organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o1011-o1012

Bis[8-ethyl-5-oxo-2-(piperazin-4-ium-1-yl)-5,8-di­hydro­pyrido[2,3-d]pyrimidine-6-carb­­oxy­lic acid] 2,5-dicarb­­oxy­benzene-1,4-di­carboxyl­ate octa­hydrate

aCollege of Chemistry and Chemical Engineering, Southwest University, Chongqing,400715, People's Republic of China
*Correspondence e-mail: guaiguaijuzi@yahoo.com.cn

(Received 19 March 2011; accepted 25 March 2011; online 31 March 2011)

The asymmetric unit of the title compound, 2C14H18N5O3+·C10H5O82−·8H2O, contains one [H2ppa]+cation, one half of an [H2btec]2− anion (H4btec = 1,2,4,5-benzene­tetra­carb­oxy­lic acid and Hppa = 8-ethyl-5-oxo-2-piperazin-1-yl-5,8-dihydro­pyrido[2,3-d]pyrimidine-6-carb­oxy­lic acid) that is completed by inversion symmetry and four water mol­ecules. In the crystal, the mol­ecules are connected by inter­molecular hydrogen-bonding inter­actions and ππ stacking between the benzene rings of the [H2btec]2− anion and the pyrimidine rings of the [H2ppa]+ cation [centroid–centroid distance = 3.597 (3) Å], generating a three-dimensional supra­molecular structure.

Related literature

For general background to the use of quinolones in the treatment of infections, see: Mizuki et al. (1996[Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. Suppl. A, 37, 41-45.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N5O3+·0.5C10H4O8·4H2O

  • Mr = 502.46

  • Triclinic, [P \overline 1]

  • a = 8.8336 (16) Å

  • b = 11.103 (2) Å

  • c = 12.445 (2) Å

  • α = 83.010 (2)°

  • β = 76.737 (2)°

  • γ = 73.831 (2)°

  • V = 1138.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.52 × 0.48 × 0.39 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.954

  • 10252 measured reflections

  • 5071 independent reflections

  • 3550 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.160

  • S = 1.01

  • 5071 reflections

  • 352 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O4i 0.92 (2) 1.47 (2) 2.392 (2) 178 (3)
N1—H1A⋯OW1ii 0.90 2.08 2.952 (2) 164
N1—H1A⋯O6ii 0.90 2.56 3.022 (2) 113
N1—H1B⋯OW2ii 0.90 1.82 2.717 (2) 176
OW1—HW1A⋯O1iii 0.88 (2) 1.98 (2) 2.780 (2) 150 (2)
OW1—HW1B⋯O3 0.85 (2) 2.38 (2) 3.041 (2) 135 (2)
OW1—HW1B⋯O7 0.85 (2) 2.57 (2) 3.204 (2) 132 (2)
OW1—HW1B⋯O6 0.85 (2) 2.59 (2) 3.084 (2) 118 (2)
O2—H2A⋯O3 0.99 (2) 1.56 (2) 2.5013 (19) 159 (2)
OW2—HW2B⋯OW4iv 0.86 (2) 1.86 (2) 2.703 (3) 168 (3)
OW2—HW2A⋯O5iv 0.84 (2) 1.98 (2) 2.819 (2) 173 (3)
OW3—HW3A⋯OW1v 0.85 (2) 1.93 (2) 2.770 (2) 169 (3)
OW3—HW3B⋯O2vi 0.85 (2) 2.17 (2) 3.011 (3) 172 (3)
OW4—HW4A⋯O4vii 0.87 (2) 1.94 (2) 2.782 (2) 163 (3)
OW4—HW4B⋯OW3 0.81 (2) 1.97 (2) 2.775 (3) 174 (3)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y, z-1; (iii) x+1, y, z; (iv) -x+1, -y+2, -z+1; (v) -x+1, -y+1, -z+1; (vi) x+1, y, z-1; (vii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison Wisconsion, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison Wisconsion, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pipemidic acid (8-ethyl-5-oxo-2-piperazin-1-yl-5,8-dihydropyrido[2,3-d]pyrimidine-6- carboxylic acid) is member of quinolones used to treat infections (Mizuki et al., 1996). The complexes of the Hppa and H4btec have not been reported till now. In this paper, the structure of the title compound, 1, is described (Fig. 1). The asymmetric unit contains one [H2ppa]+cation, one half of [H2btec]2- anion that is completed by inversion symmetry, and four lattice water molecules. The molecules are linked by intermolecular N—H···O and O—H···O hydrogen-bonding interactions (N···O = 2.717 (2)–3.022 (2) Å, O···O = 2.392 (2)–3.204 (2) Å) and ππ stacking between the benzene rings of [H2btec]2- anion and the pyrimidine rings of [H2ppa]+cation (centroid distance of 3.597 (3) Å) to form a three-dimensional supramolecular structure.

Related literature top

For general background to the use of quinolones in the treatment of infections, see: Mizuki et al. (1996).

Experimental top

A mixture of AgNO3 (0.085 g, 0.5 mmol), Hppa (0.089 g, 0.25 mmol), H4btec (0.064 g, 0.25 mmol) and distilled water (8 ml) was stirred for 20 min. in air. The mixture was then transferred to a 18 ml Teflon-lined hydrothermal bomb. The bomb was kept at 393 K for 96 h under autogenous pressure. Upon cooling, colorless blocks of 1 were obtained from the reaction mixture.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model approximation [aromatic C—H = 0.93 Å, aliphatic C—H =0.96 —0.97 Å], with Uiso(H) = 1.2—1.5 Ueq(C).The H on N atoms were located in difference Fourier maps, and refined with distances restraint of N—H = 0.90 Å, and with Uiso(H)= 1.2 Ueq(N). The H atoms bonded to O atoms were located in difference Fourier maps and refined with Uiso(H) = 1.3 Ueq(O) for carboxyl groups of [C14H18O3N5]+and [C10H4O8]2-respectively. The O—H bonds are 0.986 Å and 0.924 Å in carboxyl groups of [C14H18O3N5]+ and [C10H4O8]2-. The H atoms bonded to OW atoms were located in a difference Fourier maps and refined with OW—H =0.812 Å—0.878 Å and Uiso(H) = 1.1—1.5 Ueq(OW).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of 1. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: -x,-y+2, -z+1].
Bis[8-ethyl-5-oxo-2-(piperazin-4-ium-1-yl)-5,8-dihydropyrido[2,3- d]pyrimidine-6-carboxylic acid] 2,5-dicarboxybenzene-1,4-dicarboxylate octahydrate top
Crystal data top
C14H18N5O3+·0.5C10H4O8·4H2OZ = 2
Mr = 502.46F(000) = 530
Triclinic, P1Dx = 1.465 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8336 (16) ÅCell parameters from 10252 reflections
b = 11.103 (2) Åθ = 2.5–27.4°
c = 12.445 (2) ŵ = 0.12 mm1
α = 83.010 (2)°T = 296 K
β = 76.737 (2)°Block, colourless
γ = 73.831 (2)°0.52 × 0.48 × 0.39 mm
V = 1138.9 (4) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
5071 independent reflections
Radiation source: fine-focus sealed tube3550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 27.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.940, Tmax = 0.954k = 1414
10252 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
5071 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.33 e Å3
14 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H18N5O3+·0.5C10H4O8·4H2Oγ = 73.831 (2)°
Mr = 502.46V = 1138.9 (4) Å3
Triclinic, P1Z = 2
a = 8.8336 (16) ÅMo Kα radiation
b = 11.103 (2) ŵ = 0.12 mm1
c = 12.445 (2) ÅT = 296 K
α = 83.010 (2)°0.52 × 0.48 × 0.39 mm
β = 76.737 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5071 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3550 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.954Rint = 0.021
10252 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04614 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.33 e Å3
5071 reflectionsΔρmin = 0.20 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2298 (2)0.58949 (18)0.76095 (14)0.0453 (4)
C20.1629 (2)0.63420 (16)0.64826 (13)0.0362 (4)
C30.0071 (2)0.60173 (15)0.60569 (13)0.0348 (4)
C40.05712 (18)0.65003 (14)0.49440 (12)0.0316 (3)
C50.2186 (2)0.62709 (16)0.43913 (13)0.0377 (4)
H5A0.29680.57820.47650.045*
C60.14597 (19)0.74223 (16)0.28730 (13)0.0336 (4)
C70.05440 (18)0.72426 (14)0.43356 (12)0.0295 (3)
C80.2657 (2)0.70738 (16)0.58476 (13)0.0360 (4)
H8A0.37550.72690.61490.043*
C90.33740 (19)0.83037 (17)0.41760 (14)0.0402 (4)
H9A0.29430.89570.37270.048*
H9B0.43400.87070.46870.048*
C100.3799 (3)0.7527 (2)0.3443 (2)0.0640 (6)
H10A0.45720.80560.30420.096*
H10B0.42510.68920.38870.096*
H10C0.28470.71340.29310.096*
C110.0817 (2)0.85693 (19)0.11400 (14)0.0470 (4)
H11A0.10220.93800.08810.056*
H11B0.02790.87120.15640.056*
C120.1010 (2)0.78182 (19)0.01646 (14)0.0472 (5)
H12A0.06850.70490.04210.057*
H12B0.03170.82980.03250.057*
C130.3844 (2)0.68542 (19)0.02854 (14)0.0475 (5)
H13A0.49450.67200.01280.057*
H13B0.36540.60400.05520.057*
C140.3613 (2)0.7624 (2)0.12515 (15)0.0474 (5)
H14A0.43030.71660.17510.057*
H14B0.39100.84030.09920.057*
C150.0728 (2)0.91872 (15)0.58174 (12)0.0335 (4)
C160.1614 (2)0.95494 (15)0.48134 (14)0.0350 (4)
H160.271 (2)0.9248 (16)0.4737 (15)0.037 (5)*
C170.09561 (19)1.03470 (15)0.39901 (12)0.0327 (4)
C180.2204 (2)1.06072 (16)0.29829 (14)0.0419 (4)
C190.1758 (2)0.82880 (18)0.65566 (15)0.0459 (4)
N10.27157 (18)0.75043 (15)0.04528 (11)0.0452 (4)
H1A0.28210.70070.09990.054*
H1B0.29740.82150.07640.054*
N20.19315 (17)0.79002 (15)0.18387 (11)0.0430 (4)
N30.26607 (16)0.67052 (14)0.33790 (11)0.0396 (3)
N40.01218 (15)0.77067 (13)0.33069 (10)0.0338 (3)
N50.21691 (15)0.75273 (13)0.48113 (11)0.0333 (3)
O10.37365 (18)0.61061 (16)0.80048 (11)0.0640 (4)
OW10.34139 (19)0.54945 (15)0.80171 (12)0.0614 (4)
HW1A0.4401 (19)0.557 (2)0.7779 (18)0.072*
HW1B0.298 (2)0.581 (2)0.7463 (16)0.070*
O20.12330 (19)0.52214 (15)0.81832 (12)0.0622 (4)
H2A0.018 (2)0.516 (2)0.7683 (19)0.083 (8)*
OW20.3559 (2)0.95983 (17)0.85270 (14)0.0721 (5)
HW2A0.442 (3)0.954 (3)0.8054 (18)0.097*
HW2B0.353 (3)1.013 (2)0.8988 (19)0.103*
O30.10748 (15)0.53510 (12)0.66146 (10)0.0502 (3)
OW30.8262 (3)0.59914 (18)0.05037 (17)0.0835 (5)
HW3A0.764 (3)0.562 (3)0.0954 (17)0.092*
HW3B0.840 (4)0.570 (3)0.0121 (15)0.118*
OW40.6900 (2)0.85376 (17)0.01290 (14)0.0782 (5)
HW4A0.713 (4)0.876 (2)0.0572 (15)0.107*
HW4B0.725 (3)0.7783 (16)0.022 (2)0.092*
O40.17347 (18)1.10598 (16)0.20881 (11)0.0655 (4)
O50.36177 (16)1.03613 (14)0.30721 (12)0.0604 (4)
O60.1120 (2)0.80744 (16)0.75738 (11)0.0660 (4)
H6A0.002 (2)0.842 (2)0.772 (2)0.084 (8)*
O70.31545 (18)0.77853 (16)0.61765 (13)0.0728 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0499 (11)0.0524 (11)0.0330 (9)0.0199 (9)0.0005 (8)0.0002 (8)
C20.0399 (9)0.0389 (9)0.0298 (8)0.0142 (7)0.0017 (7)0.0034 (7)
C30.0377 (9)0.0347 (8)0.0327 (8)0.0095 (7)0.0074 (7)0.0035 (6)
C40.0312 (8)0.0334 (8)0.0311 (8)0.0097 (6)0.0052 (6)0.0039 (6)
C50.0305 (8)0.0460 (10)0.0352 (9)0.0059 (7)0.0080 (7)0.0036 (7)
C60.0310 (8)0.0433 (9)0.0284 (8)0.0123 (7)0.0040 (6)0.0072 (7)
C70.0283 (8)0.0337 (8)0.0280 (7)0.0097 (6)0.0042 (6)0.0068 (6)
C80.0308 (8)0.0441 (10)0.0324 (8)0.0124 (7)0.0007 (6)0.0076 (7)
C90.0274 (8)0.0474 (10)0.0416 (9)0.0031 (7)0.0069 (7)0.0030 (7)
C100.0566 (13)0.0637 (13)0.0801 (15)0.0067 (10)0.0388 (12)0.0093 (11)
C110.0415 (10)0.0579 (11)0.0347 (9)0.0089 (8)0.0026 (7)0.0040 (8)
C120.0452 (10)0.0649 (12)0.0352 (9)0.0233 (9)0.0109 (8)0.0091 (8)
C130.0413 (10)0.0584 (12)0.0375 (10)0.0115 (9)0.0004 (8)0.0009 (8)
C140.0329 (9)0.0750 (13)0.0337 (9)0.0191 (9)0.0004 (7)0.0023 (8)
C150.0365 (9)0.0342 (8)0.0304 (8)0.0091 (7)0.0076 (6)0.0026 (6)
C160.0298 (8)0.0377 (9)0.0365 (9)0.0083 (7)0.0045 (7)0.0047 (7)
C170.0368 (9)0.0324 (8)0.0288 (8)0.0115 (7)0.0022 (6)0.0045 (6)
C180.0458 (10)0.0395 (9)0.0358 (9)0.0133 (8)0.0042 (7)0.0034 (7)
C190.0483 (11)0.0515 (11)0.0385 (10)0.0105 (9)0.0161 (8)0.0025 (8)
N10.0549 (9)0.0520 (9)0.0302 (7)0.0205 (7)0.0041 (6)0.0018 (6)
N20.0332 (8)0.0654 (10)0.0276 (7)0.0139 (7)0.0012 (6)0.0003 (7)
N30.0296 (7)0.0550 (9)0.0329 (7)0.0097 (6)0.0051 (6)0.0026 (6)
N40.0301 (7)0.0423 (8)0.0284 (7)0.0104 (6)0.0035 (5)0.0029 (6)
N50.0282 (7)0.0410 (8)0.0296 (7)0.0082 (6)0.0036 (5)0.0040 (5)
O10.0535 (9)0.0927 (11)0.0404 (7)0.0267 (8)0.0077 (6)0.0014 (7)
OW10.0568 (9)0.0730 (10)0.0537 (9)0.0144 (8)0.0185 (7)0.0068 (7)
O20.0631 (10)0.0786 (10)0.0395 (7)0.0200 (8)0.0073 (7)0.0145 (7)
OW20.0719 (11)0.0748 (11)0.0624 (10)0.0340 (9)0.0177 (8)0.0015 (8)
O30.0469 (8)0.0571 (8)0.0416 (7)0.0086 (6)0.0123 (6)0.0107 (6)
OW30.0943 (14)0.0840 (13)0.0773 (12)0.0392 (11)0.0119 (11)0.0024 (10)
OW40.0926 (13)0.0772 (11)0.0517 (9)0.0234 (10)0.0125 (9)0.0031 (9)
O40.0650 (10)0.0936 (12)0.0312 (7)0.0228 (8)0.0001 (6)0.0087 (7)
O50.0412 (8)0.0692 (9)0.0569 (8)0.0126 (7)0.0083 (6)0.0090 (7)
O60.0667 (10)0.0878 (11)0.0363 (7)0.0113 (9)0.0163 (7)0.0145 (7)
O70.0492 (9)0.0929 (12)0.0579 (9)0.0087 (8)0.0165 (7)0.0124 (8)
Geometric parameters (Å, º) top
C1—O11.219 (2)C12—H12B0.9700
C1—O21.320 (2)C13—N11.489 (2)
C1—C21.475 (2)C13—C141.503 (3)
C2—C81.368 (2)C13—H13A0.9700
C2—C31.430 (2)C13—H13B0.9700
C3—O31.268 (2)C14—N21.462 (2)
C3—C41.439 (2)C14—H14A0.9700
C4—C71.400 (2)C14—H14B0.9700
C4—C51.401 (2)C15—C161.393 (2)
C5—N31.311 (2)C15—C17i1.406 (2)
C5—H5A0.9300C15—C191.525 (2)
C6—N41.339 (2)C16—C171.392 (2)
C6—N21.350 (2)C16—H160.917 (19)
C6—N31.367 (2)C17—C15i1.406 (2)
C7—N41.3307 (19)C17—C181.525 (2)
C7—N51.3834 (19)C18—O51.230 (2)
C8—N51.345 (2)C18—O41.275 (2)
C8—H8A0.9300C19—O71.213 (2)
C9—N51.487 (2)C19—O61.285 (2)
C9—C101.499 (3)N1—H1A0.9000
C9—H9A0.9700N1—H1B0.9000
C9—H9B0.9700OW1—HW1A0.878 (15)
C10—H10A0.9600OW1—HW1B0.854 (15)
C10—H10B0.9600O2—H2A0.986 (16)
C10—H10C0.9600OW2—HW2A0.842 (16)
C11—N21.451 (2)OW2—HW2B0.860 (16)
C11—C121.507 (3)OW3—HW3A0.849 (16)
C11—H11A0.9700OW3—HW3B0.850 (17)
C11—H11B0.9700OW4—HW4A0.871 (16)
C12—N11.491 (2)OW4—HW4B0.812 (16)
C12—H12A0.9700O6—H6A0.924 (17)
O1—C1—O2120.65 (17)N1—C13—C14110.52 (15)
O1—C1—C2123.66 (18)N1—C13—H13A109.5
O2—C1—C2115.69 (16)C14—C13—H13A109.5
C8—C2—C3120.28 (14)N1—C13—H13B109.5
C8—C2—C1119.08 (16)C14—C13—H13B109.5
C3—C2—C1120.64 (15)H13A—C13—H13B108.1
O3—C3—C2122.75 (15)N2—C14—C13109.98 (14)
O3—C3—C4121.96 (15)N2—C14—H14A109.7
C2—C3—C4115.29 (14)C13—C14—H14A109.7
C7—C4—C5115.19 (14)N2—C14—H14B109.7
C7—C4—C3121.64 (14)C13—C14—H14B109.7
C5—C4—C3123.17 (15)H14A—C14—H14B108.2
N3—C5—C4123.88 (15)C16—C15—C17i117.61 (15)
N3—C5—H5A118.1C16—C15—C19113.70 (15)
C4—C5—H5A118.1C17i—C15—C19128.68 (15)
N4—C6—N2117.33 (15)C17—C16—C15124.81 (15)
N4—C6—N3126.49 (14)C17—C16—H16120.7 (11)
N2—C6—N3116.17 (14)C15—C16—H16114.4 (11)
N4—C7—N5117.27 (13)C16—C17—C15i117.58 (14)
N4—C7—C4123.16 (14)C16—C17—C18113.93 (15)
N5—C7—C4119.57 (14)C15i—C17—C18128.49 (15)
N5—C8—C2123.73 (15)O5—C18—O4123.21 (16)
N5—C8—H8A118.1O5—C18—C17118.33 (16)
C2—C8—H8A118.1O4—C18—C17118.46 (16)
N5—C9—C10111.63 (15)O7—C19—O6121.26 (18)
N5—C9—H9A109.3O7—C19—C15119.71 (17)
C10—C9—H9A109.3O6—C19—C15119.03 (17)
N5—C9—H9B109.3C13—N1—C12111.63 (13)
C10—C9—H9B109.3C13—N1—H1A109.3
H9A—C9—H9B108.0C12—N1—H1A109.3
C9—C10—H10A109.5C13—N1—H1B109.3
C9—C10—H10B109.5C12—N1—H1B109.3
H10A—C10—H10B109.5H1A—N1—H1B108.0
C9—C10—H10C109.5C6—N2—C11123.41 (14)
H10A—C10—H10C109.5C6—N2—C14122.94 (15)
H10B—C10—H10C109.5C11—N2—C14112.99 (13)
N2—C11—C12110.08 (15)C5—N3—C6115.45 (14)
N2—C11—H11A109.6C7—N4—C6115.83 (14)
C12—C11—H11A109.6C8—N5—C7119.48 (14)
N2—C11—H11B109.6C8—N5—C9120.08 (13)
C12—C11—H11B109.6C7—N5—C9120.43 (13)
H11A—C11—H11B108.2HW1A—OW1—HW1B101.7 (17)
N1—C12—C11110.68 (14)C1—O2—H2A105.2 (15)
N1—C12—H12A109.5HW2A—OW2—HW2B107 (2)
C11—C12—H12A109.5HW3A—OW3—HW3B106 (2)
N1—C12—H12B109.5HW4A—OW4—HW4B109 (2)
C11—C12—H12B109.5C19—O6—H6A111.5 (16)
H12A—C12—H12B108.1
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O4i0.92 (2)1.47 (2)2.392 (2)178 (3)
N1—H1A···OW1ii0.902.082.952 (2)164
N1—H1A···O6ii0.902.563.022 (2)113
N1—H1B···OW2ii0.901.822.717 (2)176
OW1—HW1A···O1iii0.88 (2)1.98 (2)2.780 (2)150 (2)
OW1—HW1B···O30.85 (2)2.38 (2)3.041 (2)135 (2)
OW1—HW1B···O70.85 (2)2.57 (2)3.204 (2)132 (2)
OW1—HW1B···O60.85 (2)2.59 (2)3.084 (2)118 (2)
O2—H2A···O30.99 (2)1.56 (2)2.5013 (19)159 (2)
OW2—HW2B···OW4iv0.86 (2)1.86 (2)2.703 (3)168 (3)
OW2—HW2A···O5iv0.84 (2)1.98 (2)2.819 (2)173 (3)
OW3—HW3A···OW1v0.85 (2)1.93 (2)2.770 (2)169 (3)
OW3—HW3B···O2vi0.85 (2)2.17 (2)3.011 (3)172 (3)
OW4—HW4A···O4vii0.87 (2)1.94 (2)2.782 (2)163 (3)
OW4—HW4B···OW30.81 (2)1.97 (2)2.775 (3)174 (3)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y, z1; (iii) x+1, y, z; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1; (vi) x+1, y, z1; (vii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H18N5O3+·0.5C10H4O8·4H2O
Mr502.46
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.8336 (16), 11.103 (2), 12.445 (2)
α, β, γ (°)83.010 (2), 76.737 (2), 73.831 (2)
V3)1138.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.52 × 0.48 × 0.39
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.940, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
10252, 5071, 3550
Rint0.021
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.160, 1.01
No. of reflections5071
No. of parameters352
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O4i0.924 (17)1.468 (17)2.392 (2)178 (3)
N1—H1A···OW1ii0.902.082.952 (2)164
N1—H1A···O6ii0.902.563.022 (2)113
N1—H1B···OW2ii0.901.822.717 (2)176
OW1—HW1A···O1iii0.878 (15)1.984 (17)2.780 (2)150 (2)
OW1—HW1B···O30.854 (15)2.377 (18)3.041 (2)134.9 (19)
OW1—HW1B···O70.854 (15)2.57 (2)3.204 (2)131.8 (18)
OW1—HW1B···O60.854 (15)2.59 (2)3.084 (2)118 (2)
O2—H2A···O30.986 (16)1.556 (18)2.5013 (19)159 (2)
OW2—HW2B···OW4iv0.860 (16)1.856 (17)2.703 (3)168 (3)
OW2—HW2A···O5iv0.842 (16)1.982 (17)2.819 (2)173 (3)
OW3—HW3A···OW1v0.849 (16)1.931 (18)2.770 (2)169 (3)
OW3—HW3B···O2vi0.850 (17)2.168 (17)3.011 (3)172 (3)
OW4—HW4A···O4vii0.871 (16)1.937 (19)2.782 (2)163 (3)
OW4—HW4B···OW30.812 (16)1.966 (17)2.775 (3)174 (3)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y, z1; (iii) x+1, y, z; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1; (vi) x+1, y, z1; (vii) x+1, y+2, z.
 

Acknowledgements

This work was supported by the Science and Technology Foundation of Southwest University (SWUB2007035).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison Wisconsion, USA.  Google Scholar
First citationMizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. Suppl. A, 37, 41–45.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o1011-o1012
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds