (3)0.021 (3)0.007 (3)
C120.053 (3)0.055 (3)0.050 (3)0.001 (3)0.002 (3)0.000 (2)
C130.045 (3)0.053 (3)0.051 (3)0.002 (2)0.003 (2)0.001 (2)
C140.056 (3)0.067 (4)0.056 (3)0.002 (3)0.002 (2)0.003 (3)
C150.059 (4)0.054 (3)0.065 (3)0.010 (3)0.002 (3)0.005 (3)
C160.062 (4)0.049 (3)0.071 (3)0.001 (3)0.005 (3)0.011 (3)
C170.050 (3)0.055 (3)0.059 (3)0.004 (3)0.008 (2)0.004 (3)
C180.061 (3)0.051 (3)0.057 (3)0.004 (3)0.001 (3)0.002 (2)
C190.142 (6)0.124 (6)0.132 (6)0.007 (5)0.017 (5)0.062 (5)
C200.070 (4)0.094 (5)0.180 (7)0.017 (4)0.001 (4)0.004 (5)
C210.083 (4)0.157 (6)0.078 (4)0.005 (4)0.019 (4)0.026 (4)
Geometric parameters (Å, º) top
Cl1—C141.731 (5)C5—C61.487 (7)
Cl2—C181.724 (5)C6—H6A0.9600
N1—O21.281 (5)C6—H6B0.9600
N1—C71.331 (5)C6—H6C0.9600
N1—C21.510 (6)C7—C81.490 (6)
N2—O11.274 (4)C8—C91.550 (6)
N2—C71.336 (5)C8—H80.9800
N2—C51.499 (6)C9—C101.516 (6)
N3—C121.335 (5)C9—H9A0.9700
N3—C111.461 (5)C9—H9B0.9700
N3—C81.468 (5)C10—C111.516 (6)
O3—C121.228 (5)C10—H10A0.9700
O4—C151.359 (5)C10—H10B0.9700
O4—C191.441 (7)C11—H11A0.9700
O5—C161.391 (5)C11—H11B0.9700
O5—C201.403 (6)C12—C131.497 (6)
O6—C171.366 (5)C13—C141.387 (6)
O6—C211.425 (6)C13—C181.407 (6)
C1—C21.517 (6)C14—C151.390 (6)
C1—H1A0.9600C15—C161.386 (6)
C1—H1B0.9600C16—C171.377 (6)
C1—H1C0.9600C17—C181.383 (6)
C2—C31.516 (6)C19—H19A0.9600
C2—C51.554 (7)C19—H19B0.9600
C3—H3A0.9600C19—H19C0.9600
C3—H3B0.9600C20—H20A0.9600
C3—H3C0.9600C20—H20B0.9600
C4—C51.539 (7)C20—H20C0.9600
C4—H4A0.9600C21—H21A0.9600
C4—H4B0.9600C21—H21B0.9600
C4—H4C0.9600C21—H21C0.9600
O2—N1—C7125.1 (4)C10—C9—C8103.1 (4)
O2—N1—C2122.7 (4)C10—C9—H9A111.1
C7—N1—C2112.1 (4)C8—C9—H9A111.1
O1—N2—C7125.7 (4)C10—C9—H9B111.1
O1—N2—C5121.9 (4)C8—C9—H9B111.1
C7—N2—C5112.2 (4)H9A—C9—H9B109.1
C12—N3—C11126.8 (4)C11—C10—C9102.8 (4)
C12—N3—C8121.9 (4)C11—C10—H10A111.2
C11—N3—C8111.3 (3)C9—C10—H10A111.2
C15—O4—C19115.7 (5)C11—C10—H10B111.2
C16—O5—C20117.4 (4)C9—C10—H10B111.2
C17—O6—C21114.8 (4)H10A—C10—H10B109.1
C2—C1—H1A109.5N3—C11—C10103.0 (4)
C2—C1—H1B109.5N3—C11—H11A111.2
H1A—C1—H1B109.5C10—C11—H11A111.2
C2—C1—H1C109.5N3—C11—H11B111.2
H1A—C1—H1C109.5C10—C11—H11B111.2
H1B—C1—H1C109.5H11A—C11—H11B109.1
N1—C2—C1106.7 (4)O3—C12—N3122.9 (4)
N1—C2—C3106.5 (4)O3—C12—C13120.6 (4)
C1—C2—C3110.3 (4)N3—C12—C13116.6 (4)
N1—C2—C5102.1 (4)C14—C13—C18116.9 (4)
C1—C2—C5114.9 (4)C14—C13—C12122.0 (4)
C3—C2—C5115.3 (4)C18—C13—C12121.0 (4)
C2—C3—H3A109.5C13—C14—C15122.4 (4)
C2—C3—H3B109.5C13—C14—Cl1118.0 (4)
H3A—C3—H3B109.5C15—C14—Cl1119.6 (4)
C2—C3—H3C109.5O4—C15—C16123.5 (5)
H3A—C3—H3C109.5O4—C15—C14118.1 (5)
H3B—C3—H3C109.5C16—C15—C14118.3 (4)
C5—C4—H4A109.5C17—C16—C15121.7 (5)
C5—C4—H4B109.5C17—C16—O5121.6 (5)
H4A—C4—H4B109.5C15—C16—O5116.6 (4)
C5—C4—H4C109.5O6—C17—C16120.3 (5)
H4A—C4—H4C109.5O6—C17—C18121.0 (4)
H4B—C4—H4C109.5C16—C17—C18118.6 (4)
C6—C5—N2109.1 (4)C17—C18—C13122.0 (4)
C6—C5—C4109.1 (5)C17—C18—Cl2118.6 (4)
N2—C5—C4105.3 (5)C13—C18—Cl2119.3 (4)
C6—C5—C2116.4 (5)O4—C19—H19A109.5
N2—C5—C2102.1 (4)O4—C19—H19B109.5
C4—C5—C2114.0 (5)H19A—C19—H19B109.5
C5—C6—H6A109.5O4—C19—H19C109.5
C5—C6—H6B109.5H19A—C19—H19C109.5
H6A—C6—H6B109.5H19B—C19—H19C109.5
C5—C6—H6C109.5O5—C20—H20A109.5
H6A—C6—H6C109.5O5—C20—H20B109.5
H6B—C6—H6C109.5H20A—C20—H20B109.5
N1—C7—N2110.5 (4)O5—C20—H20C109.5
N1—C7—C8125.6 (4)H20A—C20—H20C109.5
N2—C7—C8123.8 (4)H20B—C20—H20C109.5
N3—C8—C7111.7 (4)O6—C21—H21A109.5
N3—C8—C9103.6 (4)O6—C21—H21B109.5
C7—C8—C9114.4 (4)H21A—C21—H21B109.5
N3—C8—H8109.0O6—C21—H21C109.5
C7—C8—H8109.0H21A—C21—H21C109.5
C9—C8—H8109.0H21B—C21—H21C109.5
O2—N1—C2—C159.4 (5)C8—N3—C11—C1022.5 (5)
C7—N1—C2—C1123.1 (5)C9—C10—C11—N337.7 (5)
O2—N1—C2—C358.4 (6)C11—N3—C12—O3179.9 (4)
C7—N1—C2—C3119.1 (5)C8—N3—C12—O31.8 (7)
O2—N1—C2—C5179.6 (4)C11—N3—C12—C130.4 (6)
C7—N1—C2—C52.2 (5)C8—N3—C12—C13177.7 (4)
O1—N2—C5—C650.3 (7)O3—C12—C13—C1481.7 (6)
C7—N2—C5—C6134.2 (5)N3—C12—C13—C1497.8 (5)
O1—N2—C5—C466.7 (6)O3—C12—C13—C1894.3 (6)
C7—N2—C5—C4108.8 (5)N3—C12—C13—C1886.2 (5)
O1—N2—C5—C2173.9 (4)C18—C13—C14—C150.5 (7)
C7—N2—C5—C210.5 (5)C12—C13—C14—C15176.7 (4)
N1—C2—C5—C6125.7 (5)C18—C13—C14—Cl1178.0 (3)
C1—C2—C5—C6119.3 (5)C12—C13—C14—Cl15.8 (6)
C3—C2—C5—C610.7 (7)C19—O4—C15—C1658.5 (7)
N1—C2—C5—N27.0 (5)C19—O4—C15—C14126.1 (6)
C1—C2—C5—N2122.1 (4)C13—C14—C15—O4178.9 (4)
C3—C2—C5—N2107.9 (5)Cl1—C14—C15—O43.6 (6)
N1—C2—C5—C4105.9 (5)C13—C14—C15—C163.1 (7)
C1—C2—C5—C49.2 (6)Cl1—C14—C15—C16179.3 (4)
C3—C2—C5—C4139.1 (5)O4—C15—C16—C17178.3 (4)
O2—N1—C7—N2172.9 (5)C14—C15—C16—C172.8 (7)
C2—N1—C7—N24.5 (5)O4—C15—C16—O51.3 (7)
O2—N1—C7—C810.8 (7)C14—C15—C16—O5174.2 (4)
C2—N1—C7—C8171.8 (4)C20—O5—C16—C1763.0 (7)
O1—N2—C7—N1174.9 (5)C20—O5—C16—C15120.0 (5)
C5—N2—C7—N19.8 (5)C21—O6—C17—C1686.5 (6)
O1—N2—C7—C88.7 (8)C21—O6—C17—C1895.5 (5)
C5—N2—C7—C8166.6 (4)C15—C16—C17—O6178.2 (4)
C12—N3—C8—C756.3 (5)O5—C16—C17—O64.9 (7)
C11—N3—C8—C7125.3 (4)C15—C16—C17—C180.2 (7)
C12—N3—C8—C9179.9 (4)O5—C16—C17—C18177.1 (4)
C11—N3—C8—C91.7 (5)O6—C17—C18—C13178.9 (4)
N1—C7—C8—N348.9 (6)C16—C17—C18—C133.1 (7)
N2—C7—C8—N3127.0 (5)O6—C17—C18—Cl21.5 (6)
N1—C7—C8—C968.5 (6)C16—C17—C18—Cl2179.5 (4)
N2—C7—C8—C9115.6 (5)C14—C13—C18—C172.7 (7)
N3—C8—C9—C1025.2 (5)C12—C13—C18—C17173.5 (4)
C7—C8—C9—C10147.1 (4)C14—C13—C18—Cl2179.8 (3)
C8—C9—C10—C1138.9 (5)C12—C13—C18—Cl23.9 (6)
C12—N3—C11—C10155.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6B···O3i0.962.543.498 (8)173
C11—H11A···O1ii0.972.363.281 (6)159
C21—H21B···O2iii0.962.443.403 (6)178
C4—H4A···Cg3i0.962.863.619 (7)136
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z; (iii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H28Cl2N3O6
Mr489.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)10.975 (2), 12.255 (3), 17.741 (4)
V3)2386.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.38 × 0.27 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.892, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
12018, 4252, 2217
Rint0.067
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.131, 1.02
No. of reflections4252
No. of parameters297
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.16
Absolute structureFlack (1983), 1834 Friedel pairs
Absolute structure parameter0.01 (10)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6B···O3i0.962.543.498 (8)173
C11—H11A···O1ii0.972.363.281 (6)159
C21—H21B···O2iii0.962.443.403 (6)178
C4—H4A···Cg3i0.962.863.619 (7)136
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z; (iii) x+2, y1/2, z+1/2.
 

Acknowledgements

We thank the Natural Science Foundation of China (grant Nos. 81001398, 30901883, 20802091, 20802092) for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMinguet, M., Amabilino, D. B., Wurst, K. & Veciana, J. (2001). J. Solid State Chem. 159, 440–450.  CrossRef CAS Google Scholar
First citationOsiecki, J. H. & Ullman, E. F. (1968). J. Am. Chem. Soc. 90, 1078–1079.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShemsi, A. M., El Ali, B., Ziq, K. A., Morsy, M., Keene, T. D., Decurtins, S. & Fettouhi, M. (2007). Inorg. Chem. Commun. 10, 1355–1359.  CrossRef CAS Google Scholar
First citationShimono, S., Tamura, R., Ikuma, N., Takimoto, T., Kawame, N., Tamada, O., Sakai, N., Matsuura, H. & Yamauchi, J. (2004). J. Org. Chem. 69, 475–481.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, M., Xiang, Z., Zhou, S.-Y., Jing, L.-L., Wang, H.-B. & Sun, X.-L. (2011). Acta Cryst. E67, o425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, Y. H., Bi, L. R., Bi, W., Li, Z., Zhao, M., Wang, C., Ju, J. F. & Peng, S. Q. (2006). Bioorg. Med. Chem. 14, 5711–5720.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o985-o986
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds