metal-organic compounds
Aquabromidobis(dimethylglyoximato)cobalt(III)
aLoyola College (Autonomous), Chennai 600 034, Tamil Nadu, India
*Correspondence e-mail: dayalan77@gmail.com
In the title complex, [CoBr(C4H7N2O2)2(H2O)], a crystallographic mirror plane bisects the molecule, perpendicular to the glyoximate ligands. The geometry around the cobalt(III) atom is approximately octahedral with the four glyoximate N atoms forming the square base. A bromide ion and the O atom of a water molecule occupy the remaining coordination sites. The N—Co—N bite angles are 82.18 (4) and 80.03 (16)°. The glyoximate moieties form strong intramolecular O—H⋯O hydrogen bonds. The coordinated water molecule forms an intermolecular O—H⋯O hydrogen bond with a glyoximate O atom, thereby generating supramolecular chains parallel to [010].
Related literature
For related complexes, see: Ohkubo & Fukuzumi (2005); Randall & Alberty (1970); Schrauzer (1968); Trommel et al. (2001). For similar structures, see: Bernstein et al. (1995); Mégnamisi-Bélombé et al. (1983); Meera et al. (2009); Ramesh et al. (2008). For the preparation of similar complexes, see: Vijayraghavan & Dayalan (1992). For spectroscopic studies related to the title complex, see: Folgando et al. (1986); Khan et al. (1997); Lopez et al. (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811008877/fj2399sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811008877/fj2399Isup2.hkl
Cobalt(II) bromide hexahydrate was thoroughly grinded and exposed to microwave for 30 s.The dehydrated cobalt(II) bromide was mixed with dimethylglyoxime in 1:2 molar ratio in acetone medium and allowed to stir for an hour (Vijayraghavan & Dayalan, 1992). The dibromo complex obtained was filtered dried and then it was refluxed with water for two hours. The resulting brown mass was filtered washed with ether and dried over desiccator. The elemental analysis data, obtained by analytical methods agree well with the theoretical data expected for the formula of the complex, C8H16N4O5BrCo proposed viz.,[Co(dmgH)2(H2O)Br]: Anal,% (cald,%): C, 25.12(24.8); H,4.82(4.13); N,14.50(14.47). The C=N stretching vibration of oxime in its complex was observed at 1580 cm-1 and the intra molecular hydrogen bonded OH around 3100 cm-1. A moderate peak around 1070 cm-1 may be assigned to the C=N—O stretching of the oxime. The peak around 510 cm-1 could be attributed to cobalt(III)-nitrogen stretching (Khan et al., 1997; Folgando et al., 1986). The 1H NMR spectra of the complex in DMSO-d6 shows a sharp intense singlet at 2.3 p.p.m. corresponding to methyl protons of the oxime.The oxime –OH resonates at 13.08 p.p.m..A singlet around 8.5 ppm represents the –OH of the aquo ligand (Lopez et al., 1986).
The H– atoms bound to C– atoms were constrained to riding atoms with d(C—H) = 0.96Å and Uiso(H) = 1.5Uequ(C).The positions of the hydrogen atoms,bound to the glyoximate and water O atoms, were identified from difference in the
and restrained to a distance of d(O2—H2) = 0.92 (1)Å and d(O3—H3) = 0.85 (1) Å. A difference elctron density peak of 1.008 e A-3 was observed after the final Since the observed peak position is meaningless it is ignored.Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).[CoBr(C4H7N2O2)2(H2O)] | F(000) = 388 |
Mr = 387.09 | Dx = 1.821 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yb | Cell parameters from 3745 reflections |
a = 7.5903 (3) Å | θ = 2.7–30.7° |
b = 8.8816 (4) Å | µ = 4.07 mm−1 |
c = 10.5343 (5) Å | T = 293 K |
β = 96.137 (3)° | Block, brown |
V = 706.09 (5) Å3 | 0.15 × 0.10 × 0.10 mm |
Z = 2 |
Bruker Kappa APEXII CCD diffractometer | 1480 independent reflections |
Radiation source: fine-focus sealed tube | 1298 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω and ϕ scans | θmax = 26.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker 1999) | h = −9→9 |
Tmin = 0.581, Tmax = 0.687 | k = −10→9 |
7395 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.22 | w = 1/[σ2(Fo2) + (0.0564P)2 + 0.1583P] where P = (Fo2 + 2Fc2)/3 |
1480 reflections | (Δ/σ)max = 0.001 |
101 parameters | Δρmax = 1.01 e Å−3 |
2 restraints | Δρmin = −0.54 e Å−3 |
[CoBr(C4H7N2O2)2(H2O)] | V = 706.09 (5) Å3 |
Mr = 387.09 | Z = 2 |
Monoclinic, P21/m | Mo Kα radiation |
a = 7.5903 (3) Å | µ = 4.07 mm−1 |
b = 8.8816 (4) Å | T = 293 K |
c = 10.5343 (5) Å | 0.15 × 0.10 × 0.10 mm |
β = 96.137 (3)° |
Bruker Kappa APEXII CCD diffractometer | 1480 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker 1999) | 1298 reflections with I > 2σ(I) |
Tmin = 0.581, Tmax = 0.687 | Rint = 0.028 |
7395 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 2 restraints |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.22 | Δρmax = 1.01 e Å−3 |
1480 reflections | Δρmin = −0.54 e Å−3 |
101 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7937 (4) | 0.3331 (3) | 0.5395 (3) | 0.0330 (6) | |
C2 | 0.8935 (4) | 0.4238 (4) | 0.6415 (3) | 0.0487 (8) | |
H2A | 0.8818 | 0.5288 | 0.6207 | 0.073* | |
H2B | 1.0164 | 0.3960 | 0.6486 | 0.073* | |
H2C | 0.8469 | 0.4052 | 0.7213 | 0.073* | |
C3 | 0.3600 (4) | 0.1669 (4) | 0.1163 (3) | 0.0448 (8) | |
C4 | 0.2476 (6) | 0.0761 (5) | 0.0221 (4) | 0.0726 (13) | |
H4A | 0.2737 | −0.0288 | 0.0358 | 0.109* | |
H4B | 0.2709 | 0.1038 | −0.0626 | 0.109* | |
H4C | 0.1250 | 0.0942 | 0.0318 | 0.109* | |
N1 | 0.6996 (3) | 0.3893 (2) | 0.4417 (2) | 0.0302 (5) | |
N2 | 0.4668 (3) | 0.1117 (3) | 0.2069 (2) | 0.0374 (6) | |
O1 | 0.6810 (3) | 0.5377 (2) | 0.4230 (2) | 0.0395 (5) | |
O2 | 0.4819 (3) | −0.0402 (3) | 0.2186 (2) | 0.0501 (6) | |
O3 | 0.3771 (4) | 0.2500 | 0.4145 (3) | 0.0314 (6) | |
Co1 | 0.58731 (6) | 0.2500 | 0.32505 (5) | 0.02601 (18) | |
Br1 | 0.83644 (6) | 0.2500 | 0.20942 (4) | 0.04048 (18) | |
H2 | 0.557 (4) | −0.051 (4) | 0.293 (2) | 0.059 (12)* | |
H3 | 0.366 (5) | 0.173 (3) | 0.460 (3) | 0.050 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0234 (13) | 0.0376 (16) | 0.0391 (15) | −0.0028 (12) | 0.0091 (11) | −0.0058 (12) |
C2 | 0.0354 (17) | 0.060 (2) | 0.0503 (18) | −0.0080 (15) | 0.0039 (14) | −0.0164 (17) |
C3 | 0.0321 (15) | 0.068 (2) | 0.0356 (16) | −0.0038 (15) | 0.0097 (13) | −0.0091 (15) |
C4 | 0.054 (2) | 0.106 (4) | 0.056 (2) | −0.018 (2) | 0.0022 (19) | −0.030 (2) |
N1 | 0.0284 (12) | 0.0230 (12) | 0.0415 (13) | −0.0032 (9) | 0.0139 (10) | −0.0029 (10) |
N2 | 0.0327 (13) | 0.0388 (15) | 0.0430 (14) | −0.0053 (11) | 0.0140 (11) | −0.0082 (11) |
O1 | 0.0446 (12) | 0.0229 (10) | 0.0538 (13) | −0.0022 (9) | 0.0180 (10) | −0.0031 (9) |
O2 | 0.0540 (15) | 0.0376 (13) | 0.0604 (15) | −0.0075 (11) | 0.0142 (12) | −0.0163 (11) |
O3 | 0.0300 (14) | 0.0259 (15) | 0.0401 (16) | 0.000 | 0.0130 (12) | 0.000 |
Co1 | 0.0251 (3) | 0.0227 (3) | 0.0312 (3) | 0.000 | 0.0076 (2) | 0.000 |
Br1 | 0.0364 (3) | 0.0432 (3) | 0.0441 (3) | 0.000 | 0.01498 (19) | 0.000 |
C1—N1 | 1.289 (4) | C4—H4C | 0.9600 |
C1—C1i | 1.476 (6) | N1—O1 | 1.338 (3) |
C1—C2 | 1.485 (4) | N1—Co1 | 1.883 (2) |
C2—H2A | 0.9600 | N2—O2 | 1.358 (3) |
C2—H2B | 0.9600 | N2—Co1 | 1.911 (2) |
C2—H2C | 0.9600 | O2—H2 | 0.921 (10) |
C3—N2 | 1.283 (4) | O3—Co1 | 1.938 (3) |
C3—C3i | 1.475 (7) | O3—H3 | 0.85 (3) |
C3—C4 | 1.477 (4) | Co1—N1i | 1.883 (2) |
C4—H4A | 0.9600 | Co1—N2i | 1.911 (2) |
C4—H4B | 0.9600 | Co1—Br1 | 2.3563 (6) |
N1—C1—C1i | 112.79 (16) | C3—N2—O2 | 119.2 (3) |
N1—C1—C2 | 124.4 (3) | C3—N2—Co1 | 117.3 (2) |
C1i—C1—C2 | 122.85 (19) | O2—N2—Co1 | 123.3 (2) |
C1—C2—H2A | 109.5 | N2—O2—H2 | 103 (2) |
C1—C2—H2B | 109.5 | Co1—O3—H3 | 114 (3) |
H2A—C2—H2B | 109.5 | N1—Co1—N1i | 82.18 (14) |
C1—C2—H2C | 109.5 | N1—Co1—N2i | 98.88 (11) |
H2A—C2—H2C | 109.5 | N1i—Co1—N2i | 178.29 (10) |
H2B—C2—H2C | 109.5 | N1—Co1—N2 | 178.29 (10) |
N2—C3—C3i | 112.51 (19) | N1i—Co1—N2 | 98.88 (11) |
N2—C3—C4 | 124.4 (4) | N2i—Co1—N2 | 80.03 (16) |
C3i—C3—C4 | 123.1 (2) | N1—Co1—O3 | 91.24 (9) |
C3—C4—H4A | 109.5 | N1i—Co1—O3 | 91.24 (9) |
C3—C4—H4B | 109.5 | N2i—Co1—O3 | 87.40 (10) |
H4A—C4—H4B | 109.5 | N2—Co1—O3 | 87.40 (10) |
C3—C4—H4C | 109.5 | N1—Co1—Br1 | 90.29 (7) |
H4A—C4—H4C | 109.5 | N1i—Co1—Br1 | 90.29 (7) |
H4B—C4—H4C | 109.5 | N2i—Co1—Br1 | 91.04 (7) |
C1—N1—O1 | 122.7 (2) | N2—Co1—Br1 | 91.04 (7) |
C1—N1—Co1 | 116.1 (2) | O3—Co1—Br1 | 177.97 (9) |
O1—N1—Co1 | 121.18 (18) | ||
C1i—C1—N1—O1 | 179.81 (18) | C1—N1—Co1—O3 | 91.1 (2) |
C2—C1—N1—O1 | −0.7 (4) | O1—N1—Co1—O3 | −88.7 (2) |
C1i—C1—N1—Co1 | 0.02 (19) | C1—N1—Co1—Br1 | −90.28 (19) |
C2—C1—N1—Co1 | 179.5 (2) | O1—N1—Co1—Br1 | 89.92 (19) |
C3i—C3—N2—O2 | −179.62 (19) | C3—N2—Co1—N1i | 174.1 (2) |
C4—C3—N2—O2 | 0.8 (5) | O2—N2—Co1—N1i | −2.4 (2) |
C3i—C3—N2—Co1 | 3.8 (2) | C3—N2—Co1—N2i | −4.6 (3) |
C4—C3—N2—Co1 | −175.8 (3) | O2—N2—Co1—N2i | 178.98 (17) |
C1—N1—Co1—N1i | 0.0 (2) | C3—N2—Co1—O3 | 83.2 (2) |
O1—N1—Co1—N1i | −179.82 (14) | O2—N2—Co1—O3 | −93.2 (2) |
C1—N1—Co1—N2i | 178.6 (2) | C3—N2—Co1—Br1 | −95.5 (2) |
O1—N1—Co1—N2i | −1.2 (2) | O2—N2—Co1—Br1 | 88.1 (2) |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.92 (1) | 1.58 (1) | 2.494 (3) | 169 (4) |
O3—H3···O1ii | 0.85 (3) | 1.79 (3) | 2.616 (3) | 167 (4) |
Symmetry codes: (i) x, −y+1/2, z; (ii) −x+1, y−1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [CoBr(C4H7N2O2)2(H2O)] |
Mr | 387.09 |
Crystal system, space group | Monoclinic, P21/m |
Temperature (K) | 293 |
a, b, c (Å) | 7.5903 (3), 8.8816 (4), 10.5343 (5) |
β (°) | 96.137 (3) |
V (Å3) | 706.09 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 4.07 |
Crystal size (mm) | 0.15 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker 1999) |
Tmin, Tmax | 0.581, 0.687 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7395, 1480, 1298 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.096, 1.22 |
No. of reflections | 1480 |
No. of parameters | 101 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.01, −0.54 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.921 (10) | 1.584 (13) | 2.494 (3) | 169 (4) |
O3—H3···O1ii | 0.85 (3) | 1.79 (3) | 2.616 (3) | 167 (4) |
Symmetry codes: (i) x, −y+1/2, z; (ii) −x+1, y−1/2, −z+1. |
Acknowledgements
The authors are thankful to Rev. Fr B. Jeyaraj, SJ, Principal, Loyola College (Autonomous), Chennai, India, for providing the necessary facilities, the Head, SAIF, CDRI, Lucknow, India, for supplying the elemental data and the SAIF, IIT Madras, Chennai, India, for recording the 1HNMR spectra and for the X-ray data collection.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Folgando, J. V., Coronado, E. & Bltran, D. (1986). J. Chem. Soc. Dalton Trans. 1, pp. 1061–1064. Google Scholar
Khan, T. A., Shahjahan, & Zaidi, S. A. A. (1997). Indian J. Chem. Sect. A, 36, 153–156. Google Scholar
Lopez, C., Alvarez, S., Solans, X. & Font-Altaba, M. (1986). Inorg. Chem. 25, 2962–2969. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Meera, P., Revathi, C. & Dayalan, A. (2009). Acta Cryst. E65, m140–m141. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mégnamisi-Bélombé, M., Endres, H. & Rossato, E. (1983). Acta Cryst. C39, 705–707. CSD CrossRef Web of Science IUCr Journals Google Scholar
Ohkubo, K. & Fukuzumi, S. (2005). J. Phys. Chem. 109, 1105–1113. CrossRef CAS Google Scholar
Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Randall, W. C. & Alberty, R. A. (1970). Biochemistry, 9, 1886–1892. PubMed Web of Science Google Scholar
Schrauzer, G. N. (1968). Acc. Chem. Res. 1, 97–103. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trommel, J. S., Warncke, K. & Marzilli, L. G. (2001). J. Am. Chem. Soc. 123, 3358–3366. Web of Science CrossRef PubMed CAS Google Scholar
Vijayraghavan, V. R. & Dayalan, A. (1992). J. Indian Chem. Soc. 69, 383–384. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A number of cobalt complexes have been proposed as model systems for vitamin-B12(Trommel et al., 2001; Ohkubo & Fukuzumi, 2005). The most commonly mentioned model system is bis(dimethylglyoximato)cobalt(III) complexes on which Schrauzer has carried out a great amount of research.The common feature of the different models is that each possesses a strong equatorial ligand field (Schrauzer,1968). A variety of cobalt(III) complexes have been discovered possessing stable axial cobalt-carbon bonds. Simple alkyl cobaloximes, are thermally stable upto about 200°C and are therefore among the most stable organo metallic compounds known. Halide ions can coordinate to cobalt(III) as other common anionic ligands. Cobalt(III) complexes, being low spin, are conveniently studied in aqueous medium (Randall & Alberty, 1970). We report here the synthesis and X-ray crystal structure of the title compound.
The geometry around the cobalt(III) is approximately octahedral with the four glyoximate N atoms forming the square base;whereas, the coordinated bromide (Br1) and oxygen (O3) and the coordinated oxygen of water form the apex. The bite angles of the glyoximates with cobalt are N(1)#1-Co(1)—N(1) 82.18 (14)° and N(2)#1-Co(1)—N(2) 80.03 (03)°, respectively. Further N(1)#1-Co(1)—N(2)#1 178.29 (10)° confirms the distorted octahedral geometry of the molecule. The bond lengths Co(1)—N(1)#1, 1.883 (2) Å,Co(1)—N(2)#1, 1.911 (2) Å agree well with the previously reported structures (Meera et al., 2009, Ramesh et al., 2008) and the axial Co–Br distance d(Co1–Br1) = 2.3563 (6)Å agrees well with the reported structure of trans-aquabromobis[ethanedial dioximato(1-)-N,N']cobalt(III)(Mégnamisi-Bélombé et al., 1983). The glyoximate moieties are further bound by strong intraomecular O—H···O hydrogen bonds showing an S(6) ring motif (Bernstein et al., 1995). Thecoordinated water forms an intermolecular hydrogen bond O3—H3···O1ii[symmetry code (ii): -x + 1, y - 1/2, -z + 1] with the glyoximate oxygen atoms which links the inversion related title compound thus forming a ring motif of R22(10). Fused rings of R22(10) generates a supramolecular one dimensional chain extending parallel to [010] direction. The structure is further stabilized through van der waals interaction.