metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m442-m443

Aqua­bromidobis(di­methyl­glyoximato)cobalt(III)

aLoyola College (Autonomous), Chennai 600 034, Tamil Nadu, India
*Correspondence e-mail: dayalan77@gmail.com

(Received 17 February 2011; accepted 8 March 2011; online 15 March 2011)

In the title complex, [CoBr(C4H7N2O2)2(H2O)], a crystallo­graphic mirror plane bis­ects the mol­ecule, perpendicular to the glyoximate ligands. The geometry around the cobalt(III) atom is approximately octa­hedral with the four glyoximate N atoms forming the square base. A bromide ion and the O atom of a water mol­ecule occupy the remaining coordination sites. The N—Co—N bite angles are 82.18 (4) and 80.03 (16)°. The glyoximate moieties form strong intra­molecular O—H⋯O hydrogen bonds. The coordinated water mol­ecule forms an inter­molecular O—H⋯O hydrogen bond with a glyoximate O atom, thereby generating supra­molecular chains parallel to [010].

Related literature

For related complexes, see: Ohkubo & Fukuzumi (2005[Ohkubo, K. & Fukuzumi, S. (2005). J. Phys. Chem. 109, 1105-1113.]); Randall & Alberty (1970[Randall, W. C. & Alberty, R. A. (1970). Biochemistry, 9, 1886-1892.]); Schrauzer (1968[Schrauzer, G. N. (1968). Acc. Chem. Res. 1, 97-103.]); Trommel et al. (2001[Trommel, J. S., Warncke, K. & Marzilli, L. G. (2001). J. Am. Chem. Soc. 123, 3358-3366.]). For similar structures, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Mégnamisi-Bélombé et al. (1983[Mégnamisi-Bélombé, M., Endres, H. & Rossato, E. (1983). Acta Cryst. C39, 705-707.]); Meera et al. (2009[Meera, P., Revathi, C. & Dayalan, A. (2009). Acta Cryst. E65, m140-m141.]); Ramesh et al. (2008[Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300-m301.]). For the preparation of similar complexes, see: Vijayraghavan & Dayalan (1992[Vijayraghavan, V. R. & Dayalan, A. (1992). J. Indian Chem. Soc. 69, 383-384.]). For spectroscopic studies related to the title complex, see: Folgando et al. (1986[Folgando, J. V., Coronado, E. & Bltran, D. (1986). J. Chem. Soc. Dalton Trans. 1, pp. 1061-1064.]); Khan et al. (1997[Khan, T. A., Shahjahan, & Zaidi, S. A. A. (1997). Indian J. Chem. Sect. A, 36, 153-156.]); Lopez et al. (1986[Lopez, C., Alvarez, S., Solans, X. & Font-Altaba, M. (1986). Inorg. Chem. 25, 2962-2969.]).

[Scheme 1]

Experimental

Crystal data
  • [CoBr(C4H7N2O2)2(H2O)]

  • Mr = 387.09

  • Monoclinic, P 21 /m

  • a = 7.5903 (3) Å

  • b = 8.8816 (4) Å

  • c = 10.5343 (5) Å

  • β = 96.137 (3)°

  • V = 706.09 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.07 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.581, Tmax = 0.687

  • 7395 measured reflections

  • 1480 independent reflections

  • 1298 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.22

  • 1480 reflections

  • 101 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.92 (1) 1.58 (1) 2.494 (3) 169 (4)
O3—H3⋯O1ii 0.85 (3) 1.79 (3) 2.616 (3) 167 (4)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008)[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A number of cobalt complexes have been proposed as model systems for vitamin-B12(Trommel et al., 2001; Ohkubo & Fukuzumi, 2005). The most commonly mentioned model system is bis(dimethylglyoximato)cobalt(III) complexes on which Schrauzer has carried out a great amount of research.The common feature of the different models is that each possesses a strong equatorial ligand field (Schrauzer,1968). A variety of cobalt(III) complexes have been discovered possessing stable axial cobalt-carbon bonds. Simple alkyl cobaloximes, are thermally stable upto about 200°C and are therefore among the most stable organo metallic compounds known. Halide ions can coordinate to cobalt(III) as other common anionic ligands. Cobalt(III) complexes, being low spin, are conveniently studied in aqueous medium (Randall & Alberty, 1970). We report here the synthesis and X-ray crystal structure of the title compound.

The geometry around the cobalt(III) is approximately octahedral with the four glyoximate N atoms forming the square base;whereas, the coordinated bromide (Br1) and oxygen (O3) and the coordinated oxygen of water form the apex. The bite angles of the glyoximates with cobalt are N(1)#1-Co(1)—N(1) 82.18 (14)° and N(2)#1-Co(1)—N(2) 80.03 (03)°, respectively. Further N(1)#1-Co(1)—N(2)#1 178.29 (10)° confirms the distorted octahedral geometry of the molecule. The bond lengths Co(1)—N(1)#1, 1.883 (2) Å,Co(1)—N(2)#1, 1.911 (2) Å agree well with the previously reported structures (Meera et al., 2009, Ramesh et al., 2008) and the axial Co–Br distance d(Co1–Br1) = 2.3563 (6)Å agrees well with the reported structure of trans-aquabromobis[ethanedial dioximato(1-)-N,N']cobalt(III)(Mégnamisi-Bélombé et al., 1983). The glyoximate moieties are further bound by strong intraomecular O—H···O hydrogen bonds showing an S(6) ring motif (Bernstein et al., 1995). Thecoordinated water forms an intermolecular hydrogen bond O3—H3···O1ii[symmetry code (ii): -x + 1, y - 1/2, -z + 1] with the glyoximate oxygen atoms which links the inversion related title compound thus forming a ring motif of R22(10). Fused rings of R22(10) generates a supramolecular one dimensional chain extending parallel to [010] direction. The structure is further stabilized through van der waals interaction.

Related literature top

For related complexes, see: Ohkubo & Fukuzumi (2005); Randall & Alberty (1970); Schrauzer (1968); Trommel et al. (2001). For similar structures, see: Bernstein et al. (1995); Mégnamisi-Bélombé et al. (1983); Meera et al. (2009); Ramesh et al. (2008). For the preparation of similar complexes, see: Vijayraghavan & Dayalan (1992). For spectroscopic studies related to the title complex, see: Folgando et al. (1986); Khan et al. (1997); Lopez et al. (1986).

Experimental top

Cobalt(II) bromide hexahydrate was thoroughly grinded and exposed to microwave for 30 s.The dehydrated cobalt(II) bromide was mixed with dimethylglyoxime in 1:2 molar ratio in acetone medium and allowed to stir for an hour (Vijayraghavan & Dayalan, 1992). The dibromo complex obtained was filtered dried and then it was refluxed with water for two hours. The resulting brown mass was filtered washed with ether and dried over desiccator. The elemental analysis data, obtained by analytical methods agree well with the theoretical data expected for the formula of the complex, C8H16N4O5BrCo proposed viz.,[Co(dmgH)2(H2O)Br]: Anal,% (cald,%): C, 25.12(24.8); H,4.82(4.13); N,14.50(14.47). The C=N stretching vibration of oxime in its complex was observed at 1580 cm-1 and the intra molecular hydrogen bonded OH around 3100 cm-1. A moderate peak around 1070 cm-1 may be assigned to the C=N—O stretching of the oxime. The peak around 510 cm-1 could be attributed to cobalt(III)-nitrogen stretching (Khan et al., 1997; Folgando et al., 1986). The 1H NMR spectra of the complex in DMSO-d6 shows a sharp intense singlet at 2.3 p.p.m. corresponding to methyl protons of the oxime.The oxime –OH resonates at 13.08 p.p.m..A singlet around 8.5 ppm represents the –OH of the aquo ligand (Lopez et al., 1986).

Refinement top

The H– atoms bound to C– atoms were constrained to riding atoms with d(C—H) = 0.96Å and Uiso(H) = 1.5Uequ(C).The positions of the hydrogen atoms,bound to the glyoximate and water O atoms, were identified from difference in the electron density map and restrained to a distance of d(O2—H2) = 0.92 (1)Å and d(O3—H3) = 0.85 (1) Å. A difference elctron density peak of 1.008 e A-3 was observed after the final refinement. Since the observed peak position is meaningless it is ignored.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of the title compound drawn at 30% probability level.The equivalent symbol i represents the mirror symmetry (x, 1/2; -y,z) at one fourth of b axes.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing the formation of one dimensional chain through O3—H3···O1ii hydrogen bond extending along [010] direction [Symmetry codes: (i) x, -y + 1/2, z; (ii) -x + 1, y - 1/2, -z + 1].
Aquabromidobis(dimethylglyoximato)cobalt(III) top
Crystal data top
[CoBr(C4H7N2O2)2(H2O)]F(000) = 388
Mr = 387.09Dx = 1.821 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 3745 reflections
a = 7.5903 (3) Åθ = 2.7–30.7°
b = 8.8816 (4) ŵ = 4.07 mm1
c = 10.5343 (5) ÅT = 293 K
β = 96.137 (3)°Block, brown
V = 706.09 (5) Å30.15 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1480 independent reflections
Radiation source: fine-focus sealed tube1298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker 1999)
h = 99
Tmin = 0.581, Tmax = 0.687k = 109
7395 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.22 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.1583P]
where P = (Fo2 + 2Fc2)/3
1480 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 1.01 e Å3
2 restraintsΔρmin = 0.54 e Å3
Crystal data top
[CoBr(C4H7N2O2)2(H2O)]V = 706.09 (5) Å3
Mr = 387.09Z = 2
Monoclinic, P21/mMo Kα radiation
a = 7.5903 (3) ŵ = 4.07 mm1
b = 8.8816 (4) ÅT = 293 K
c = 10.5343 (5) Å0.15 × 0.10 × 0.10 mm
β = 96.137 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1480 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 1999)
1298 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.687Rint = 0.028
7395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.22Δρmax = 1.01 e Å3
1480 reflectionsΔρmin = 0.54 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7937 (4)0.3331 (3)0.5395 (3)0.0330 (6)
C20.8935 (4)0.4238 (4)0.6415 (3)0.0487 (8)
H2A0.88180.52880.62070.073*
H2B1.01640.39600.64860.073*
H2C0.84690.40520.72130.073*
C30.3600 (4)0.1669 (4)0.1163 (3)0.0448 (8)
C40.2476 (6)0.0761 (5)0.0221 (4)0.0726 (13)
H4A0.27370.02880.03580.109*
H4B0.27090.10380.06260.109*
H4C0.12500.09420.03180.109*
N10.6996 (3)0.3893 (2)0.4417 (2)0.0302 (5)
N20.4668 (3)0.1117 (3)0.2069 (2)0.0374 (6)
O10.6810 (3)0.5377 (2)0.4230 (2)0.0395 (5)
O20.4819 (3)0.0402 (3)0.2186 (2)0.0501 (6)
O30.3771 (4)0.25000.4145 (3)0.0314 (6)
Co10.58731 (6)0.25000.32505 (5)0.02601 (18)
Br10.83644 (6)0.25000.20942 (4)0.04048 (18)
H20.557 (4)0.051 (4)0.293 (2)0.059 (12)*
H30.366 (5)0.173 (3)0.460 (3)0.050 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0234 (13)0.0376 (16)0.0391 (15)0.0028 (12)0.0091 (11)0.0058 (12)
C20.0354 (17)0.060 (2)0.0503 (18)0.0080 (15)0.0039 (14)0.0164 (17)
C30.0321 (15)0.068 (2)0.0356 (16)0.0038 (15)0.0097 (13)0.0091 (15)
C40.054 (2)0.106 (4)0.056 (2)0.018 (2)0.0022 (19)0.030 (2)
N10.0284 (12)0.0230 (12)0.0415 (13)0.0032 (9)0.0139 (10)0.0029 (10)
N20.0327 (13)0.0388 (15)0.0430 (14)0.0053 (11)0.0140 (11)0.0082 (11)
O10.0446 (12)0.0229 (10)0.0538 (13)0.0022 (9)0.0180 (10)0.0031 (9)
O20.0540 (15)0.0376 (13)0.0604 (15)0.0075 (11)0.0142 (12)0.0163 (11)
O30.0300 (14)0.0259 (15)0.0401 (16)0.0000.0130 (12)0.000
Co10.0251 (3)0.0227 (3)0.0312 (3)0.0000.0076 (2)0.000
Br10.0364 (3)0.0432 (3)0.0441 (3)0.0000.01498 (19)0.000
Geometric parameters (Å, º) top
C1—N11.289 (4)C4—H4C0.9600
C1—C1i1.476 (6)N1—O11.338 (3)
C1—C21.485 (4)N1—Co11.883 (2)
C2—H2A0.9600N2—O21.358 (3)
C2—H2B0.9600N2—Co11.911 (2)
C2—H2C0.9600O2—H20.921 (10)
C3—N21.283 (4)O3—Co11.938 (3)
C3—C3i1.475 (7)O3—H30.85 (3)
C3—C41.477 (4)Co1—N1i1.883 (2)
C4—H4A0.9600Co1—N2i1.911 (2)
C4—H4B0.9600Co1—Br12.3563 (6)
N1—C1—C1i112.79 (16)C3—N2—O2119.2 (3)
N1—C1—C2124.4 (3)C3—N2—Co1117.3 (2)
C1i—C1—C2122.85 (19)O2—N2—Co1123.3 (2)
C1—C2—H2A109.5N2—O2—H2103 (2)
C1—C2—H2B109.5Co1—O3—H3114 (3)
H2A—C2—H2B109.5N1—Co1—N1i82.18 (14)
C1—C2—H2C109.5N1—Co1—N2i98.88 (11)
H2A—C2—H2C109.5N1i—Co1—N2i178.29 (10)
H2B—C2—H2C109.5N1—Co1—N2178.29 (10)
N2—C3—C3i112.51 (19)N1i—Co1—N298.88 (11)
N2—C3—C4124.4 (4)N2i—Co1—N280.03 (16)
C3i—C3—C4123.1 (2)N1—Co1—O391.24 (9)
C3—C4—H4A109.5N1i—Co1—O391.24 (9)
C3—C4—H4B109.5N2i—Co1—O387.40 (10)
H4A—C4—H4B109.5N2—Co1—O387.40 (10)
C3—C4—H4C109.5N1—Co1—Br190.29 (7)
H4A—C4—H4C109.5N1i—Co1—Br190.29 (7)
H4B—C4—H4C109.5N2i—Co1—Br191.04 (7)
C1—N1—O1122.7 (2)N2—Co1—Br191.04 (7)
C1—N1—Co1116.1 (2)O3—Co1—Br1177.97 (9)
O1—N1—Co1121.18 (18)
C1i—C1—N1—O1179.81 (18)C1—N1—Co1—O391.1 (2)
C2—C1—N1—O10.7 (4)O1—N1—Co1—O388.7 (2)
C1i—C1—N1—Co10.02 (19)C1—N1—Co1—Br190.28 (19)
C2—C1—N1—Co1179.5 (2)O1—N1—Co1—Br189.92 (19)
C3i—C3—N2—O2179.62 (19)C3—N2—Co1—N1i174.1 (2)
C4—C3—N2—O20.8 (5)O2—N2—Co1—N1i2.4 (2)
C3i—C3—N2—Co13.8 (2)C3—N2—Co1—N2i4.6 (3)
C4—C3—N2—Co1175.8 (3)O2—N2—Co1—N2i178.98 (17)
C1—N1—Co1—N1i0.0 (2)C3—N2—Co1—O383.2 (2)
O1—N1—Co1—N1i179.82 (14)O2—N2—Co1—O393.2 (2)
C1—N1—Co1—N2i178.6 (2)C3—N2—Co1—Br195.5 (2)
O1—N1—Co1—N2i1.2 (2)O2—N2—Co1—Br188.1 (2)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.92 (1)1.58 (1)2.494 (3)169 (4)
O3—H3···O1ii0.85 (3)1.79 (3)2.616 (3)167 (4)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[CoBr(C4H7N2O2)2(H2O)]
Mr387.09
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)7.5903 (3), 8.8816 (4), 10.5343 (5)
β (°) 96.137 (3)
V3)706.09 (5)
Z2
Radiation typeMo Kα
µ (mm1)4.07
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 1999)
Tmin, Tmax0.581, 0.687
No. of measured, independent and
observed [I > 2σ(I)] reflections
7395, 1480, 1298
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.22
No. of reflections1480
No. of parameters101
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.01, 0.54

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.921 (10)1.584 (13)2.494 (3)169 (4)
O3—H3···O1ii0.85 (3)1.79 (3)2.616 (3)167 (4)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y1/2, z+1.
 

Acknowledgements

The authors are thankful to Rev. Fr B. Jeyaraj, SJ, Principal, Loyola College (Autonomous), Chennai, India, for providing the necessary facilities, the Head, SAIF, CDRI, Lucknow, India, for supplying the elemental data and the SAIF, IIT Madras, Chennai, India, for recording the 1HNMR spectra and for the X-ray data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFolgando, J. V., Coronado, E. & Bltran, D. (1986). J. Chem. Soc. Dalton Trans. 1, pp. 1061–1064.  Google Scholar
First citationKhan, T. A., Shahjahan, & Zaidi, S. A. A. (1997). Indian J. Chem. Sect. A, 36, 153–156.  Google Scholar
First citationLopez, C., Alvarez, S., Solans, X. & Font-Altaba, M. (1986). Inorg. Chem. 25, 2962–2969.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeera, P., Revathi, C. & Dayalan, A. (2009). Acta Cryst. E65, m140–m141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMégnamisi-Bélombé, M., Endres, H. & Rossato, E. (1983). Acta Cryst. C39, 705–707.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationOhkubo, K. & Fukuzumi, S. (2005). J. Phys. Chem. 109, 1105–1113.  CrossRef CAS Google Scholar
First citationRamesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRandall, W. C. & Alberty, R. A. (1970). Biochemistry, 9, 1886–1892.  PubMed Web of Science Google Scholar
First citationSchrauzer, G. N. (1968). Acc. Chem. Res. 1, 97–103.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrommel, J. S., Warncke, K. & Marzilli, L. G. (2001). J. Am. Chem. Soc. 123, 3358–3366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVijayraghavan, V. R. & Dayalan, A. (1992). J. Indian Chem. Soc. 69, 383–384.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m442-m443
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds