organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o834-o835

(2E)-3-{4-[(1H-1,3-Benzimidazol-2-yl)meth­­oxy]-3-eth­­oxy­phen­yl}-1-(4-bromo­phen­yl)prop-2-en-1-one monohydrate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 30 January 2011; accepted 3 March 2011; online 12 March 2011)

In the title compound, C25H21BrN2O3·H2O, the benzimidazole fragment and the water mol­ecule of crystallization are each disordered over two sets of sites of equal occupancy. The dihedral angles between the least-squares planes of the benzimidazole and the 3-eth­oxy- and 4-bromo­benzene rings are 86.9 (6) and 85.1 (1)°, respectively in one disorder component. The crystal packing is stabilized by inter­molecular O—H⋯O, O—H⋯N and N—H⋯N hydrogen bonds, which link the mol­ecules into chains along the a axis.

Related literature

For the biological activity of benzimidazoles, see: Pujar et al. (1988[Pujar, M. A., Bharamgoudar, T. D. & Sathyanarayana, D. N. (1988). Transition Met. Chem. 13, 423-425.]); Bouwman et al. (1990[Bouwman, E., Driessen, W. L. & Reedijk, J. (1990). Coord. Chem. Rev. 104, 143-172.]). For the use of benzimidazoles in pest control, see: Madkour et al. (2006[Madkour, H. M. F., Farag, A. A., Ramses, S. S. & Ibrahiem, N. A. A. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 255-265.]). For the properties and uses of chalcones, see: Dhar (1981[Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]); Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Satyanarayana et al. (2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883-889.]); Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]). For related structures, see: Jian et al. (2003[Jian, F. F., Bei, F. L., Wang, X. & Lu, L. D. (2003). Chin. J. Struct. Chem. 22, 382-386.]); Odabaşoğlu et al. (2007[Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3199-o3200.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H21BrN2O3·H2O

  • Mr = 495.36

  • Orthorhombic, P b c n

  • a = 13.8406 (12) Å

  • b = 16.5192 (8) Å

  • c = 19.4719 (13) Å

  • V = 4452.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 295 K

  • 0.52 × 0.38 × 0.31 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.518, Tmax = 1.000

  • 18755 measured reflections

  • 4033 independent reflections

  • 2083 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.160

  • S = 1.04

  • 4033 reflections

  • 305 parameters

  • 114 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N2Bi 0.86 2.10 2.908 (9) 157
N2B—H2BA⋯N2i 0.86 2.06 2.908 (9) 172
O1WA—H1W1⋯O1WAii 0.82 (2) 1.89 (3) 2.69 (2) 164 (7)
O1WA—H1W2⋯N1 0.82 (2) 1.87 (2) 2.674 (16) 166 (6)
O1WA—H1W2⋯N1B 0.82 (2) 2.20 (3) 2.997 (17) 164 (6)
O1WB—H1W4⋯O1iii 0.82 (2) 2.33 (7) 2.912 (11) 129 (8)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The benzimidazole ring system and its related compounds play an important role in pharmaceutical and agricultural fields due to their broad spectrum of biological activities (Pujar et al., 1988, Bouwman et al., 1990). The synthesis of novel benzimidazole derivatives remains a main focus of medicinal research. Benzimidazoles are also useful as insecticides, acaricides, nematocides, herbicides and other plant-protective agents in the field of pest control (Madkour et al., 2006). In recent years, attention has increasingly been given to the synthesis of benzimidazole derivatives as a source of new antimicrobial agents. In addition, benzimidazole derivatives have played a crucial role in the theoretical development of heterocyclic chemistry and are also used extensively in organic synthesis.

Chalcones constitute an important family of substances belonging to the flavonoids, a large group of natural and synthetic products with interesting physicochemical properties, biological activities and structural characteristics. Chalcones are highly reactive substances of varied nature. They have been reported to possess many interesting pharmacological activities (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004). Chalcones are also finding application as organic nonlinear optical materials (NLO) for their SHG conversion efficiency (Sarojini et al., 2006).

The crystal structures of some benzimidazole derivatives viz., 2-chloromethyl-1H-benzimidazole nitrate (Jian et al., 2003) and 5-methoxy-1H-benzo[d]imidazole-2(3H)-thione (Odabaşoğlu et al., 2007) have been reported. Encouraged by the diverse biological activities of benzimidazoles and chalcones, it was decided to prepare a new chalcone derivative of 2-aryloxy methylbenzimidazole, thus bringing both types of functional groups together in a single molecule. This paper reports the crystal structure of the title compound, C25H21N2O3Br. H2O, (I).

In the title compound, (I), the benzimidazole fragment and an associated water molecule are each disordered over two positions in a ratio of 0.50 (0) and 0.50 (0) (Fig. 2). The dihedral angles between the least squares planes of the benzimidazol (0.50 (0) component) and the 3-ethoxy and 4-bromo benzene rings are 86.9 (6)° and 85.1 (1)°, respectively (Fig. 3). Bond distances and angles are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by O—H···O, N—H···O and N—H···N intermolecular hydrogen bonds (Table 1) linking the molecules into one-dimensional chains along the a axis (Fig. 4).

Related literature top

For the biological activity of benzimidazoles, see: Pujar et al. (1988); Bouwman et al. (1990). For the use of benzimidazoles in pest control, see: Madkour et al. (2006). For the properties and uses of chalcones, see: Dhar (1981); Dimmock et al. (1999); Satyanarayana et al. (2004); Sarojini et al. (2006). For related structures, see: Jian et al. (2003); Odabaşoğlu et al. (2007). For standard bond lengths, see: Allen et al. (1987). [Author: scheme should show solvent molecule]

Experimental top

A mixture of a 4-(1H-benzimidazol-2-ylmethoxy)-3-ethoxybenzaldehyde (0.005 mole) and p-bromo acetophenone (0.005 mole) in 50 ml ethanolic sodium hydroxide was stirred at 5–10°C for 3 h (Fig. 1), then maintained at room temperature for 24 h and poured into ice cold water. The precipitate that appeared after neutralization with dil. HCl was filtered off and recrystallized from 1,4-dioxane. The single crystals were grown from DMF by the slow evaporation method, with a yield of 85%. (m.p. 414 K). Analytical data: Found (Cald): C%: 62.89(62.90); H%: 4.39 (4.43); N%: 5.81 (5.87).

Refinement top

The C and N atoms in the benzimidazole fragment and O and H atoms in the water molecule are disordered and all placed at 0.50 (0) occupancy. The OW1A—H1W1, O1WA—H1W2, OW1B—H1W3, O1WB—H1W4 bond lengths were fixed at 0.82Å and the H1W1—H1W2, H1W3—H1W4 angular distances were fixed at 1.297 Å. The HN2B and H2BA atoms bonded to the disordered N2 (0.50 (0)) and N2B (0.50 (0)) atoms, respectively, were placed at their disordered sites and refined by the riding model. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.93Å (CH), 0.97Å (CH2), 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.19–1.20 (CH, CH2), 1.49 (CH3) or 1.19 (NH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction scheme for (I).
[Figure 2] Fig. 2. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids. The disordered benzimidazol fragment has 0.50 (0) and 0.50 (0) occupancy components. Dashed lines indicate strong O—H···N intermolecular hydrogen bonds between O1WA and disordered N1 or N1B (0.50 (0) occupancy) atoms.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed down the a axis. Dashed lines indicate N—H···N, O—H···O and O—H···N intermolecular hydrogen bonds linking the molecules into one-dimensional chains.
(2E)-3-{4-[(1H-1,3-Benzimidazol-2-yl)methoxy]-3-ethoxyphenyl}- 1-(4-bromophenyl)prop-2-en-1-one monohydrate top
Crystal data top
C25H21BrN2O3·H2OF(000) = 2032
Mr = 495.36Dx = 1.478 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4366 reflections
a = 13.8406 (12) Åθ = 5.0–32.7°
b = 16.5192 (8) ŵ = 1.88 mm1
c = 19.4719 (13) ÅT = 295 K
V = 4452.0 (5) Å3Prism, pale yellow
Z = 80.52 × 0.38 × 0.31 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
4033 independent reflections
Radiation source: Enhance (Mo) X-ray Source2083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 10.5081 pixels mm-1θmax = 25.4°, θmin = 5.0°
ω scansh = 1612
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1919
Tmin = 0.518, Tmax = 1.000l = 2319
18755 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.068P)2 + 2.7272P]
where P = (Fo2 + 2Fc2)/3
4033 reflections(Δ/σ)max < 0.001
305 parametersΔρmax = 0.46 e Å3
114 restraintsΔρmin = 0.36 e Å3
Crystal data top
C25H21BrN2O3·H2OV = 4452.0 (5) Å3
Mr = 495.36Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 13.8406 (12) ŵ = 1.88 mm1
b = 16.5192 (8) ÅT = 295 K
c = 19.4719 (13) Å0.52 × 0.38 × 0.31 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
4033 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2083 reflections with I > 2σ(I)
Tmin = 0.518, Tmax = 1.000Rint = 0.073
18755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058114 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.46 e Å3
4033 reflectionsΔρmin = 0.36 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.36419 (4)0.33624 (3)0.39000 (3)0.0699 (2)
O10.3916 (3)0.02167 (18)0.55959 (18)0.0678 (11)
O20.3780 (2)0.45425 (15)0.47027 (14)0.0491 (8)
O30.3733 (3)0.45641 (16)0.33737 (14)0.0564 (9)
C10.3652 (3)0.2277 (3)0.4205 (2)0.0483 (12)
C20.3675 (4)0.1650 (3)0.3743 (3)0.0595 (14)
H2A0.36690.17540.32740.071*
C30.3708 (4)0.0862 (3)0.3983 (2)0.0564 (14)
H3A0.37170.04360.36710.068*
C40.3727 (3)0.0700 (2)0.4679 (2)0.0440 (12)
C50.3679 (4)0.1340 (3)0.5130 (2)0.0579 (14)
H5A0.36800.12400.56000.069*
C60.3630 (4)0.2123 (3)0.4897 (3)0.0569 (14)
H6A0.35820.25480.52080.068*
C70.3810 (3)0.0138 (3)0.4975 (3)0.0475 (12)
C80.3796 (3)0.0841 (3)0.4527 (3)0.0532 (13)
H8A0.36740.07670.40610.064*
C90.3949 (3)0.1581 (2)0.4756 (2)0.0481 (12)
H9A0.40730.16230.52250.058*
C100.3952 (3)0.2344 (2)0.4375 (2)0.0443 (12)
C110.3915 (3)0.3077 (2)0.4727 (2)0.0453 (12)
H11A0.39360.30710.52040.054*
C120.3848 (3)0.3807 (2)0.4397 (2)0.0422 (12)
C130.3839 (3)0.3816 (3)0.3674 (2)0.0454 (12)
C140.3914 (4)0.3099 (3)0.3323 (2)0.0606 (15)
H14A0.39360.31070.28460.073*
C150.3957 (4)0.2361 (3)0.3664 (2)0.0568 (14)
H15A0.39890.18810.34160.068*
C160.3816 (4)0.4565 (3)0.5438 (2)0.0559 (14)
H16A0.44300.43550.55990.067*
H16B0.33020.42350.56300.067*
C170.3696 (4)0.5425 (3)0.5656 (3)0.0616 (15)
H17A0.36170.54490.61460.092*
H17B0.31370.56510.54370.092*
H17C0.42590.57290.55260.092*
C180.3559 (4)0.4556 (3)0.2653 (2)0.0596 (15)
H18A0.30250.41950.25500.072*
H18B0.41270.43610.24130.072*
C190.3322 (4)0.5392 (3)0.2419 (2)0.0507 (13)
N10.2329 (9)0.5577 (7)0.2317 (6)0.0470 (17)0.50
N20.3896 (9)0.5909 (8)0.2252 (6)0.0442 (16)0.50
H2B0.45150.58650.22580.053*0.50
C200.3371 (4)0.6595 (4)0.2046 (4)0.0440 (15)0.50
C210.3602 (4)0.7363 (4)0.1805 (4)0.058 (2)0.50
H21A0.42440.75280.17870.070*0.50
C220.2874 (5)0.7883 (4)0.1589 (4)0.048 (2)0.50
H22A0.30290.83970.14270.058*0.50
C230.1915 (4)0.7637 (4)0.1615 (4)0.049 (2)0.50
H23A0.14280.79850.14710.059*0.50
C240.1684 (4)0.6869 (4)0.1857 (4)0.055 (2)0.50
H24A0.10420.67040.18740.066*0.50
C250.2412 (5)0.6348 (4)0.2072 (4)0.0440 (15)0.50
O1WA0.0810 (8)0.4606 (6)0.2117 (5)0.098 (2)0.50
H1W10.036 (3)0.468 (5)0.239 (3)0.148*0.50
H1W20.121 (3)0.495 (4)0.222 (5)0.148*0.50
N1B0.2526 (10)0.5698 (8)0.2266 (7)0.0470 (17)0.50
N2B0.4086 (10)0.5968 (8)0.2335 (7)0.0442 (16)0.50
H2BA0.46900.59110.24260.053*0.50
C20B0.3630 (5)0.6620 (4)0.2080 (4)0.0440 (15)0.50
C21B0.3995 (4)0.7368 (4)0.1880 (4)0.058 (2)0.50
H21B0.46560.74670.19030.070*0.50
C22B0.3372 (5)0.7968 (4)0.1647 (4)0.048 (2)0.50
H22B0.36160.84690.15140.058*0.50
C23B0.2384 (5)0.7820 (4)0.1614 (4)0.049 (2)0.50
H23B0.19670.82220.14580.059*0.50
C24B0.2020 (4)0.7072 (5)0.1813 (5)0.055 (2)0.50
H24B0.13590.69730.17910.066*0.50
C25B0.2643 (5)0.6472 (4)0.2046 (4)0.0440 (15)0.50
O1WB0.0642 (8)0.5103 (6)0.2033 (5)0.098 (2)0.50
H1W30.082 (6)0.464 (2)0.199 (4)0.148*0.50
H1W40.050 (8)0.525 (5)0.165 (2)0.148*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0949 (4)0.0427 (3)0.0722 (4)0.0038 (3)0.0105 (3)0.0083 (3)
O10.104 (3)0.0461 (19)0.053 (2)0.0001 (19)0.008 (2)0.0056 (16)
O20.081 (2)0.0316 (15)0.0344 (17)0.0001 (15)0.0072 (17)0.0021 (13)
O30.102 (3)0.0329 (15)0.0340 (17)0.0041 (17)0.0102 (18)0.0018 (13)
C10.060 (3)0.036 (2)0.049 (3)0.000 (2)0.017 (3)0.001 (2)
C20.075 (4)0.049 (3)0.054 (3)0.006 (3)0.001 (3)0.002 (2)
C30.073 (4)0.043 (2)0.053 (3)0.006 (3)0.005 (3)0.010 (2)
C40.046 (3)0.039 (2)0.048 (3)0.001 (2)0.000 (2)0.004 (2)
C50.081 (4)0.045 (3)0.048 (3)0.001 (3)0.005 (3)0.006 (2)
C60.075 (4)0.036 (2)0.060 (3)0.005 (3)0.007 (3)0.012 (2)
C70.049 (3)0.044 (3)0.049 (3)0.003 (2)0.001 (2)0.005 (2)
C80.067 (4)0.040 (2)0.053 (3)0.000 (2)0.001 (3)0.006 (2)
C90.058 (3)0.040 (2)0.047 (3)0.005 (2)0.000 (2)0.003 (2)
C100.049 (3)0.035 (2)0.048 (3)0.004 (2)0.003 (2)0.002 (2)
C110.059 (3)0.039 (2)0.038 (2)0.003 (2)0.007 (2)0.001 (2)
C120.052 (3)0.032 (2)0.042 (3)0.001 (2)0.000 (2)0.003 (2)
C130.064 (3)0.036 (2)0.037 (2)0.004 (2)0.005 (2)0.006 (2)
C140.101 (4)0.040 (2)0.041 (3)0.003 (3)0.002 (3)0.002 (2)
C150.088 (4)0.030 (2)0.052 (3)0.004 (2)0.003 (3)0.003 (2)
C160.075 (4)0.048 (3)0.044 (3)0.001 (3)0.001 (3)0.002 (2)
C170.086 (4)0.050 (3)0.049 (3)0.004 (3)0.004 (3)0.008 (2)
C180.092 (4)0.041 (2)0.046 (3)0.002 (3)0.012 (3)0.005 (2)
C190.069 (4)0.042 (3)0.041 (3)0.002 (3)0.006 (3)0.005 (2)
N10.051 (4)0.049 (3)0.042 (2)0.004 (3)0.003 (3)0.000 (2)
N20.046 (4)0.038 (2)0.049 (3)0.001 (2)0.007 (3)0.000 (2)
C200.060 (4)0.040 (2)0.031 (2)0.005 (3)0.001 (3)0.000 (2)
C210.064 (5)0.055 (3)0.055 (3)0.002 (4)0.009 (4)0.000 (3)
C220.061 (6)0.040 (3)0.045 (3)0.008 (4)0.005 (4)0.001 (3)
C230.064 (5)0.048 (4)0.035 (3)0.003 (4)0.002 (4)0.001 (3)
C240.059 (4)0.070 (4)0.036 (3)0.003 (4)0.005 (3)0.014 (3)
C250.053 (4)0.053 (3)0.026 (2)0.013 (3)0.007 (3)0.008 (2)
O1WA0.090 (4)0.111 (5)0.094 (4)0.011 (4)0.004 (3)0.003 (4)
N1B0.051 (4)0.049 (3)0.042 (2)0.004 (3)0.003 (3)0.000 (2)
N2B0.046 (4)0.038 (2)0.049 (3)0.001 (2)0.007 (3)0.000 (2)
C20B0.060 (4)0.040 (2)0.031 (2)0.005 (3)0.001 (3)0.000 (2)
C21B0.064 (5)0.055 (3)0.055 (3)0.002 (4)0.009 (4)0.000 (3)
C22B0.061 (6)0.040 (3)0.045 (3)0.008 (4)0.005 (4)0.001 (3)
C23B0.064 (5)0.048 (4)0.035 (3)0.003 (4)0.002 (4)0.001 (3)
C24B0.059 (4)0.070 (4)0.036 (3)0.003 (4)0.005 (3)0.014 (3)
C25B0.053 (4)0.053 (3)0.026 (2)0.013 (3)0.007 (3)0.008 (2)
O1WB0.090 (4)0.111 (5)0.094 (4)0.011 (4)0.004 (3)0.003 (4)
Geometric parameters (Å, º) top
Br1—C11.888 (4)C18—H18B0.9700
O1—C71.225 (5)C19—N21.212 (13)
O2—C121.356 (5)C19—N1B1.249 (14)
O2—C161.433 (5)C19—N11.422 (14)
O3—C131.375 (5)C19—N2B1.431 (14)
O3—C181.424 (5)N1—C251.365 (13)
C1—C21.372 (6)N2—C201.404 (14)
C1—C61.372 (6)N2—H2B0.8600
C2—C31.383 (6)C20—C211.3900
C2—H2A0.9300C20—C251.3900
C3—C41.382 (6)C21—C221.3900
C3—H3A0.9300C21—H21A0.9300
C4—C51.375 (6)C22—C231.3900
C4—C71.504 (6)C22—H22A0.9300
C5—C61.373 (6)C23—C241.3900
C5—H5A0.9300C23—H23A0.9300
C6—H6A0.9300C24—C251.3900
C7—C81.452 (6)C24—H24A0.9300
C8—C91.318 (6)O1WA—H1W10.82 (2)
C8—H8A0.9300O1WA—H1W20.82 (2)
C9—C101.463 (6)O1WA—H1W30.25 (9)
C9—H9A0.9300O1WA—H1W41.47 (4)
C10—C151.385 (7)N1B—C25B1.359 (14)
C10—C111.391 (6)N2B—C20B1.343 (15)
C11—C121.370 (6)N2B—H2BA0.8600
C11—H11A0.9300C20B—C21B1.3900
C12—C131.407 (6)C20B—C25B1.3900
C13—C141.371 (6)C21B—C22B1.3900
C14—C151.390 (6)C21B—H21B0.9300
C14—H14A0.9300C22B—C23B1.3900
C15—H15A0.9300C22B—H22B0.9300
C16—C171.493 (6)C23B—C24B1.3900
C16—H16A0.9700C23B—H23B0.9300
C16—H16B0.9700C24B—C25B1.3900
C17—H17A0.9600C24B—H24B0.9300
C17—H17B0.9600O1WB—H1W11.05 (7)
C17—H17C0.9600O1WB—H1W20.90 (8)
C18—C191.490 (6)O1WB—H1W30.82 (2)
C18—H18A0.9700O1WB—H1W40.82 (2)
C12—O2—C16117.4 (3)N2—C19—N1116.4 (8)
C13—O3—C18115.4 (3)N1B—C19—N113.2 (10)
C2—C1—C6120.3 (4)N2—C19—N2B10.3 (11)
C2—C1—Br1120.7 (4)N1B—C19—N2B110.8 (9)
C6—C1—Br1119.0 (3)N1—C19—N2B123.7 (8)
C1—C2—C3119.4 (5)N2—C19—C18126.3 (8)
C1—C2—H2A120.3N1B—C19—C18129.9 (7)
C3—C2—H2A120.3N1—C19—C18117.0 (6)
C4—C3—C2120.9 (4)N2B—C19—C18119.3 (7)
C4—C3—H3A119.5C25—N1—C1999.7 (8)
C2—C3—H3A119.5C19—N2—C20107.9 (10)
C5—C4—C3118.4 (4)C19—N2—H2B126.1
C5—C4—C7117.8 (4)C20—N2—H2B126.1
C3—C4—C7123.8 (4)C21—C20—C25120.0
C6—C5—C4121.0 (4)C21—C20—N2135.5 (7)
C6—C5—H5A119.5C25—C20—N2104.3 (6)
C4—C5—H5A119.5C22—C21—C20120.0
C1—C6—C5119.9 (4)C22—C21—H21A120.0
C1—C6—H6A120.0C20—C21—H21A120.0
C5—C6—H6A120.0C23—C22—C21120.0
O1—C7—C8120.7 (4)C23—C22—H22A120.0
O1—C7—C4119.0 (4)C21—C22—H22A120.0
C8—C7—C4120.3 (4)C22—C23—C24120.0
C9—C8—C7122.3 (5)C22—C23—H23A120.0
C9—C8—H8A118.8C24—C23—H23A120.0
C7—C8—H8A118.8C25—C24—C23120.0
C8—C9—C10128.8 (4)C25—C24—H24A120.0
C8—C9—H9A115.6C23—C24—H24A120.0
C10—C9—H9A115.6N1—C25—C24128.5 (7)
C15—C10—C11118.3 (4)N1—C25—C20111.5 (7)
C15—C10—C9121.6 (4)C24—C25—C20120.0
C11—C10—C9120.0 (4)H1W1—O1WA—H1W2105 (3)
C12—C11—C10122.6 (4)H1W1—O1WA—H1W3131 (10)
C12—C11—H11A118.7H1W2—O1WA—H1W392 (10)
C10—C11—H11A118.7H1W1—O1WA—H1W494 (7)
O2—C12—C11126.0 (4)H1W2—O1WA—H1W481 (9)
O2—C12—C13115.4 (4)H1W3—O1WA—H1W443 (8)
C11—C12—C13118.6 (4)C19—N1B—C25B110.6 (10)
C14—C13—O3124.9 (4)C20B—N2B—C19103.3 (10)
C14—C13—C12119.3 (4)C20B—N2B—H2BA128.4
O3—C13—C12115.8 (4)C19—N2B—H2BA128.4
C13—C14—C15121.5 (4)N2B—C20B—C21B130.2 (7)
C13—C14—H14A119.2N2B—C20B—C25B109.7 (7)
C15—C14—H14A119.2C21B—C20B—C25B120.0
C10—C15—C14119.6 (4)C22B—C21B—C20B120.0
C10—C15—H15A120.2C22B—C21B—H21B120.0
C14—C15—H15A120.2C20B—C21B—H21B120.0
O2—C16—C17107.8 (4)C21B—C22B—C23B120.0
O2—C16—H16A110.2C21B—C22B—H22B120.0
C17—C16—H16A110.2C23B—C22B—H22B120.0
O2—C16—H16B110.2C24B—C23B—C22B120.0
C17—C16—H16B110.2C24B—C23B—H23B120.0
H16A—C16—H16B108.5C22B—C23B—H23B120.0
C16—C17—H17A109.5C23B—C24B—C25B120.0
C16—C17—H17B109.5C23B—C24B—H24B120.0
H17A—C17—H17B109.5C25B—C24B—H24B120.0
C16—C17—H17C109.5N1B—C25B—C24B134.5 (8)
H17A—C17—H17C109.5N1B—C25B—C20B105.5 (8)
H17B—C17—H17C109.5C24B—C25B—C20B120.0
O3—C18—C19109.2 (4)H1W1—O1WB—H1W283 (6)
O3—C18—H18A109.8H1W1—O1WB—H1W364 (7)
C19—C18—H18A109.8H1W2—O1WB—H1W360 (7)
O3—C18—H18B109.8H1W1—O1WB—H1W4136 (9)
C19—C18—H18B109.8H1W2—O1WB—H1W4131 (10)
H18A—C18—H18B108.3H1W3—O1WB—H1W4106 (3)
N2—C19—N1B103.2 (9)
C6—C1—C2—C32.1 (7)N2B—C19—N1—C256.0 (13)
Br1—C1—C2—C3178.3 (4)C18—C19—N1—C25176.4 (6)
C1—C2—C3—C40.6 (8)N1B—C19—N2—C206.0 (12)
C2—C3—C4—C52.2 (7)N1—C19—N2—C204.7 (13)
C2—C3—C4—C7177.0 (4)N2B—C19—N2—C20132 (7)
C3—C4—C5—C61.1 (7)C18—C19—N2—C20178.0 (6)
C7—C4—C5—C6178.1 (4)C19—N2—C20—C21179.9 (6)
C2—C1—C6—C53.2 (8)C19—N2—C20—C254.9 (10)
Br1—C1—C6—C5177.2 (4)C25—C20—C21—C220.0
C4—C5—C6—C11.6 (8)N2—C20—C21—C22174.4 (10)
C5—C4—C7—O16.2 (7)C20—C21—C22—C230.0
C3—C4—C7—O1172.9 (5)C21—C22—C23—C240.0
C5—C4—C7—C8175.7 (4)C22—C23—C24—C250.0
C3—C4—C7—C85.1 (7)C19—N1—C25—C24178.4 (5)
O1—C7—C8—C93.9 (7)C19—N1—C25—C201.0 (9)
C4—C7—C8—C9174.1 (4)C23—C24—C25—N1179.4 (10)
C7—C8—C9—C10179.5 (4)C23—C24—C25—C200.0
C8—C9—C10—C1512.1 (8)C21—C20—C25—N1179.5 (8)
C8—C9—C10—C11165.7 (5)N2—C20—C25—N13.5 (9)
C15—C10—C11—C122.4 (7)C21—C20—C25—C240.0
C9—C10—C11—C12175.4 (4)N2—C20—C25—C24176.0 (7)
C16—O2—C12—C112.4 (6)N2—C19—N1B—C25B5.4 (13)
C16—O2—C12—C13178.1 (4)N1—C19—N1B—C25B170 (6)
C10—C11—C12—O2177.9 (4)N2B—C19—N1B—C25B2.0 (13)
C10—C11—C12—C131.5 (7)C18—C19—N1B—C25B177.0 (6)
C18—O3—C13—C148.9 (7)N2—C19—N2B—C20B41 (6)
C18—O3—C13—C12169.6 (4)N1B—C19—N2B—C20B3.3 (12)
O2—C12—C13—C14179.4 (4)N1—C19—N2B—C20B6.6 (13)
C11—C12—C13—C141.1 (7)C18—C19—N2B—C20B175.8 (6)
O2—C12—C13—O31.9 (6)C19—N2B—C20B—C21B178.7 (5)
C11—C12—C13—O3177.6 (4)C19—N2B—C20B—C25B3.2 (10)
O3—C13—C14—C15175.8 (5)N2B—C20B—C21B—C22B177.9 (10)
C12—C13—C14—C152.7 (8)C25B—C20B—C21B—C22B0.0
C11—C10—C15—C140.8 (7)C20B—C21B—C22B—C23B0.0
C9—C10—C15—C14177.0 (5)C21B—C22B—C23B—C24B0.0
C13—C14—C15—C101.8 (8)C22B—C23B—C24B—C25B0.0
C12—O2—C16—C17178.2 (4)C19—N1B—C25B—C24B179.4 (6)
C13—O3—C18—C19172.1 (4)C19—N1B—C25B—C20B0.1 (12)
O3—C18—C19—N286.4 (9)C23B—C24B—C25B—N1B179.2 (11)
O3—C18—C19—N1B103.7 (10)C23B—C24B—C25B—C20B0.0
O3—C18—C19—N1100.3 (7)N2B—C20B—C25B—N1B2.3 (10)
O3—C18—C19—N2B77.4 (8)C21B—C20B—C25B—N1B179.4 (8)
N2—C19—N1—C252.4 (12)N2B—C20B—C25B—C24B178.3 (8)
N1B—C19—N1—C258 (4)C21B—C20B—C25B—C24B0.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N2Bi0.862.102.908 (9)157
N2B—H2BA···N2i0.862.062.908 (9)172
O1WA—H1W1···O1WAii0.82 (2)1.89 (3)2.69 (2)164 (7)
O1WA—H1W2···N10.82 (2)1.87 (2)2.674 (16)166 (6)
O1WA—H1W2···N1B0.82 (2)2.20 (3)2.997 (17)164 (6)
O1WB—H1W4···O1iii0.82 (2)2.33 (7)2.912 (11)129 (8)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC25H21BrN2O3·H2O
Mr495.36
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)295
a, b, c (Å)13.8406 (12), 16.5192 (8), 19.4719 (13)
V3)4452.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.52 × 0.38 × 0.31
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.518, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18755, 4033, 2083
Rint0.073
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.160, 1.04
No. of reflections4033
No. of parameters305
No. of restraints114
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.36

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N2Bi0.862.102.908 (9)157
N2B—H2BA···N2i0.862.062.908 (9)172
O1WA—H1W1···O1WAii0.82 (2)1.89 (3)2.69 (2)164 (7)
O1WA—H1W2···N10.82 (2)1.87 (2)2.674 (16)166 (6)
O1WA—H1W2···N1B0.82 (2)2.20 (3)2.997 (17)164 (6)
O1WB—H1W4···O1iii0.82 (2)2.33 (7)2.912 (11)129 (8)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

SS thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. JPJ thanks Dr Ray J. Butcher and the Howard University Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant No. CHE-0619278.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBouwman, E., Driessen, W. L. & Reedijk, J. (1990). Coord. Chem. Rev. 104, 143–172.  CrossRef CAS Web of Science Google Scholar
First citationDhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationJian, F. F., Bei, F. L., Wang, X. & Lu, L. D. (2003). Chin. J. Struct. Chem. 22, 382–386.  CAS Google Scholar
First citationMadkour, H. M. F., Farag, A. A., Ramses, S. S. & Ibrahiem, N. A. A. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 255–265.  CrossRef CAS Google Scholar
First citationOdabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3199–o3200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPujar, M. A., Bharamgoudar, T. D. & Sathyanarayana, D. N. (1988). Transition Met. Chem. 13, 423–425.  CrossRef CAS Web of Science Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883–889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o834-o835
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds