organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Formyl­phenyl 2,3,4,6-tetra-O-acetyl-β-D-gluco­pyran­oside

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 16 February 2011; accepted 3 March 2011; online 9 March 2011)

The pyran­oside ring in the title compound, C21H24O11, has a chair conformation with the substituted benzene ring occupying an equatorial position. The crystal packing is dominated by C—H⋯O inter­actions that lead to the formation of supra­molecular layers in the ab plane.

Related literature

For synthesis, see: Bao et al. (2004[Bao, C., Lu, R., Jin, M., Xue, P., Tan, C., Zhao, Y. & Liu, G. (2004). Carbohydr. Res. 339, 1311-1316.]); Hongu et al. (1999[Hongu, M., Saito, K. & Tsujihara, K. (1999). Synth. Commun. 29, 2775-2781.]); Patil & Ravindranathan Kartha (2008[Patil, P. R. & Ravindranathan Kartha, K. P. (2008). J. Carbohydr. Chem. 27, 411-419.]). For the natural anti-oxidant glucosyl­ated resveratrol, see: La Torre et al. (2004[La Torre, G. L., Lagana, G., Bellocco, E., Vilasi, F., Salvo, F. & Dugo, G. (2004). Food Chem. 85, 259-266.]). For the biological activity of related structures, see: Wen et al. (2008[Wen, H., Lin, C., Ling, Q., Ge, H., Ma, L., Cao, R., Wan, Y., Peng, W., Wang, Z. & Song, H. (2008). Eur. J. Med. Chem. 43, 166-173.]); Yan et al. (2009[Yan, Q., Cao, R., Yi, W., Yu, L., Chen, Z., Ma, L. & Song, H. (2009). Bioorg. Med. Chem. Lett. 19, 4055-4058.]). For the structure of the isomeric allopyran­oside and galactose derivatives, see: Ye et al. (2009[Ye, D., Zhang, K., Chen, H., Yin, S. & Li, Y. (2009). Acta Cryst. E65, o1338.]); Hussen et al. (2011[Hussen, R. S. D., Heidelberg, T., Rodzi, N. Z. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o826.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24O11

  • Mr = 452.40

  • Triclinic, P 1

  • a = 5.7868 (2) Å

  • b = 8.9166 (3) Å

  • c = 11.4716 (3) Å

  • α = 102.473 (3)°

  • β = 93.481 (2)°

  • γ = 102.780 (3)°

  • V = 559.96 (3) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 0.94 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Agilent Supernova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.919, Tmax = 1.000

  • 7392 measured reflections

  • 4097 independent reflections

  • 4087 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.07

  • 4097 reflections

  • 293 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1855 Friedel pairs

  • Flack parameter: -0.02(12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O5i 1.00 2.51 3.356 (2) 143
C3—H3⋯O5i 1.00 2.35 3.207 (2) 143
C6—H6A⋯O9ii 0.99 2.40 3.324 (2) 155
C8—H8C⋯O11iii 0.98 2.54 3.475 (3) 160
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, 4-formyl-phenyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside, a known species (Bao et al., 2004, Hongu et al., 1999; Patil et al.; 2008), which has been used for the preparation of potential pharmaceutically active compounds (Wen et al., 2008; Yan et al., 2009) was prepared as a precursor for the synthesis of glucosylated resveratrol, an interesting natural antioxidant (La Torre et al., 2004). The present analysis complements the recent report of the isomeric galactose derivative, see: Hussen et al. (2011).

The structure determination, Fig. 1, confirms the relative stereochemistry as well as the absolute structure, i.e. R, R, S, R and S for C1–C5, respectively. The pyranoside ring has a chair conformation as seen in the puckering parameters (Cremer & Pople, 1975): puckering amplitude (Q) = 0.6016 (18) Å, θ = 172.53 (16) °, and ϕ = 178.0 (14) °. Around the ring, all substituents are equatorial.

The crystal packing is dominated by C–H···O interactions, Table 1, involving carbonyl atoms as acceptors and methine-, methylene methyl-H as the donors. The carbonyl-O5 atom is bifurcated, spanning two methine-H atoms of a neighbouring molecule to form a supramolecular chain along the a axis. Altogether, the C–H···O interactions lead to the formation of supramolecular layers that stack along the c axis, Fig. 2.

The present report complements the structures reported recently for the isomeric allopyranoside (Ye et al., 2009) and galactose (Duali Hussen et al., 2011) derivatives.

Related literature top

For synthesis, see: Bao et al. (2004); Hongu et al. (1999); Patil et al. (2008). For the natural anti-oxidant glucosylated resveratrol, see: La Torre et al. (2004). For the biological activity of related structures, see: Wen et al. (2008); Yan et al. (2009). For the structure of the isomeric allopyranoside and galactose derivatives, see: Ye et al. (2009); Hussen et al. (2011). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

2,3,4,6-Tetra-O-acetyl-α-D-gluctopyranosyl bromide (4.0 g) and 4-hydroxybenzaldehyde (3.0 g) were dissolved in chloroform (30 ml) and the mixture treated with a solution of aqueous solution (15 ml) of sodium carbonate (2.7 g) and tetrabutylammonium bromide (0.7 g). The mixture was heated to reflux under vigorous stirring overnight, after which ethyl acetate was added and the organic layer was washed three times with sodium hydroxide solution (1 N) to remove remaining phenols. After drying the solution over magnesium sulfate and evaporation of the solvent, the target product (2.0 g, 45%) was obtained by crystallization from ethanol. Better crystals were obtained from 2-propanol.

1H NMR (400 MHz, CDCl3): δ 9.92 (s; CHO), 7.85 & 7.09 (AB syst; aromatic 4H), 5.34–5.26 & 5.24–5.14 (2 m, 2 x 2H; H1–H4), 4.27 (dd; H6a), 4.16 (dd; H6b), 3.92 (ddd; H5), 2.05–2.03 (3 s, 12H; Ac); 3J4,5 = 10.0 Hz, 3J5,6a = 5.0 Hz, 3J5,6 b = 2.5 Hz and 2J6 = 12.0 Hz.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure, showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents highlighting the stacking of layers. The C—H···O interactions are shown as orange dashed lines.
4-Formylphenyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside top
Crystal data top
C21H24O11Z = 1
Mr = 452.40F(000) = 238
Triclinic, P1Dx = 1.342 Mg m3
Hall symbol: P 1Cu Kα radiation, λ = 1.54184 Å
a = 5.7868 (2) ÅCell parameters from 7285 reflections
b = 8.9166 (3) Åθ = 4.0–74.1°
c = 11.4716 (3) ŵ = 0.94 mm1
α = 102.473 (3)°T = 100 K
β = 93.481 (2)°Block, colourless
γ = 102.780 (3)°0.30 × 0.30 × 0.20 mm
V = 559.96 (3) Å3
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
4097 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4087 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.4041 pixels mm-1θmax = 74.3°, θmin = 4.0°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 910
Tmin = 0.919, Tmax = 1.000l = 1314
7392 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0908P)2 + 0.072P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4097 reflectionsΔρmax = 0.27 e Å3
293 parametersΔρmin = 0.17 e Å3
3 restraintsAbsolute structure: Flack (1983), 1855 Friedel pairs
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H24O11γ = 102.780 (3)°
Mr = 452.40V = 559.96 (3) Å3
Triclinic, P1Z = 1
a = 5.7868 (2) ÅCu Kα radiation
b = 8.9166 (3) ŵ = 0.94 mm1
c = 11.4716 (3) ÅT = 100 K
α = 102.473 (3)°0.30 × 0.30 × 0.20 mm
β = 93.481 (2)°
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
4097 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
4087 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 1.000Rint = 0.021
7392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
4097 reflectionsΔρmin = 0.17 e Å3
293 parametersAbsolute structure: Flack (1983), 1855 Friedel pairs
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9987 (2)0.49931 (15)0.49910 (11)0.0174 (3)
O21.0120 (2)0.81529 (16)0.57609 (11)0.0218 (3)
O30.7432 (3)0.95346 (19)0.63881 (14)0.0305 (3)
O40.7892 (2)0.55996 (15)0.20730 (10)0.0167 (3)
O50.4356 (2)0.59974 (16)0.26001 (12)0.0208 (3)
O60.7723 (2)0.23423 (15)0.15960 (11)0.0192 (3)
O71.0136 (3)0.2794 (2)0.01679 (14)0.0385 (4)
O81.1640 (2)0.17486 (15)0.30105 (11)0.0196 (3)
O90.8768 (3)0.04604 (17)0.28892 (15)0.0297 (3)
O101.1933 (2)0.31718 (15)0.54454 (11)0.0204 (3)
O112.0808 (3)0.73176 (19)0.92751 (14)0.0330 (4)
C10.9617 (3)0.5930 (2)0.41525 (15)0.0166 (3)
H11.11900.64600.39370.020*
C20.8116 (3)0.4800 (2)0.30264 (15)0.0155 (3)
H20.65030.43160.32250.019*
C30.9368 (3)0.3515 (2)0.25138 (15)0.0163 (3)
H31.08170.39800.21590.020*
C41.0071 (3)0.2710 (2)0.34749 (16)0.0171 (3)
H40.86240.20510.37120.021*
C51.1452 (3)0.3968 (2)0.45629 (15)0.0168 (3)
H51.29680.45720.43430.020*
C60.8401 (3)0.7168 (2)0.47781 (16)0.0187 (3)
H6A0.79790.77990.42220.022*
H6B0.69300.66650.50800.022*
C70.9388 (3)0.9279 (2)0.65168 (16)0.0220 (4)
C81.1278 (4)1.0105 (3)0.75474 (18)0.0291 (4)
H8A1.11381.11930.78450.044*
H8B1.28551.01190.72770.044*
H8C1.10770.95430.81940.044*
C90.5824 (3)0.6053 (2)0.19069 (15)0.0163 (3)
C100.5674 (3)0.6549 (3)0.07482 (17)0.0234 (4)
H10A0.42870.70010.06850.035*
H10B0.55070.56270.00770.035*
H10C0.71280.73440.07210.035*
C110.8311 (4)0.2113 (2)0.04513 (17)0.0250 (4)
C120.6319 (5)0.0922 (3)0.0371 (2)0.0428 (6)
H12A0.67470.07490.11950.064*
H12B0.48660.13150.03400.064*
H12C0.60410.00780.01170.064*
C131.0775 (3)0.0158 (2)0.27726 (16)0.0214 (4)
C141.2625 (4)0.0679 (3)0.2328 (3)0.0385 (5)
H14A1.18770.18020.19900.058*
H14B1.38330.05730.29970.058*
H14C1.33810.02120.17060.058*
C151.3937 (3)0.3914 (2)0.62530 (15)0.0185 (4)
C161.5446 (4)0.2974 (3)0.64956 (18)0.0230 (4)
H161.50950.18830.61040.028*
C171.7455 (4)0.3644 (3)0.73110 (18)0.0249 (4)
H171.84900.30080.74820.030*
C181.7984 (3)0.5252 (2)0.78886 (16)0.0229 (4)
C191.6452 (3)0.6178 (2)0.76354 (15)0.0216 (4)
H191.68030.72680.80280.026*
C201.4427 (3)0.5528 (2)0.68196 (16)0.0209 (4)
H201.33900.61620.66470.025*
C212.0148 (4)0.5937 (3)0.87497 (18)0.0279 (4)
H212.10990.52440.89050.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0207 (6)0.0178 (6)0.0153 (5)0.0077 (5)0.0026 (4)0.0040 (5)
O20.0222 (6)0.0195 (7)0.0197 (6)0.0055 (5)0.0015 (5)0.0030 (5)
O30.0332 (8)0.0268 (8)0.0305 (7)0.0149 (6)0.0023 (6)0.0032 (6)
O40.0163 (6)0.0200 (6)0.0160 (5)0.0071 (4)0.0020 (4)0.0061 (4)
O50.0175 (6)0.0221 (7)0.0231 (6)0.0063 (5)0.0035 (5)0.0043 (5)
O60.0202 (6)0.0176 (6)0.0160 (6)0.0022 (5)0.0017 (5)0.0006 (5)
O70.0419 (9)0.0422 (9)0.0211 (7)0.0038 (7)0.0091 (6)0.0018 (6)
O80.0178 (6)0.0166 (6)0.0245 (6)0.0057 (5)0.0023 (5)0.0034 (5)
O90.0278 (7)0.0171 (7)0.0435 (8)0.0040 (5)0.0079 (6)0.0062 (6)
O100.0231 (6)0.0186 (7)0.0203 (6)0.0041 (5)0.0020 (5)0.0083 (5)
O110.0293 (7)0.0380 (9)0.0279 (7)0.0037 (6)0.0054 (6)0.0066 (6)
C10.0191 (8)0.0156 (9)0.0157 (8)0.0049 (6)0.0017 (6)0.0041 (6)
C20.0167 (7)0.0166 (9)0.0148 (7)0.0051 (6)0.0034 (6)0.0054 (6)
C30.0162 (8)0.0156 (8)0.0150 (7)0.0027 (6)0.0006 (6)0.0013 (6)
C40.0170 (8)0.0148 (8)0.0189 (8)0.0043 (6)0.0022 (6)0.0022 (6)
C50.0183 (8)0.0166 (9)0.0164 (7)0.0052 (6)0.0010 (6)0.0048 (6)
C60.0189 (8)0.0167 (8)0.0182 (8)0.0039 (6)0.0004 (6)0.0000 (6)
C70.0286 (10)0.0169 (9)0.0206 (9)0.0073 (7)0.0045 (7)0.0024 (7)
C80.0365 (11)0.0227 (10)0.0228 (9)0.0043 (8)0.0018 (8)0.0014 (7)
C90.0154 (8)0.0147 (8)0.0176 (8)0.0043 (6)0.0011 (6)0.0012 (6)
C100.0244 (9)0.0298 (10)0.0189 (8)0.0116 (7)0.0008 (6)0.0075 (7)
C110.0334 (10)0.0234 (10)0.0172 (8)0.0073 (8)0.0028 (7)0.0017 (7)
C120.0504 (14)0.0434 (14)0.0206 (10)0.0062 (11)0.0034 (9)0.0024 (9)
C130.0243 (9)0.0171 (9)0.0224 (8)0.0046 (7)0.0001 (7)0.0048 (7)
C140.0350 (11)0.0218 (11)0.0614 (16)0.0118 (9)0.0152 (10)0.0073 (10)
C150.0191 (8)0.0225 (10)0.0161 (8)0.0054 (7)0.0032 (6)0.0084 (6)
C160.0263 (9)0.0229 (9)0.0238 (8)0.0090 (7)0.0049 (7)0.0102 (7)
C170.0243 (9)0.0309 (11)0.0258 (9)0.0124 (8)0.0043 (7)0.0139 (8)
C180.0228 (9)0.0310 (11)0.0175 (8)0.0068 (7)0.0035 (7)0.0101 (7)
C190.0254 (9)0.0233 (10)0.0160 (8)0.0065 (7)0.0019 (7)0.0041 (7)
C200.0240 (9)0.0229 (10)0.0180 (8)0.0085 (7)0.0014 (7)0.0070 (7)
C210.0223 (9)0.0400 (13)0.0235 (9)0.0075 (8)0.0010 (7)0.0120 (9)
Geometric parameters (Å, º) top
O1—C51.413 (2)C7—C81.499 (3)
O1—C11.439 (2)C8—H8A0.9800
O2—C71.340 (2)C8—H8B0.9800
O2—C61.443 (2)C8—H8C0.9800
O3—C71.210 (3)C9—C101.492 (2)
O4—C91.361 (2)C10—H10A0.9800
O4—C21.443 (2)C10—H10B0.9800
O5—C91.199 (2)C10—H10C0.9800
O6—C111.360 (2)C11—C121.497 (3)
O6—C31.4389 (19)C12—H12A0.9800
O7—C111.197 (3)C12—H12B0.9800
O8—C131.356 (2)C12—H12C0.9800
O8—C41.431 (2)C13—C141.489 (3)
O9—C131.199 (3)C14—H14A0.9800
O10—C151.381 (2)C14—H14B0.9800
O10—C51.404 (2)C14—H14C0.9800
O11—C211.212 (3)C15—C161.391 (3)
C1—C61.513 (2)C15—C201.403 (3)
C1—C21.534 (2)C16—C171.380 (3)
C1—H11.0000C16—H160.9500
C2—C31.521 (2)C17—C181.400 (3)
C2—H21.0000C17—H170.9500
C3—C41.520 (2)C18—C191.396 (3)
C3—H31.0000C18—C211.472 (3)
C4—C51.527 (2)C19—C201.384 (3)
C4—H41.0000C19—H190.9500
C5—H51.0000C20—H200.9500
C6—H6A0.9900C21—H210.9500
C6—H6B0.9900
C5—O1—C1111.07 (12)H8B—C8—H8C109.5
C7—O2—C6116.65 (14)O5—C9—O4122.82 (15)
C9—O4—C2117.18 (13)O5—C9—C10127.05 (16)
C11—O6—C3117.74 (14)O4—C9—C10110.10 (14)
C13—O8—C4117.05 (14)C9—C10—H10A109.5
C15—O10—C5115.77 (13)C9—C10—H10B109.5
O1—C1—C6106.88 (13)H10A—C10—H10B109.5
O1—C1—C2107.27 (13)C9—C10—H10C109.5
C6—C1—C2113.52 (14)H10A—C10—H10C109.5
O1—C1—H1109.7H10B—C10—H10C109.5
C6—C1—H1109.7O7—C11—O6124.08 (17)
C2—C1—H1109.7O7—C11—C12126.49 (19)
O4—C2—C3104.57 (13)O6—C11—C12109.41 (17)
O4—C2—C1111.42 (13)C11—C12—H12A109.5
C3—C2—C1110.19 (13)C11—C12—H12B109.5
O4—C2—H2110.2H12A—C12—H12B109.5
C3—C2—H2110.2C11—C12—H12C109.5
C1—C2—H2110.2H12A—C12—H12C109.5
O6—C3—C2107.91 (13)H12B—C12—H12C109.5
O6—C3—C4108.09 (14)O9—C13—O8123.37 (18)
C2—C3—C4111.16 (13)O9—C13—C14125.80 (19)
O6—C3—H3109.9O8—C13—C14110.81 (17)
C2—C3—H3109.9C13—C14—H14A109.5
C4—C3—H3109.9C13—C14—H14B109.5
O8—C4—C3108.55 (14)H14A—C14—H14B109.5
O8—C4—C5107.52 (13)C13—C14—H14C109.5
C3—C4—C5109.22 (14)H14A—C14—H14C109.5
O8—C4—H4110.5H14B—C14—H14C109.5
C3—C4—H4110.5O10—C15—C16116.66 (17)
C5—C4—H4110.5O10—C15—C20122.13 (16)
O10—C5—O1109.38 (13)C16—C15—C20121.21 (17)
O10—C5—C4106.87 (14)C17—C16—C15119.31 (19)
O1—C5—C4108.50 (13)C17—C16—H16120.3
O10—C5—H5110.7C15—C16—H16120.3
O1—C5—H5110.7C16—C17—C18120.59 (17)
C4—C5—H5110.7C16—C17—H17119.7
O2—C6—C1105.19 (14)C18—C17—H17119.7
O2—C6—H6A110.7C19—C18—C17119.37 (17)
C1—C6—H6A110.7C19—C18—C21121.21 (18)
O2—C6—H6B110.7C17—C18—C21119.42 (18)
C1—C6—H6B110.7C20—C19—C18120.91 (18)
H6A—C6—H6B108.8C20—C19—H19119.5
O3—C7—O2123.64 (17)C18—C19—H19119.5
O3—C7—C8125.73 (18)C19—C20—C15118.61 (17)
O2—C7—C8110.58 (16)C19—C20—H20120.7
C7—C8—H8A109.5C15—C20—H20120.7
C7—C8—H8B109.5O11—C21—C18124.9 (2)
H8A—C8—H8B109.5O11—C21—H21117.5
C7—C8—H8C109.5C18—C21—H21117.5
H8A—C8—H8C109.5
C5—O1—C1—C6170.55 (13)C3—C4—C5—O158.77 (17)
C5—O1—C1—C267.38 (15)C7—O2—C6—C1174.96 (14)
C9—O4—C2—C3140.73 (14)O1—C1—C6—O264.96 (16)
C9—O4—C2—C1100.26 (16)C2—C1—C6—O2176.99 (13)
O1—C1—C2—O4173.01 (13)C6—O2—C7—O32.8 (3)
C6—C1—C2—O469.16 (17)C6—O2—C7—C8174.88 (15)
O1—C1—C2—C357.40 (16)C2—O4—C9—O59.6 (2)
C6—C1—C2—C3175.23 (13)C2—O4—C9—C10168.33 (15)
C11—O6—C3—C2117.13 (16)C3—O6—C11—O72.1 (3)
C11—O6—C3—C4122.56 (16)C3—O6—C11—C12176.77 (19)
O4—C2—C3—O669.99 (15)C4—O8—C13—O92.9 (3)
C1—C2—C3—O6170.17 (13)C4—O8—C13—C14178.48 (17)
O4—C2—C3—C4171.65 (13)C5—O10—C15—C16134.15 (17)
C1—C2—C3—C451.81 (18)C5—O10—C15—C2046.8 (2)
C13—O8—C4—C3110.11 (16)O10—C15—C16—C17178.90 (15)
C13—O8—C4—C5131.85 (15)C20—C15—C16—C170.2 (3)
O6—C3—C4—O873.14 (16)C15—C16—C17—C180.2 (3)
C2—C3—C4—O8168.61 (13)C16—C17—C18—C190.2 (3)
O6—C3—C4—C5169.91 (13)C16—C17—C18—C21179.67 (17)
C2—C3—C4—C551.66 (18)C17—C18—C19—C200.2 (3)
C15—O10—C5—O189.74 (17)C21—C18—C19—C20179.63 (17)
C15—O10—C5—C4152.99 (14)C18—C19—C20—C150.2 (3)
C1—O1—C5—O10175.14 (12)O10—C15—C20—C19178.82 (15)
C1—O1—C5—C468.62 (16)C16—C15—C20—C190.2 (3)
O8—C4—C5—O1065.78 (16)C19—C18—C21—O111.9 (3)
C3—C4—C5—O10176.62 (13)C17—C18—C21—O11177.97 (19)
O8—C4—C5—O1176.37 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5i1.002.513.356 (2)143
C3—H3···O5i1.002.353.207 (2)143
C6—H6A···O9ii0.992.403.324 (2)155
C8—H8C···O11iii0.982.543.475 (3)160
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H24O11
Mr452.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.7868 (2), 8.9166 (3), 11.4716 (3)
α, β, γ (°)102.473 (3), 93.481 (2), 102.780 (3)
V3)559.96 (3)
Z1
Radiation typeCu Kα
µ (mm1)0.94
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerAgilent Supernova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Tmin, Tmax0.919, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7392, 4097, 4087
Rint0.021
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.07
No. of reflections4097
No. of parameters293
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.17
Absolute structureFlack (1983), 1855 Friedel pairs

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5i1.002.513.356 (2)143
C3—H3···O5i1.002.353.207 (2)143
C6—H6A···O9ii0.992.403.324 (2)155
C8—H8C···O11iii0.982.543.475 (3)160
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: heidelberg@um.edu.my.

Acknowledgements

This study was supported by the University of Malaya under research grant No. FS306/2007 C. The authors are also grateful to the University of Malaya for support of the crystallographic facility.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBao, C., Lu, R., Jin, M., Xue, P., Tan, C., Zhao, Y. & Liu, G. (2004). Carbohydr. Res. 339, 1311–1316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHongu, M., Saito, K. & Tsujihara, K. (1999). Synth. Commun. 29, 2775–2781.  CrossRef CAS Google Scholar
First citationHussen, R. S. D., Heidelberg, T., Rodzi, N. Z. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLa Torre, G. L., Lagana, G., Bellocco, E., Vilasi, F., Salvo, F. & Dugo, G. (2004). Food Chem. 85, 259–266.  CrossRef CAS Google Scholar
First citationPatil, P. R. & Ravindranathan Kartha, K. P. (2008). J. Carbohydr. Chem. 27, 411–419.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, H., Lin, C., Ling, Q., Ge, H., Ma, L., Cao, R., Wan, Y., Peng, W., Wang, Z. & Song, H. (2008). Eur. J. Med. Chem. 43, 166–173.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, Q., Cao, R., Yi, W., Yu, L., Chen, Z., Ma, L. & Song, H. (2009). Bioorg. Med. Chem. Lett. 19, 4055–4058.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYe, D., Zhang, K., Chen, H., Yin, S. & Li, Y. (2009). Acta Cryst. E65, o1338.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds