organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Formyl­phenyl 2,3,4,6-tetra-O-acetyl-β-D-galacto­pyran­oside

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 16 February 2011; accepted 3 March 2011; online 9 March 2011)

The galactose ring in the title compound, C21H24O11, has a chair conformation with the substituted benzene ring occupying an equatorial position. The crystal packing features C—H⋯O inter­actions that lead to the formation of supra­molecular layers in the ab plane.

Related literature

For the synthesis, see: Benassi et al. (2007[Benassi, R., Ferraria, E., Grandia, R., Lazzaria, S. & Saladini, M. (2007). J. Inorg. Biochem. 101, 203-213.]); Patil et al. (2008[Patil, P. R. & Ravindranathan Kartha, K. P. (2008). J. Carbohydr. Chem. 27, 411-419.]). For the biological activity of related structures, see: Zheng et al. (2010[Zheng, Y., Meng, X.-B., Li, S.-C., Huang, H.-Q., Li, Z.-J. & Li, Q. (2010). J. Chin. Pharm. Sci. 19, 327-340.]). For the structure of the isomeric allopyran­oside and glucopyran­oside derivatives, see: Ye et al. (2009[Ye, D., Zhang, K., Chen, H., Yin, S. & Li, Y. (2009). Acta Cryst. E65, o1338.]); Heidelberg et al. (2011[Heidelberg, T., Hussen, R. S. D., Rodzi, N. Z. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o825.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24O11

  • Mr = 452.40

  • Monoclinic, P 21

  • a = 11.8358 (4) Å

  • b = 5.6664 (2) Å

  • c = 17.5079 (6) Å

  • β = 109.616 (4)°

  • V = 1106.05 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.05 mm

Data collection
  • Agilent Supernova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.596, Tmax = 1.000

  • 10396 measured reflections

  • 2768 independent reflections

  • 2535 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.05

  • 2768 reflections

  • 293 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O9i 1.00 2.39 3.199 (3) 137
C5—H5⋯O9i 1.00 2.45 3.268 (3) 139
C10—H10b⋯O3ii 0.98 2.46 3.307 (3) 145
C12—H12b⋯O5iii 0.98 2.57 3.548 (3) 172
C14—H14c⋯O11iv 0.98 2.50 3.415 (4) 155
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iv) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, 4-formyl-phenyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside, a known species (Benassi et al., 2007; Patil et al., 2008), was prepared as a precursor for the synthesis of galactosylated resveratrol, an anti-oxidizing agent with possible pharmaceutical potential (Zheng et al., 2010).

The structure determination, Fig. 1, confirms the relative stereochemistry. The absolute structure, while not determined experimentally, is based on that of the acetobromogalactose reagent, i.e. R, S, S, R and S for C1–C5, respectively. The galactose ring has a chair conformation as seen in the puckering parameters (Cremer & Pople, 1975): puckering amplitude (Q) = 0.579 (2) Å, θ = 166.9 (2) °, and ϕ = 187.6 (10) °. Around the ring, the substituents at the C1, C4 and C5 atoms are equatorial, while at C2 the substituent is axial and that at the C3 atom is biaxial.

The crystal packing is dominated by C–H···O interactions, Table 1, involving all carbonyl atoms, except the O7 atom, as acceptors and either methine- or methyl-H as the donors. These lead to the formation of supramolecular layers that stack along the c axis, Fig. 2.

The present report complements the structures reported recently for the isomeric allopyranoside (Ye et al., 2009) and glucopyranoside (Heidelberg et al., 2011) derivatives.

Related literature top

For the synthesis, see: Benassi et al. (2007); Patil et al. (2008). For the biological activity of related structures, see: Zheng et al. (2010). For the structure of the isomeric allopyranoside and glucopyranoside derivatives, see: Ye et al. (2009); Heidelberg et al. (2011). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

2,3,4,6-Tetra-O-acetyl-α-D-galactopyranosyl bromide (2.0 g) and 4-hydroxybenzaldehyde (1.0 g) were dissolved in chloroform (10 ml) and the mixture was treated with an aqueous solution (5 ml) of sodium carbonate (0.9 g) and tetrabutylammonium bromide (0.3 g). The mixture was heated to reflux under vigorous stirring overnight, after which ethyl acetate was added and the organic layer was washed three times with sodium hydroxide solution (1 N) to remove remaining phenols. After drying the solution over magnesium sulfate and evaporation of the solvent, the target product (1.4 g, 60%) was obtained by crystallization from 2-propanol/hexane (2:1).

1H-NMR (400 MHz, CDCl3): δ 9.93 (s; CHO), 7.85 & 7.11 (AB syst; aromatic 4 H), 5.52 (dd; H2), 5.48 (bd; H4), 5.17 (d; H1), 5.12 (dd; H3), 4.23 (dd; H6a), 4.19–4.10 (m, 2 H; H5, H6b), 2.19–2.02 (3 s, 12 H; Ac); 3J4,5 = 10.0 Hz, 3J5,6a = 5.0 Hz, 3J5,6 b = 2.5 Hz, 2J6 = 12.0 Hz.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). In the absence of significant anomalous scattering effects, 1977 Friedel pairs were averaged in the final refinement. The absolute structure was assigned on the basis of that for the acetobromogalactose reagent.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents highlighting the stacking of layers. The C—H···O interactions are shown as orange dashed lines.
4-Formylphenyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside top
Crystal data top
C21H24O11F(000) = 476
Mr = 452.40Dx = 1.358 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5487 reflections
a = 11.8358 (4) Åθ = 2.5–29.3°
b = 5.6664 (2) ŵ = 0.11 mm1
c = 17.5079 (6) ÅT = 100 K
β = 109.616 (4)°Prism, colourless
V = 1106.05 (7) Å30.25 × 0.20 × 0.05 mm
Z = 2
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
2768 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2535 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 76
Tmin = 0.596, Tmax = 1.000l = 2216
10396 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.1621P]
where P = (Fo2 + 2Fc2)/3
2768 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C21H24O11V = 1106.05 (7) Å3
Mr = 452.40Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.8358 (4) ŵ = 0.11 mm1
b = 5.6664 (2) ÅT = 100 K
c = 17.5079 (6) Å0.25 × 0.20 × 0.05 mm
β = 109.616 (4)°
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
2768 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2535 reflections with I > 2σ(I)
Tmin = 0.596, Tmax = 1.000Rint = 0.051
10396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.086H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
2768 reflectionsΔρmin = 0.21 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52081 (12)0.4982 (3)0.29215 (8)0.0188 (3)
O20.48738 (13)0.0896 (3)0.37091 (9)0.0240 (4)
O30.55891 (13)0.1643 (3)0.47497 (9)0.0243 (4)
O40.75837 (12)0.6298 (3)0.39447 (8)0.0184 (3)
O50.86847 (14)0.3841 (3)0.49186 (9)0.0283 (4)
O60.83224 (12)0.7065 (3)0.26663 (8)0.0202 (3)
O70.95682 (14)0.3988 (3)0.27801 (9)0.0271 (4)
O80.61785 (14)0.7131 (3)0.12877 (9)0.0202 (3)
O90.61716 (16)1.1080 (3)0.13951 (10)0.0304 (4)
O100.41232 (13)0.7100 (3)0.18039 (8)0.0213 (3)
O110.15194 (15)0.5245 (5)0.06218 (12)0.0490 (6)
C10.61385 (17)0.3269 (4)0.32349 (12)0.0180 (4)
H10.60160.19900.28210.022*
C20.73547 (18)0.4392 (4)0.33610 (12)0.0178 (4)
H20.80010.31740.35490.021*
C30.73421 (17)0.5437 (4)0.25518 (12)0.0177 (4)
H30.74210.41240.21910.021*
C40.62145 (17)0.6840 (4)0.21135 (11)0.0177 (4)
H40.62530.84200.23760.021*
C50.50894 (18)0.5541 (4)0.21107 (12)0.0182 (4)
H50.49660.40810.17720.022*
C60.59907 (18)0.2203 (4)0.39814 (12)0.0216 (5)
H6A0.66700.11380.42530.026*
H6B0.59580.34540.43680.026*
C70.47923 (18)0.0968 (4)0.41586 (12)0.0205 (4)
C80.35738 (19)0.2058 (5)0.38251 (13)0.0272 (5)
H8A0.36220.37310.39740.041*
H8B0.32770.19090.32330.041*
H8C0.30240.12470.40490.041*
C90.83088 (18)0.5785 (4)0.47134 (12)0.0195 (4)
C100.8534 (2)0.7915 (4)0.52407 (13)0.0246 (5)
H10A0.91520.75590.57620.037*
H10B0.77910.83750.53320.037*
H10C0.88070.92120.49760.037*
C110.94103 (19)0.6087 (5)0.27887 (12)0.0221 (5)
C121.0356 (2)0.7935 (5)0.29539 (14)0.0301 (6)
H12A1.09880.74130.27460.045*
H12B1.07010.82020.35400.045*
H12C1.00030.94070.26840.045*
C130.61949 (19)0.9346 (4)0.10083 (13)0.0208 (5)
C140.6223 (2)0.9316 (5)0.01601 (13)0.0284 (5)
H14A0.64971.08520.00340.043*
H14B0.54160.89930.02190.043*
H14C0.67740.80810.01110.043*
C150.29775 (18)0.6182 (5)0.16131 (12)0.0214 (5)
C160.2083 (2)0.7649 (5)0.11247 (13)0.0269 (5)
H160.22810.91100.09350.032*
C170.0891 (2)0.6936 (5)0.09193 (14)0.0310 (6)
H170.02710.79240.05880.037*
C180.0601 (2)0.4804 (5)0.11914 (13)0.0282 (5)
C190.1514 (2)0.3361 (5)0.16730 (13)0.0275 (5)
H190.13170.18890.18560.033*
C200.27087 (19)0.4037 (4)0.18905 (13)0.0246 (5)
H200.33280.30500.22220.030*
C210.0667 (2)0.4052 (6)0.09904 (14)0.0369 (6)
H210.08160.25300.11630.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0204 (7)0.0207 (8)0.0147 (7)0.0044 (6)0.0053 (6)0.0017 (6)
O20.0208 (7)0.0267 (9)0.0219 (7)0.0005 (7)0.0037 (6)0.0064 (7)
O30.0241 (7)0.0252 (9)0.0233 (7)0.0009 (7)0.0075 (6)0.0057 (7)
O40.0216 (7)0.0151 (7)0.0159 (6)0.0016 (6)0.0025 (6)0.0009 (6)
O50.0353 (9)0.0198 (9)0.0226 (7)0.0033 (7)0.0000 (7)0.0025 (7)
O60.0205 (7)0.0175 (8)0.0231 (7)0.0019 (6)0.0081 (6)0.0008 (6)
O70.0248 (8)0.0258 (10)0.0309 (8)0.0023 (7)0.0095 (7)0.0016 (8)
O80.0305 (8)0.0153 (8)0.0149 (7)0.0001 (7)0.0078 (6)0.0004 (6)
O90.0498 (10)0.0161 (8)0.0268 (8)0.0001 (8)0.0148 (8)0.0009 (8)
O100.0211 (7)0.0181 (8)0.0220 (7)0.0049 (6)0.0035 (6)0.0020 (7)
O110.0240 (9)0.0789 (17)0.0400 (11)0.0101 (10)0.0052 (8)0.0055 (11)
C10.0201 (9)0.0133 (10)0.0193 (9)0.0013 (9)0.0048 (8)0.0014 (8)
C20.0214 (10)0.0131 (11)0.0181 (9)0.0008 (8)0.0054 (8)0.0015 (8)
C30.0189 (10)0.0142 (11)0.0200 (10)0.0020 (8)0.0064 (8)0.0014 (8)
C40.0238 (10)0.0151 (11)0.0144 (9)0.0020 (9)0.0065 (8)0.0005 (8)
C50.0218 (10)0.0146 (11)0.0168 (9)0.0034 (8)0.0048 (8)0.0008 (8)
C60.0197 (10)0.0224 (12)0.0204 (10)0.0029 (9)0.0039 (8)0.0039 (9)
C70.0219 (10)0.0206 (11)0.0217 (10)0.0018 (9)0.0107 (9)0.0013 (9)
C80.0241 (11)0.0309 (14)0.0266 (11)0.0053 (10)0.0087 (9)0.0010 (11)
C90.0172 (9)0.0210 (12)0.0180 (9)0.0019 (9)0.0027 (8)0.0022 (9)
C100.0272 (11)0.0224 (12)0.0200 (10)0.0011 (10)0.0024 (9)0.0004 (10)
C110.0230 (10)0.0270 (13)0.0167 (9)0.0005 (10)0.0072 (8)0.0005 (10)
C120.0255 (11)0.0358 (15)0.0290 (11)0.0071 (11)0.0092 (10)0.0055 (11)
C130.0214 (10)0.0174 (12)0.0222 (10)0.0005 (9)0.0056 (9)0.0034 (9)
C140.0380 (12)0.0267 (14)0.0215 (10)0.0039 (11)0.0113 (10)0.0041 (10)
C150.0213 (10)0.0248 (12)0.0170 (9)0.0027 (9)0.0050 (8)0.0051 (9)
C160.0297 (12)0.0280 (13)0.0216 (10)0.0069 (10)0.0067 (10)0.0003 (10)
C170.0243 (11)0.0433 (16)0.0222 (10)0.0113 (11)0.0036 (9)0.0008 (11)
C180.0252 (11)0.0389 (15)0.0201 (10)0.0029 (11)0.0070 (9)0.0085 (11)
C190.0269 (11)0.0276 (13)0.0279 (11)0.0027 (10)0.0091 (10)0.0070 (10)
C200.0227 (10)0.0235 (12)0.0250 (10)0.0036 (10)0.0046 (9)0.0003 (10)
C210.0257 (12)0.0567 (19)0.0284 (12)0.0004 (13)0.0092 (10)0.0121 (13)
Geometric parameters (Å, º) top
O1—C51.415 (2)C7—C81.496 (3)
O1—C11.432 (2)C8—H8A0.9800
O2—C71.340 (3)C8—H8B0.9800
O2—C61.449 (3)C8—H8C0.9800
O3—C71.205 (3)C9—C101.488 (3)
O4—C91.362 (2)C10—H10A0.9800
O4—C21.448 (2)C10—H10B0.9800
O5—C91.197 (3)C10—H10C0.9800
O6—C111.351 (3)C11—C121.489 (3)
O6—C31.443 (2)C12—H12A0.9800
O7—C111.205 (3)C12—H12B0.9800
O8—C131.350 (3)C12—H12C0.9800
O8—C41.441 (2)C13—C141.497 (3)
O9—C131.199 (3)C14—H14A0.9800
O10—C151.384 (3)C14—H14B0.9800
O10—C51.401 (2)C14—H14C0.9800
O11—C211.206 (3)C15—C201.385 (3)
C1—C61.502 (3)C15—C161.391 (3)
C1—C21.521 (3)C16—C171.393 (3)
C1—H11.0000C16—H160.9500
C2—C31.531 (3)C17—C181.384 (4)
C2—H21.0000C17—H170.9500
C3—C41.521 (3)C18—C191.391 (3)
C3—H31.0000C18—C211.484 (3)
C4—C51.520 (3)C19—C201.389 (3)
C4—H41.0000C19—H190.9500
C5—H51.0000C20—H200.9500
C6—H6A0.9900C21—H210.9500
C6—H6B0.9900
C5—O1—C1109.93 (14)H8B—C8—H8C109.5
C7—O2—C6116.57 (16)O5—C9—O4122.7 (2)
C9—O4—C2116.39 (17)O5—C9—C10126.07 (19)
C11—O6—C3116.03 (17)O4—C9—C10111.22 (19)
C13—O8—C4118.07 (17)C9—C10—H10A109.5
C15—O10—C5117.57 (17)C9—C10—H10B109.5
O1—C1—C6107.86 (16)H10A—C10—H10B109.5
O1—C1—C2109.91 (17)C9—C10—H10C109.5
C6—C1—C2115.02 (17)H10A—C10—H10C109.5
O1—C1—H1107.9H10B—C10—H10C109.5
C6—C1—H1107.9O7—C11—O6123.1 (2)
C2—C1—H1107.9O7—C11—C12125.9 (2)
O4—C2—C1111.00 (16)O6—C11—C12110.9 (2)
O4—C2—C3107.82 (17)C11—C12—H12A109.5
C1—C2—C3108.23 (16)C11—C12—H12B109.5
O4—C2—H2109.9H12A—C12—H12B109.5
C1—C2—H2109.9C11—C12—H12C109.5
C3—C2—H2109.9H12A—C12—H12C109.5
O6—C3—C4105.32 (16)H12B—C12—H12C109.5
O6—C3—C2111.18 (16)O9—C13—O8123.49 (19)
C4—C3—C2113.79 (16)O9—C13—C14125.6 (2)
O6—C3—H3108.8O8—C13—C14110.91 (19)
C4—C3—H3108.8C13—C14—H14A109.5
C2—C3—H3108.8C13—C14—H14B109.5
O8—C4—C5108.73 (16)H14A—C14—H14B109.5
O8—C4—C3106.93 (15)C13—C14—H14C109.5
C5—C4—C3111.57 (17)H14A—C14—H14C109.5
O8—C4—H4109.9H14B—C14—H14C109.5
C5—C4—H4109.9O10—C15—C20124.53 (19)
C3—C4—H4109.9O10—C15—C16113.9 (2)
O10—C5—O1108.61 (15)C20—C15—C16121.5 (2)
O10—C5—C4107.29 (17)C15—C16—C17118.7 (2)
O1—C5—C4108.26 (16)C15—C16—H16120.6
O10—C5—H5110.9C17—C16—H16120.6
O1—C5—H5110.9C18—C17—C16120.8 (2)
C4—C5—H5110.9C18—C17—H17119.6
O2—C6—C1106.20 (16)C16—C17—H17119.6
O2—C6—H6A110.5C17—C18—C19119.3 (2)
C1—C6—H6A110.5C17—C18—C21121.1 (2)
O2—C6—H6B110.5C19—C18—C21119.5 (3)
C1—C6—H6B110.5C20—C19—C18121.1 (2)
H6A—C6—H6B108.7C20—C19—H19119.5
O3—C7—O2124.39 (19)C18—C19—H19119.5
O3—C7—C8125.4 (2)C15—C20—C19118.6 (2)
O2—C7—C8110.25 (18)C15—C20—H20120.7
C7—C8—H8A109.5C19—C20—H20120.7
C7—C8—H8B109.5O11—C21—C18124.3 (3)
H8A—C8—H8B109.5O11—C21—H21117.8
C7—C8—H8C109.5C18—C21—H21117.8
H8A—C8—H8C109.5
C5—O1—C1—C6163.31 (17)C3—C4—C5—O154.5 (2)
C5—O1—C1—C270.6 (2)C7—O2—C6—C1151.59 (18)
C9—O4—C2—C1100.1 (2)O1—C1—C6—O266.5 (2)
C9—O4—C2—C3141.53 (17)C2—C1—C6—O2170.44 (17)
O1—C1—C2—O461.5 (2)C6—O2—C7—O32.2 (3)
C6—C1—C2—O460.5 (2)C6—O2—C7—C8177.27 (18)
O1—C1—C2—C356.7 (2)C2—O4—C9—O54.5 (3)
C6—C1—C2—C3178.60 (18)C2—O4—C9—C10176.56 (17)
C11—O6—C3—C4158.49 (16)C3—O6—C11—O72.3 (3)
C11—O6—C3—C277.8 (2)C3—O6—C11—C12176.14 (16)
O4—C2—C3—O644.2 (2)C4—O8—C13—O94.2 (3)
C1—C2—C3—O6164.33 (16)C4—O8—C13—C14176.78 (17)
O4—C2—C3—C474.5 (2)C5—O10—C15—C2017.7 (3)
C1—C2—C3—C445.6 (2)C5—O10—C15—C16164.09 (18)
C13—O8—C4—C5120.0 (2)O10—C15—C16—C17177.76 (19)
C13—O8—C4—C3119.44 (19)C20—C15—C16—C170.5 (3)
O6—C3—C4—O873.70 (19)C15—C16—C17—C180.3 (3)
C2—C3—C4—O8164.29 (17)C16—C17—C18—C190.2 (3)
O6—C3—C4—C5167.54 (16)C16—C17—C18—C21178.7 (2)
C2—C3—C4—C545.5 (2)C17—C18—C19—C200.6 (3)
C15—O10—C5—O174.1 (2)C21—C18—C19—C20178.3 (2)
C15—O10—C5—C4169.11 (16)O10—C15—C20—C19177.9 (2)
C1—O1—C5—O10176.18 (16)C16—C15—C20—C190.2 (3)
C1—O1—C5—C467.6 (2)C18—C19—C20—C150.4 (3)
O8—C4—C5—O1070.80 (19)C17—C18—C21—O113.8 (4)
C3—C4—C5—O10171.51 (15)C19—C18—C21—O11175.1 (2)
O8—C4—C5—O1172.16 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O9i1.002.393.199 (3)137
C5—H5···O9i1.002.453.268 (3)139
C10—H10b···O3ii0.982.463.307 (3)145
C12—H12b···O5iii0.982.573.548 (3)172
C14—H14c···O11iv0.982.503.415 (4)155
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+2, y+1/2, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H24O11
Mr452.40
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)11.8358 (4), 5.6664 (2), 17.5079 (6)
β (°) 109.616 (4)
V3)1106.05 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.20 × 0.05
Data collection
DiffractometerAgilent Supernova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.596, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10396, 2768, 2535
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.05
No. of reflections2768
No. of parameters293
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O9i1.002.393.199 (3)137
C5—H5···O9i1.002.453.268 (3)139
C10—H10b···O3ii0.982.463.307 (3)145
C12—H12b···O5iii0.982.573.548 (3)172
C14—H14c···O11iv0.982.503.415 (4)155
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+2, y+1/2, z+1; (iv) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: heidelberg@um.edu.my.

Acknowledgements

This study was supported by the University of Malaya under research grant FS306/2007 C. The authors are also grateful to the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBenassi, R., Ferraria, E., Grandia, R., Lazzaria, S. & Saladini, M. (2007). J. Inorg. Biochem. 101, 203–213.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHeidelberg, T., Hussen, R. S. D., Rodzi, N. Z. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. R. & Ravindranathan Kartha, K. P. (2008). J. Carbohydr. Chem. 27, 411–419.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, D., Zhang, K., Chen, H., Yin, S. & Li, Y. (2009). Acta Cryst. E65, o1338.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Y., Meng, X.-B., Li, S.-C., Huang, H.-Q., Li, Z.-J. & Li, Q. (2010). J. Chin. Pharm. Sci. 19, 327–340.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds