organic compounds
4-Formylphenyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside
aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
The pyranoside ring in the title compound, C21H24O11, has a chair conformation with the substituted benzene ring occupying an equatorial position. The crystal packing is dominated by C—H⋯O interactions that lead to the formation of supramolecular layers in the ab plane.
Related literature
For synthesis, see: Bao et al. (2004); Hongu et al. (1999); Patil & Ravindranathan Kartha (2008). For the natural anti-oxidant glucosylated resveratrol, see: La Torre et al. (2004). For the biological activity of related structures, see: Wen et al. (2008); Yan et al. (2009). For the structure of the isomeric allopyranoside and galactose derivatives, see: Ye et al. (2009); Hussen et al. (2011). For see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811008099/ez2235sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811008099/ez2235Isup2.hkl
2,3,4,6-Tetra-O-acetyl-α-D-gluctopyranosyl bromide (4.0 g) and 4-hydroxybenzaldehyde (3.0 g) were dissolved in chloroform (30 ml) and the mixture treated with a solution of aqueous solution (15 ml) of sodium carbonate (2.7 g) and tetrabutylammonium bromide (0.7 g). The mixture was heated to reflux under vigorous stirring overnight, after which ethyl acetate was added and the organic layer was washed three times with sodium hydroxide solution (1 N) to remove remaining After drying the solution over magnesium sulfate and evaporation of the solvent, the target product (2.0 g, 45%) was obtained by crystallization from ethanol. Better crystals were obtained from 2-propanol.
1H NMR (400 MHz, CDCl3): δ 9.92 (s; CHO), 7.85 & 7.09 (AB syst; aromatic 4H), 5.34–5.26 & 5.24–5.14 (2 m, 2 x 2H; H1–H4), 4.27 (dd; H6a), 4.16 (dd; H6b), 3.92 (ddd; H5), 2.05–2.03 (3 s, 12H; Ac); 3J4,5 = 10.0 Hz, 3J5,6a = 5.0 Hz, 3J5,6 b = 2.5 Hz and 2J6 = 12.0 Hz.
Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the
in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell
CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C21H24O11 | Z = 1 |
Mr = 452.40 | F(000) = 238 |
Triclinic, P1 | Dx = 1.342 Mg m−3 |
Hall symbol: P 1 | Cu Kα radiation, λ = 1.54184 Å |
a = 5.7868 (2) Å | Cell parameters from 7285 reflections |
b = 8.9166 (3) Å | θ = 4.0–74.1° |
c = 11.4716 (3) Å | µ = 0.94 mm−1 |
α = 102.473 (3)° | T = 100 K |
β = 93.481 (2)° | Block, colourless |
γ = 102.780 (3)° | 0.30 × 0.30 × 0.20 mm |
V = 559.96 (3) Å3 |
Agilent Supernova Dual diffractometer with an Atlas detector | 4097 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 4087 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.021 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 74.3°, θmin = 4.0° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010) | k = −9→10 |
Tmin = 0.919, Tmax = 1.000 | l = −13→14 |
7392 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0908P)2 + 0.072P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
4097 reflections | Δρmax = 0.27 e Å−3 |
293 parameters | Δρmin = −0.17 e Å−3 |
3 restraints | Absolute structure: Flack (1983), 1855 Friedel pairs |
Primary atom site location: structure-invariant direct methods |
C21H24O11 | γ = 102.780 (3)° |
Mr = 452.40 | V = 559.96 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.7868 (2) Å | Cu Kα radiation |
b = 8.9166 (3) Å | µ = 0.94 mm−1 |
c = 11.4716 (3) Å | T = 100 K |
α = 102.473 (3)° | 0.30 × 0.30 × 0.20 mm |
β = 93.481 (2)° |
Agilent Supernova Dual diffractometer with an Atlas detector | 4097 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010) | 4087 reflections with I > 2σ(I) |
Tmin = 0.919, Tmax = 1.000 | Rint = 0.021 |
7392 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 3 restraints |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.27 e Å−3 |
4097 reflections | Δρmin = −0.17 e Å−3 |
293 parameters | Absolute structure: Flack (1983), 1855 Friedel pairs |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.9987 (2) | 0.49931 (15) | 0.49910 (11) | 0.0174 (3) | |
O2 | 1.0120 (2) | 0.81529 (16) | 0.57609 (11) | 0.0218 (3) | |
O3 | 0.7432 (3) | 0.95346 (19) | 0.63881 (14) | 0.0305 (3) | |
O4 | 0.7892 (2) | 0.55996 (15) | 0.20730 (10) | 0.0167 (3) | |
O5 | 0.4356 (2) | 0.59974 (16) | 0.26001 (12) | 0.0208 (3) | |
O6 | 0.7723 (2) | 0.23423 (15) | 0.15960 (11) | 0.0192 (3) | |
O7 | 1.0136 (3) | 0.2794 (2) | 0.01679 (14) | 0.0385 (4) | |
O8 | 1.1640 (2) | 0.17486 (15) | 0.30105 (11) | 0.0196 (3) | |
O9 | 0.8768 (3) | −0.04604 (17) | 0.28892 (15) | 0.0297 (3) | |
O10 | 1.1933 (2) | 0.31718 (15) | 0.54454 (11) | 0.0204 (3) | |
O11 | 2.0808 (3) | 0.73176 (19) | 0.92751 (14) | 0.0330 (4) | |
C1 | 0.9617 (3) | 0.5930 (2) | 0.41525 (15) | 0.0166 (3) | |
H1 | 1.1190 | 0.6460 | 0.3937 | 0.020* | |
C2 | 0.8116 (3) | 0.4800 (2) | 0.30264 (15) | 0.0155 (3) | |
H2 | 0.6503 | 0.4316 | 0.3225 | 0.019* | |
C3 | 0.9368 (3) | 0.3515 (2) | 0.25138 (15) | 0.0163 (3) | |
H3 | 1.0817 | 0.3980 | 0.2159 | 0.020* | |
C4 | 1.0071 (3) | 0.2710 (2) | 0.34749 (16) | 0.0171 (3) | |
H4 | 0.8624 | 0.2051 | 0.3712 | 0.021* | |
C5 | 1.1452 (3) | 0.3968 (2) | 0.45629 (15) | 0.0168 (3) | |
H5 | 1.2968 | 0.4572 | 0.4343 | 0.020* | |
C6 | 0.8401 (3) | 0.7168 (2) | 0.47781 (16) | 0.0187 (3) | |
H6A | 0.7979 | 0.7799 | 0.4222 | 0.022* | |
H6B | 0.6930 | 0.6665 | 0.5080 | 0.022* | |
C7 | 0.9388 (3) | 0.9279 (2) | 0.65168 (16) | 0.0220 (4) | |
C8 | 1.1278 (4) | 1.0105 (3) | 0.75474 (18) | 0.0291 (4) | |
H8A | 1.1138 | 1.1193 | 0.7845 | 0.044* | |
H8B | 1.2855 | 1.0119 | 0.7277 | 0.044* | |
H8C | 1.1077 | 0.9543 | 0.8194 | 0.044* | |
C9 | 0.5824 (3) | 0.6053 (2) | 0.19069 (15) | 0.0163 (3) | |
C10 | 0.5674 (3) | 0.6549 (3) | 0.07482 (17) | 0.0234 (4) | |
H10A | 0.4287 | 0.7001 | 0.0685 | 0.035* | |
H10B | 0.5507 | 0.5627 | 0.0077 | 0.035* | |
H10C | 0.7128 | 0.7344 | 0.0721 | 0.035* | |
C11 | 0.8311 (4) | 0.2113 (2) | 0.04513 (17) | 0.0250 (4) | |
C12 | 0.6319 (5) | 0.0922 (3) | −0.0371 (2) | 0.0428 (6) | |
H12A | 0.6747 | 0.0749 | −0.1195 | 0.064* | |
H12B | 0.4866 | 0.1315 | −0.0340 | 0.064* | |
H12C | 0.6041 | −0.0078 | −0.0117 | 0.064* | |
C13 | 1.0775 (3) | 0.0158 (2) | 0.27726 (16) | 0.0214 (4) | |
C14 | 1.2625 (4) | −0.0679 (3) | 0.2328 (3) | 0.0385 (5) | |
H14A | 1.1877 | −0.1802 | 0.1990 | 0.058* | |
H14B | 1.3833 | −0.0573 | 0.2997 | 0.058* | |
H14C | 1.3381 | −0.0212 | 0.1706 | 0.058* | |
C15 | 1.3937 (3) | 0.3914 (2) | 0.62530 (15) | 0.0185 (4) | |
C16 | 1.5446 (4) | 0.2974 (3) | 0.64956 (18) | 0.0230 (4) | |
H16 | 1.5095 | 0.1883 | 0.6104 | 0.028* | |
C17 | 1.7455 (4) | 0.3644 (3) | 0.73110 (18) | 0.0249 (4) | |
H17 | 1.8490 | 0.3008 | 0.7482 | 0.030* | |
C18 | 1.7984 (3) | 0.5252 (2) | 0.78886 (16) | 0.0229 (4) | |
C19 | 1.6452 (3) | 0.6178 (2) | 0.76354 (15) | 0.0216 (4) | |
H19 | 1.6803 | 0.7268 | 0.8028 | 0.026* | |
C20 | 1.4427 (3) | 0.5528 (2) | 0.68196 (16) | 0.0209 (4) | |
H20 | 1.3390 | 0.6162 | 0.6647 | 0.025* | |
C21 | 2.0148 (4) | 0.5937 (3) | 0.87497 (18) | 0.0279 (4) | |
H21 | 2.1099 | 0.5244 | 0.8905 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0207 (6) | 0.0178 (6) | 0.0153 (5) | 0.0077 (5) | 0.0026 (4) | 0.0040 (5) |
O2 | 0.0222 (6) | 0.0195 (7) | 0.0197 (6) | 0.0055 (5) | −0.0015 (5) | −0.0030 (5) |
O3 | 0.0332 (8) | 0.0268 (8) | 0.0305 (7) | 0.0149 (6) | 0.0023 (6) | −0.0032 (6) |
O4 | 0.0163 (6) | 0.0200 (6) | 0.0160 (5) | 0.0071 (4) | 0.0020 (4) | 0.0061 (4) |
O5 | 0.0175 (6) | 0.0221 (7) | 0.0231 (6) | 0.0063 (5) | 0.0035 (5) | 0.0043 (5) |
O6 | 0.0202 (6) | 0.0176 (6) | 0.0160 (6) | 0.0022 (5) | −0.0017 (5) | −0.0006 (5) |
O7 | 0.0419 (9) | 0.0422 (9) | 0.0211 (7) | −0.0038 (7) | 0.0091 (6) | −0.0018 (6) |
O8 | 0.0178 (6) | 0.0166 (6) | 0.0245 (6) | 0.0057 (5) | 0.0023 (5) | 0.0034 (5) |
O9 | 0.0278 (7) | 0.0171 (7) | 0.0435 (8) | 0.0040 (5) | 0.0079 (6) | 0.0062 (6) |
O10 | 0.0231 (6) | 0.0186 (7) | 0.0203 (6) | 0.0041 (5) | −0.0020 (5) | 0.0083 (5) |
O11 | 0.0293 (7) | 0.0380 (9) | 0.0279 (7) | 0.0037 (6) | −0.0054 (6) | 0.0066 (6) |
C1 | 0.0191 (8) | 0.0156 (9) | 0.0157 (8) | 0.0049 (6) | 0.0017 (6) | 0.0041 (6) |
C2 | 0.0167 (7) | 0.0166 (9) | 0.0148 (7) | 0.0051 (6) | 0.0034 (6) | 0.0054 (6) |
C3 | 0.0162 (8) | 0.0156 (8) | 0.0150 (7) | 0.0027 (6) | −0.0006 (6) | 0.0013 (6) |
C4 | 0.0170 (8) | 0.0148 (8) | 0.0189 (8) | 0.0043 (6) | 0.0022 (6) | 0.0022 (6) |
C5 | 0.0183 (8) | 0.0166 (9) | 0.0164 (7) | 0.0052 (6) | 0.0010 (6) | 0.0048 (6) |
C6 | 0.0189 (8) | 0.0167 (8) | 0.0182 (8) | 0.0039 (6) | 0.0004 (6) | 0.0000 (6) |
C7 | 0.0286 (10) | 0.0169 (9) | 0.0206 (9) | 0.0073 (7) | 0.0045 (7) | 0.0024 (7) |
C8 | 0.0365 (11) | 0.0227 (10) | 0.0228 (9) | 0.0043 (8) | −0.0018 (8) | −0.0014 (7) |
C9 | 0.0154 (8) | 0.0147 (8) | 0.0176 (8) | 0.0043 (6) | −0.0011 (6) | 0.0012 (6) |
C10 | 0.0244 (9) | 0.0298 (10) | 0.0189 (8) | 0.0116 (7) | 0.0008 (6) | 0.0075 (7) |
C11 | 0.0334 (10) | 0.0234 (10) | 0.0172 (8) | 0.0073 (8) | 0.0028 (7) | 0.0017 (7) |
C12 | 0.0504 (14) | 0.0434 (14) | 0.0206 (10) | −0.0062 (11) | −0.0034 (9) | −0.0024 (9) |
C13 | 0.0243 (9) | 0.0171 (9) | 0.0224 (8) | 0.0046 (7) | −0.0001 (7) | 0.0048 (7) |
C14 | 0.0350 (11) | 0.0218 (11) | 0.0614 (16) | 0.0118 (9) | 0.0152 (10) | 0.0073 (10) |
C15 | 0.0191 (8) | 0.0225 (10) | 0.0161 (8) | 0.0054 (7) | 0.0032 (6) | 0.0084 (6) |
C16 | 0.0263 (9) | 0.0229 (9) | 0.0238 (8) | 0.0090 (7) | 0.0049 (7) | 0.0102 (7) |
C17 | 0.0243 (9) | 0.0309 (11) | 0.0258 (9) | 0.0124 (8) | 0.0043 (7) | 0.0139 (8) |
C18 | 0.0228 (9) | 0.0310 (11) | 0.0175 (8) | 0.0068 (7) | 0.0035 (7) | 0.0101 (7) |
C19 | 0.0254 (9) | 0.0233 (10) | 0.0160 (8) | 0.0065 (7) | 0.0019 (7) | 0.0041 (7) |
C20 | 0.0240 (9) | 0.0229 (10) | 0.0180 (8) | 0.0085 (7) | 0.0014 (7) | 0.0070 (7) |
C21 | 0.0223 (9) | 0.0400 (13) | 0.0235 (9) | 0.0075 (8) | 0.0010 (7) | 0.0120 (9) |
O1—C5 | 1.413 (2) | C7—C8 | 1.499 (3) |
O1—C1 | 1.439 (2) | C8—H8A | 0.9800 |
O2—C7 | 1.340 (2) | C8—H8B | 0.9800 |
O2—C6 | 1.443 (2) | C8—H8C | 0.9800 |
O3—C7 | 1.210 (3) | C9—C10 | 1.492 (2) |
O4—C9 | 1.361 (2) | C10—H10A | 0.9800 |
O4—C2 | 1.443 (2) | C10—H10B | 0.9800 |
O5—C9 | 1.199 (2) | C10—H10C | 0.9800 |
O6—C11 | 1.360 (2) | C11—C12 | 1.497 (3) |
O6—C3 | 1.4389 (19) | C12—H12A | 0.9800 |
O7—C11 | 1.197 (3) | C12—H12B | 0.9800 |
O8—C13 | 1.356 (2) | C12—H12C | 0.9800 |
O8—C4 | 1.431 (2) | C13—C14 | 1.489 (3) |
O9—C13 | 1.199 (3) | C14—H14A | 0.9800 |
O10—C15 | 1.381 (2) | C14—H14B | 0.9800 |
O10—C5 | 1.404 (2) | C14—H14C | 0.9800 |
O11—C21 | 1.212 (3) | C15—C16 | 1.391 (3) |
C1—C6 | 1.513 (2) | C15—C20 | 1.403 (3) |
C1—C2 | 1.534 (2) | C16—C17 | 1.380 (3) |
C1—H1 | 1.0000 | C16—H16 | 0.9500 |
C2—C3 | 1.521 (2) | C17—C18 | 1.400 (3) |
C2—H2 | 1.0000 | C17—H17 | 0.9500 |
C3—C4 | 1.520 (2) | C18—C19 | 1.396 (3) |
C3—H3 | 1.0000 | C18—C21 | 1.472 (3) |
C4—C5 | 1.527 (2) | C19—C20 | 1.384 (3) |
C4—H4 | 1.0000 | C19—H19 | 0.9500 |
C5—H5 | 1.0000 | C20—H20 | 0.9500 |
C6—H6A | 0.9900 | C21—H21 | 0.9500 |
C6—H6B | 0.9900 | ||
C5—O1—C1 | 111.07 (12) | H8B—C8—H8C | 109.5 |
C7—O2—C6 | 116.65 (14) | O5—C9—O4 | 122.82 (15) |
C9—O4—C2 | 117.18 (13) | O5—C9—C10 | 127.05 (16) |
C11—O6—C3 | 117.74 (14) | O4—C9—C10 | 110.10 (14) |
C13—O8—C4 | 117.05 (14) | C9—C10—H10A | 109.5 |
C15—O10—C5 | 115.77 (13) | C9—C10—H10B | 109.5 |
O1—C1—C6 | 106.88 (13) | H10A—C10—H10B | 109.5 |
O1—C1—C2 | 107.27 (13) | C9—C10—H10C | 109.5 |
C6—C1—C2 | 113.52 (14) | H10A—C10—H10C | 109.5 |
O1—C1—H1 | 109.7 | H10B—C10—H10C | 109.5 |
C6—C1—H1 | 109.7 | O7—C11—O6 | 124.08 (17) |
C2—C1—H1 | 109.7 | O7—C11—C12 | 126.49 (19) |
O4—C2—C3 | 104.57 (13) | O6—C11—C12 | 109.41 (17) |
O4—C2—C1 | 111.42 (13) | C11—C12—H12A | 109.5 |
C3—C2—C1 | 110.19 (13) | C11—C12—H12B | 109.5 |
O4—C2—H2 | 110.2 | H12A—C12—H12B | 109.5 |
C3—C2—H2 | 110.2 | C11—C12—H12C | 109.5 |
C1—C2—H2 | 110.2 | H12A—C12—H12C | 109.5 |
O6—C3—C2 | 107.91 (13) | H12B—C12—H12C | 109.5 |
O6—C3—C4 | 108.09 (14) | O9—C13—O8 | 123.37 (18) |
C2—C3—C4 | 111.16 (13) | O9—C13—C14 | 125.80 (19) |
O6—C3—H3 | 109.9 | O8—C13—C14 | 110.81 (17) |
C2—C3—H3 | 109.9 | C13—C14—H14A | 109.5 |
C4—C3—H3 | 109.9 | C13—C14—H14B | 109.5 |
O8—C4—C3 | 108.55 (14) | H14A—C14—H14B | 109.5 |
O8—C4—C5 | 107.52 (13) | C13—C14—H14C | 109.5 |
C3—C4—C5 | 109.22 (14) | H14A—C14—H14C | 109.5 |
O8—C4—H4 | 110.5 | H14B—C14—H14C | 109.5 |
C3—C4—H4 | 110.5 | O10—C15—C16 | 116.66 (17) |
C5—C4—H4 | 110.5 | O10—C15—C20 | 122.13 (16) |
O10—C5—O1 | 109.38 (13) | C16—C15—C20 | 121.21 (17) |
O10—C5—C4 | 106.87 (14) | C17—C16—C15 | 119.31 (19) |
O1—C5—C4 | 108.50 (13) | C17—C16—H16 | 120.3 |
O10—C5—H5 | 110.7 | C15—C16—H16 | 120.3 |
O1—C5—H5 | 110.7 | C16—C17—C18 | 120.59 (17) |
C4—C5—H5 | 110.7 | C16—C17—H17 | 119.7 |
O2—C6—C1 | 105.19 (14) | C18—C17—H17 | 119.7 |
O2—C6—H6A | 110.7 | C19—C18—C17 | 119.37 (17) |
C1—C6—H6A | 110.7 | C19—C18—C21 | 121.21 (18) |
O2—C6—H6B | 110.7 | C17—C18—C21 | 119.42 (18) |
C1—C6—H6B | 110.7 | C20—C19—C18 | 120.91 (18) |
H6A—C6—H6B | 108.8 | C20—C19—H19 | 119.5 |
O3—C7—O2 | 123.64 (17) | C18—C19—H19 | 119.5 |
O3—C7—C8 | 125.73 (18) | C19—C20—C15 | 118.61 (17) |
O2—C7—C8 | 110.58 (16) | C19—C20—H20 | 120.7 |
C7—C8—H8A | 109.5 | C15—C20—H20 | 120.7 |
C7—C8—H8B | 109.5 | O11—C21—C18 | 124.9 (2) |
H8A—C8—H8B | 109.5 | O11—C21—H21 | 117.5 |
C7—C8—H8C | 109.5 | C18—C21—H21 | 117.5 |
H8A—C8—H8C | 109.5 | ||
C5—O1—C1—C6 | −170.55 (13) | C3—C4—C5—O1 | 58.77 (17) |
C5—O1—C1—C2 | 67.38 (15) | C7—O2—C6—C1 | −174.96 (14) |
C9—O4—C2—C3 | 140.73 (14) | O1—C1—C6—O2 | 64.96 (16) |
C9—O4—C2—C1 | −100.26 (16) | C2—C1—C6—O2 | −176.99 (13) |
O1—C1—C2—O4 | −173.01 (13) | C6—O2—C7—O3 | −2.8 (3) |
C6—C1—C2—O4 | 69.16 (17) | C6—O2—C7—C8 | 174.88 (15) |
O1—C1—C2—C3 | −57.40 (16) | C2—O4—C9—O5 | 9.6 (2) |
C6—C1—C2—C3 | −175.23 (13) | C2—O4—C9—C10 | −168.33 (15) |
C11—O6—C3—C2 | 117.13 (16) | C3—O6—C11—O7 | 2.1 (3) |
C11—O6—C3—C4 | −122.56 (16) | C3—O6—C11—C12 | −176.77 (19) |
O4—C2—C3—O6 | −69.99 (15) | C4—O8—C13—O9 | 2.9 (3) |
C1—C2—C3—O6 | 170.17 (13) | C4—O8—C13—C14 | −178.48 (17) |
O4—C2—C3—C4 | 171.65 (13) | C5—O10—C15—C16 | −134.15 (17) |
C1—C2—C3—C4 | 51.81 (18) | C5—O10—C15—C20 | 46.8 (2) |
C13—O8—C4—C3 | −110.11 (16) | O10—C15—C16—C17 | −178.90 (15) |
C13—O8—C4—C5 | 131.85 (15) | C20—C15—C16—C17 | 0.2 (3) |
O6—C3—C4—O8 | 73.14 (16) | C15—C16—C17—C18 | −0.2 (3) |
C2—C3—C4—O8 | −168.61 (13) | C16—C17—C18—C19 | 0.2 (3) |
O6—C3—C4—C5 | −169.91 (13) | C16—C17—C18—C21 | −179.67 (17) |
C2—C3—C4—C5 | −51.66 (18) | C17—C18—C19—C20 | −0.2 (3) |
C15—O10—C5—O1 | −89.74 (17) | C21—C18—C19—C20 | 179.63 (17) |
C15—O10—C5—C4 | 152.99 (14) | C18—C19—C20—C15 | 0.2 (3) |
C1—O1—C5—O10 | 175.14 (12) | O10—C15—C20—C19 | 178.82 (15) |
C1—O1—C5—C4 | −68.62 (16) | C16—C15—C20—C19 | −0.2 (3) |
O8—C4—C5—O10 | −65.78 (16) | C19—C18—C21—O11 | −1.9 (3) |
C3—C4—C5—O10 | 176.62 (13) | C17—C18—C21—O11 | 177.97 (19) |
O8—C4—C5—O1 | 176.37 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O5i | 1.00 | 2.51 | 3.356 (2) | 143 |
C3—H3···O5i | 1.00 | 2.35 | 3.207 (2) | 143 |
C6—H6A···O9ii | 0.99 | 2.40 | 3.324 (2) | 155 |
C8—H8C···O11iii | 0.98 | 2.54 | 3.475 (3) | 160 |
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C21H24O11 |
Mr | 452.40 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 5.7868 (2), 8.9166 (3), 11.4716 (3) |
α, β, γ (°) | 102.473 (3), 93.481 (2), 102.780 (3) |
V (Å3) | 559.96 (3) |
Z | 1 |
Radiation type | Cu Kα |
µ (mm−1) | 0.94 |
Crystal size (mm) | 0.30 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Agilent Supernova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent Technologies, 2010) |
Tmin, Tmax | 0.919, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7392, 4097, 4087 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.624 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.115, 1.07 |
No. of reflections | 4097 |
No. of parameters | 293 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.17 |
Absolute structure | Flack (1983), 1855 Friedel pairs |
Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O5i | 1.00 | 2.51 | 3.356 (2) | 143 |
C3—H3···O5i | 1.00 | 2.35 | 3.207 (2) | 143 |
C6—H6A···O9ii | 0.99 | 2.40 | 3.324 (2) | 155 |
C8—H8C···O11iii | 0.98 | 2.54 | 3.475 (3) | 160 |
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x−1, y, z. |
Footnotes
‡Additional correspondence author, e-mail: heidelberg@um.edu.my.
Acknowledgements
This study was supported by the University of Malaya under research grant No. FS306/2007 C. The authors are also grateful to the University of Malaya for support of the crystallographic facility.
References
Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Bao, C., Lu, R., Jin, M., Xue, P., Tan, C., Zhao, Y. & Liu, G. (2004). Carbohydr. Res. 339, 1311–1316. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hongu, M., Saito, K. & Tsujihara, K. (1999). Synth. Commun. 29, 2775–2781. CrossRef CAS Google Scholar
Hussen, R. S. D., Heidelberg, T., Rodzi, N. Z. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o826. Web of Science CSD CrossRef IUCr Journals Google Scholar
La Torre, G. L., Lagana, G., Bellocco, E., Vilasi, F., Salvo, F. & Dugo, G. (2004). Food Chem. 85, 259–266. CrossRef CAS Google Scholar
Patil, P. R. & Ravindranathan Kartha, K. P. (2008). J. Carbohydr. Chem. 27, 411–419. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wen, H., Lin, C., Ling, Q., Ge, H., Ma, L., Cao, R., Wan, Y., Peng, W., Wang, Z. & Song, H. (2008). Eur. J. Med. Chem. 43, 166–173. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yan, Q., Cao, R., Yi, W., Yu, L., Chen, Z., Ma, L. & Song, H. (2009). Bioorg. Med. Chem. Lett. 19, 4055–4058. Web of Science CrossRef PubMed CAS Google Scholar
Ye, D., Zhang, K., Chen, H., Yin, S. & Li, Y. (2009). Acta Cryst. E65, o1338. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, 4-formyl-phenyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside, a known species (Bao et al., 2004, Hongu et al., 1999; Patil et al.; 2008), which has been used for the preparation of potential pharmaceutically active compounds (Wen et al., 2008; Yan et al., 2009) was prepared as a precursor for the synthesis of glucosylated resveratrol, an interesting natural antioxidant (La Torre et al., 2004). The present analysis complements the recent report of the isomeric galactose derivative, see: Hussen et al. (2011).
The structure determination, Fig. 1, confirms the relative stereochemistry as well as the absolute structure, i.e. R, R, S, R and S for C1–C5, respectively. The pyranoside ring has a chair conformation as seen in the puckering parameters (Cremer & Pople, 1975): puckering amplitude (Q) = 0.6016 (18) Å, θ = 172.53 (16) °, and ϕ = 178.0 (14) °. Around the ring, all substituents are equatorial.
The crystal packing is dominated by C–H···O interactions, Table 1, involving carbonyl atoms as acceptors and methine-, methylene methyl-H as the donors. The carbonyl-O5 atom is bifurcated, spanning two methine-H atoms of a neighbouring molecule to form a supramolecular chain along the a axis. Altogether, the C–H···O interactions lead to the formation of supramolecular layers that stack along the c axis, Fig. 2.
The present report complements the structures reported recently for the isomeric allopyranoside (Ye et al., 2009) and galactose (Duali Hussen et al., 2011) derivatives.