metal-organic compounds
Bis(3,5-dimethyl-1H-pyrazole-κN2)silver(I) hexafluoridoantimonate
aCB 4160, Department of Chemistry, Illinois State University, Normal, IL 61790, USA
*Correspondence e-mail: ferrence@illinoisState.edu
The title compound, [Ag(C5H8N2)2]SbF6, contains an Ag+ cation almost linearly bonded to two N atoms of dimethylpyrazole ligands [N—Ag—N = 176.54 (18)°]. The structure exhibits hydrogen bonding between the two dimethylpyrazole H atoms and two F atoms of one hexafluoridoantimonate anion. Three relatively short Ag⋯F contacts [2.869 (6), 2.920 (7), and 3.094 (7) Å] exist between the cation and three different SbF6− anions. The crystal used for data collection was found to be twinned by non-merohedry, with the two components being related by a 180° rotation around the real or reciprocal a axis. Integration resulted in 11.2% of the total peaks being assigned to component 1, 11.2% to component 2, and 77.6% to both components.
Related literature
For related structures and background, see: Gallego et al. (2004, 2005); Garcia-Pacios et al. (2009); Mohamed & Fackler (2002). For crystallographic analysis, see: Bruno et al. (2004); Bruker (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).
Supporting information
10.1107/S1600536811010567/fj2400sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811010567/fj2400Isup2.hkl
All experimental procedures were conducted in an inert atmosphere. The title compound was prepared by dissolving 0.101 g (0.293 mmol) AgSbF6 in 10 ml anhydrous THF. A second solution was prepared separately by dissolving 0.109 g (1.14 mmol) HPzMe2 in 50 ml anhydrous THF. The two solutions were combined in a round bottom flask, capped, covered with foil, and stirred for 24 h. Crystals were obtained by decanting the solution into an Erlenmeyer flask and allowing the crystals to form out of the THF solvent via slow evaporation.
The crystal under investigation was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell Now (Bruker, 2005), with the two components being related by a 180 degree rotation around the real or reciprocal axis a. The two components were integrated using SAINT, resulting in a total of 18534 reflections. 2075 reflections (1041 unique) involved component 1 only (mean I/σ = 20.7), 2079 reflections (1040 unique) involved component 2 only (mean I/σ = 20.2), and 14380 reflections (4690 unique) involved both components (mean I/σ = 16.7). The exact twin matrix identified by the integration program was found to be (1.000 - 0.001 0.000 / -0.003 - 1.000 0.000 / -0.162 0.000 - 1.000).
The data were corrected for absorption using twinabs, and the structure was solved using
with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones), resulting in a BASF value of 0.45154.The Rint value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS; Bruker, 2008).
All non-H atoms were refined anisotropically. All H atoms were initially identified through difference Fourier syntheses then removed and included in the
in the riding-model approximation (C–H = 0.93 and 0.96Å for Ar–H and CH3; N–H = 0.86 Å; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C)).Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).[Ag(C5H8N2)2]SbF6 | F(000) = 1024 |
Mr = 535.89 | Dx = 2.157 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 18535 reflections |
a = 7.0242 (7) Å | θ = 2.7–31.2° |
b = 10.9849 (11) Å | µ = 2.88 mm−1 |
c = 21.391 (2) Å | T = 100 K |
β = 91.560 (2)° | Rod, colourless |
V = 1649.9 (3) Å3 | 0.45 × 0.3 × 0.3 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 4686 reflections with I > 2σ(I) |
ω scans | Rint = 0.039 |
Absorption correction: multi-scan (TWINABS; Bruker, 2008) | θmax = 31.6°, θmin = 1.9° |
Tmin = 0.564, Tmax = 0.746 | h = −10→10 |
16455 measured reflections | k = 0→15 |
4913 independent reflections | l = 0→31 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0685P)2 + 9.0304P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.138 | (Δ/σ)max < 0.001 |
S = 1.20 | Δρmax = 1.33 e Å−3 |
4913 reflections | Δρmin = −1.47 e Å−3 |
204 parameters |
[Ag(C5H8N2)2]SbF6 | V = 1649.9 (3) Å3 |
Mr = 535.89 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.0242 (7) Å | µ = 2.88 mm−1 |
b = 10.9849 (11) Å | T = 100 K |
c = 21.391 (2) Å | 0.45 × 0.3 × 0.3 mm |
β = 91.560 (2)° |
Bruker SMART APEX CCD diffractometer | 4913 independent reflections |
Absorption correction: multi-scan (TWINABS; Bruker, 2008) | 4686 reflections with I > 2σ(I) |
Tmin = 0.564, Tmax = 0.746 | Rint = 0.039 |
16455 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.20 | Δρmax = 1.33 e Å−3 |
4913 reflections | Δρmin = −1.47 e Å−3 |
204 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.24944 (8) | −0.03039 (4) | −0.018995 (19) | 0.02105 (12) | |
N2 | 0.2337 (9) | 0.0994 (4) | −0.0910 (2) | 0.0186 (9) | |
N3 | 0.2235 (8) | 0.2210 (5) | −0.0802 (2) | 0.0193 (9) | |
H3 | 0.2263 | 0.2529 | −0.0434 | 0.023* | |
C4 | 0.2085 (10) | 0.2865 (6) | −0.1338 (3) | 0.0222 (12) | |
C5 | 0.2061 (10) | 0.2033 (6) | −0.1820 (3) | 0.0246 (12) | |
H5 | 0.1948 | 0.2203 | −0.2245 | 0.029* | |
C6 | 0.2238 (10) | 0.0878 (6) | −0.1544 (3) | 0.0197 (11) | |
C7 | 0.1939 (13) | 0.4221 (7) | −0.1335 (4) | 0.0343 (17) | |
H7A | 0.1171 | 0.4476 | −0.0995 | 0.051* | |
H7B | 0.1364 | 0.4492 | −0.1723 | 0.051* | |
H7C | 0.3189 | 0.4568 | −0.1287 | 0.051* | |
C8 | 0.2292 (12) | −0.0346 (6) | −0.1844 (3) | 0.0319 (14) | |
H8A | 0.2809 | −0.0928 | −0.1551 | 0.048* | |
H8B | 0.3078 | −0.0313 | −0.2203 | 0.048* | |
H8C | 0.1025 | −0.0584 | −0.197 | 0.048* | |
N9 | 0.2625 (9) | −0.1517 (4) | 0.0570 (2) | 0.0213 (10) | |
N10 | 0.2780 (11) | −0.1124 (5) | 0.1177 (2) | 0.0278 (12) | |
H10 | 0.2789 | −0.0369 | 0.1284 | 0.033* | |
C11 | 0.2915 (10) | −0.2048 (6) | 0.1585 (3) | 0.0229 (12) | |
C12 | 0.3016 (10) | −0.3100 (6) | 0.1232 (3) | 0.0247 (13) | |
H12 | 0.3213 | −0.3887 | 0.138 | 0.03* | |
C13 | 0.2760 (9) | −0.2738 (5) | 0.0606 (3) | 0.0200 (11) | |
C14 | 0.3053 (12) | −0.1818 (7) | 0.2275 (3) | 0.0304 (15) | |
H14A | 0.2692 | −0.0992 | 0.2359 | 0.046* | |
H14B | 0.434 | −0.1951 | 0.2422 | 0.046* | |
H14C | 0.2217 | −0.2363 | 0.2486 | 0.046* | |
C15 | 0.2704 (12) | −0.3504 (6) | 0.0031 (3) | 0.0291 (14) | |
H15A | 0.3054 | −0.3019 | −0.0321 | 0.044* | |
H15B | 0.1439 | −0.3817 | −0.0039 | 0.044* | |
H15C | 0.3581 | −0.4169 | 0.0081 | 0.044* | |
Sb16 | 0.25087 (6) | 0.25666 (3) | 0.113329 (15) | 0.01885 (11) | |
F17 | 0.2849 (8) | 0.1468 (4) | 0.18060 (18) | 0.0322 (10) | |
F18 | 0.2194 (9) | 0.3560 (4) | 0.04231 (18) | 0.0349 (11) | |
F19 | 0.4415 (9) | 0.1718 (6) | 0.0716 (3) | 0.0513 (17) | |
F20 | 0.0553 (10) | 0.3341 (6) | 0.1543 (3) | 0.057 (2) | |
F21 | 0.0764 (9) | 0.1462 (6) | 0.0768 (3) | 0.0456 (15) | |
F22 | 0.4263 (11) | 0.3651 (6) | 0.1477 (4) | 0.065 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0268 (2) | 0.01625 (19) | 0.02011 (18) | 0.0007 (3) | −0.00010 (18) | 0.00363 (14) |
N2 | 0.022 (3) | 0.020 (2) | 0.0143 (17) | 0.001 (2) | 0.004 (2) | 0.0008 (16) |
N3 | 0.023 (3) | 0.019 (2) | 0.0156 (19) | −0.004 (2) | 0.0010 (19) | 0.0003 (16) |
C4 | 0.024 (3) | 0.021 (3) | 0.022 (2) | −0.001 (2) | 0.001 (2) | 0.009 (2) |
C5 | 0.021 (3) | 0.032 (3) | 0.020 (2) | 0.002 (3) | 0.004 (2) | 0.006 (2) |
C6 | 0.017 (3) | 0.027 (3) | 0.015 (2) | 0.001 (2) | 0.004 (2) | −0.0004 (19) |
C7 | 0.037 (4) | 0.021 (3) | 0.045 (4) | −0.001 (3) | 0.002 (4) | 0.012 (3) |
C8 | 0.032 (4) | 0.027 (3) | 0.037 (3) | 0.002 (3) | 0.005 (3) | −0.010 (3) |
N9 | 0.026 (3) | 0.015 (2) | 0.023 (2) | 0.003 (2) | −0.003 (2) | 0.0037 (17) |
N10 | 0.046 (4) | 0.014 (2) | 0.023 (2) | 0.000 (3) | −0.003 (3) | 0.0012 (18) |
C11 | 0.021 (3) | 0.022 (3) | 0.025 (3) | −0.002 (2) | 0.003 (2) | 0.006 (2) |
C12 | 0.021 (3) | 0.019 (3) | 0.034 (3) | −0.003 (2) | −0.014 (3) | 0.007 (2) |
C13 | 0.016 (3) | 0.014 (2) | 0.030 (3) | 0.001 (2) | −0.002 (2) | 0.001 (2) |
C14 | 0.034 (4) | 0.032 (3) | 0.025 (3) | −0.004 (3) | −0.001 (3) | 0.006 (3) |
C15 | 0.035 (4) | 0.024 (3) | 0.027 (3) | −0.001 (3) | −0.010 (3) | −0.004 (2) |
Sb16 | 0.0264 (2) | 0.01299 (17) | 0.01709 (17) | 0.0009 (2) | −0.00057 (15) | −0.00089 (11) |
F17 | 0.049 (3) | 0.0220 (18) | 0.0257 (17) | 0.009 (2) | 0.000 (2) | 0.0061 (14) |
F18 | 0.055 (3) | 0.0278 (19) | 0.0218 (16) | 0.001 (2) | −0.005 (2) | 0.0096 (15) |
F19 | 0.045 (3) | 0.049 (4) | 0.061 (4) | 0.019 (3) | 0.028 (3) | 0.010 (3) |
F20 | 0.080 (4) | 0.046 (4) | 0.047 (4) | 0.040 (3) | 0.034 (3) | 0.011 (3) |
F21 | 0.054 (3) | 0.040 (3) | 0.042 (3) | −0.018 (3) | −0.018 (2) | −0.002 (3) |
F22 | 0.099 (5) | 0.039 (4) | 0.056 (4) | −0.035 (4) | −0.047 (4) | 0.015 (3) |
Ag1—N2 | 2.100 (5) | N10—C11 | 1.341 (8) |
Ag1—N9 | 2.101 (5) | N10—H10 | 0.86 |
N2—N3 | 1.358 (7) | C11—C12 | 1.383 (10) |
N2—C6 | 1.360 (7) | C11—C14 | 1.497 (9) |
N3—C4 | 1.354 (7) | C12—C13 | 1.403 (9) |
N3—H3 | 0.86 | C12—H12 | 0.93 |
C4—C5 | 1.377 (9) | C13—C15 | 1.491 (9) |
C4—C7 | 1.494 (9) | C14—H14A | 0.96 |
C5—C6 | 1.404 (9) | C14—H14B | 0.96 |
C5—H5 | 0.93 | C14—H14C | 0.96 |
C6—C8 | 1.490 (9) | C15—H15A | 0.96 |
C7—H7A | 0.96 | C15—H15B | 0.96 |
C7—H7B | 0.96 | C15—H15C | 0.96 |
C7—H7C | 0.96 | Sb16—F22 | 1.852 (6) |
C8—H8A | 0.96 | Sb16—F20 | 1.856 (5) |
C8—H8B | 0.96 | Sb16—F19 | 1.877 (6) |
C8—H8C | 0.96 | Sb16—F18 | 1.879 (4) |
N9—C13 | 1.348 (7) | Sb16—F21 | 1.880 (5) |
N9—N10 | 1.371 (7) | Sb16—F17 | 1.888 (4) |
N2—Ag1—N9 | 176.54 (18) | N10—C11—C14 | 121.0 (6) |
N3—N2—C6 | 105.1 (5) | C12—C11—C14 | 132.6 (6) |
N3—N2—Ag1 | 123.0 (3) | C11—C12—C13 | 106.1 (5) |
C6—N2—Ag1 | 131.9 (4) | C11—C12—H12 | 126.9 |
C4—N3—N2 | 112.4 (5) | C13—C12—H12 | 126.9 |
C4—N3—H3 | 123.8 | N9—C13—C12 | 110.1 (5) |
N2—N3—H3 | 123.8 | N9—C13—C15 | 120.9 (5) |
N3—C4—C5 | 106.3 (5) | C12—C13—C15 | 128.9 (6) |
N3—C4—C7 | 122.0 (6) | C11—C14—H14A | 109.5 |
C5—C4—C7 | 131.7 (6) | C11—C14—H14B | 109.5 |
C4—C5—C6 | 106.6 (5) | H14A—C14—H14B | 109.5 |
C4—C5—H5 | 126.7 | C11—C14—H14C | 109.5 |
C6—C5—H5 | 126.7 | H14A—C14—H14C | 109.5 |
N2—C6—C5 | 109.6 (5) | H14B—C14—H14C | 109.5 |
N2—C6—C8 | 120.8 (6) | C13—C15—H15A | 109.5 |
C5—C6—C8 | 129.6 (5) | C13—C15—H15B | 109.5 |
C4—C7—H7A | 109.5 | H15A—C15—H15B | 109.5 |
C4—C7—H7B | 109.5 | C13—C15—H15C | 109.5 |
H7A—C7—H7B | 109.5 | H15A—C15—H15C | 109.5 |
C4—C7—H7C | 109.5 | H15B—C15—H15C | 109.5 |
H7A—C7—H7C | 109.5 | F22—Sb16—F20 | 90.6 (4) |
H7B—C7—H7C | 109.5 | F22—Sb16—F19 | 91.9 (4) |
C6—C8—H8A | 109.5 | F20—Sb16—F19 | 177.3 (3) |
C6—C8—H8B | 109.5 | F22—Sb16—F18 | 90.6 (3) |
H8A—C8—H8B | 109.5 | F20—Sb16—F18 | 92.5 (3) |
C6—C8—H8C | 109.5 | F19—Sb16—F18 | 88.5 (3) |
H8A—C8—H8C | 109.5 | F22—Sb16—F21 | 178.7 (4) |
H8B—C8—H8C | 109.5 | F20—Sb16—F21 | 90.5 (3) |
C13—N9—N10 | 104.8 (5) | F19—Sb16—F21 | 87.0 (3) |
C13—N9—Ag1 | 132.7 (4) | F18—Sb16—F21 | 88.7 (3) |
N10—N9—Ag1 | 122.3 (4) | F22—Sb16—F17 | 92.2 (3) |
C11—N10—N9 | 112.4 (5) | F20—Sb16—F17 | 90.7 (3) |
C11—N10—H10 | 123.8 | F19—Sb16—F17 | 88.2 (3) |
N9—N10—H10 | 123.8 | F18—Sb16—F17 | 175.70 (18) |
N10—C11—C12 | 106.3 (5) | F21—Sb16—F17 | 88.4 (3) |
C6—N2—N3—C4 | −0.3 (8) | C13—N9—N10—C11 | −2.9 (9) |
Ag1—N2—N3—C4 | −178.1 (5) | Ag1—N9—N10—C11 | −177.6 (5) |
N2—N3—C4—C5 | 0.9 (8) | N9—N10—C11—C12 | 5.1 (9) |
N2—N3—C4—C7 | 179.6 (7) | N9—N10—C11—C14 | −178.7 (7) |
N3—C4—C5—C6 | −1.1 (8) | N10—C11—C12—C13 | −5.1 (8) |
C7—C4—C5—C6 | −179.6 (8) | C14—C11—C12—C13 | 179.3 (8) |
N3—N2—C6—C5 | −0.4 (8) | N10—N9—C13—C12 | −0.6 (8) |
Ag1—N2—C6—C5 | 177.1 (5) | Ag1—N9—C13—C12 | 173.3 (5) |
N3—N2—C6—C8 | −179.5 (6) | N10—N9—C13—C15 | −178.4 (7) |
Ag1—N2—C6—C8 | −2.0 (11) | Ag1—N9—C13—C15 | −4.5 (11) |
C4—C5—C6—N2 | 1.0 (8) | C11—C12—C13—N9 | 3.6 (8) |
C4—C5—C6—C8 | 180.0 (7) | C11—C12—C13—C15 | −178.8 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···F18 | 0.86 | 2.16 | 3.012 (6) | 172 |
N10—H10···F17 | 0.86 | 2.31 | 3.149 (7) | 167 |
Experimental details
Crystal data | |
Chemical formula | [Ag(C5H8N2)2]SbF6 |
Mr | 535.89 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.0242 (7), 10.9849 (11), 21.391 (2) |
β (°) | 91.560 (2) |
V (Å3) | 1649.9 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.88 |
Crystal size (mm) | 0.45 × 0.3 × 0.3 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (TWINABS; Bruker, 2008) |
Tmin, Tmax | 0.564, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16455, 4913, 4686 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.738 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.138, 1.20 |
No. of reflections | 4913 |
No. of parameters | 204 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.33, −1.47 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···F18 | 0.86 | 2.16 | 3.012 (6) | 172 |
N10—H10···F17 | 0.86 | 2.31 | 3.149 (7) | 167 |
Acknowledgements
This material is based upon work supported by the US National Science Foundation (CHE-0348158)(to GMF). GMF thanks Matthias Zeller of the Youngstown State University Structure & Chemical Instrumentation Facility for the data collection and useful discussions. The diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491 and YSU.
References
Bruker (2005). Cell Now. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2008). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CrossRef PubMed CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gallego, M. L., Cano, M., Campo, J. A., Heras, J. V., Pinilla, E. & Torres, M. R. (2005). Helv. Chim. Acta, 88, 2433–2440. CrossRef CAS Google Scholar
Gallego, M. L., Ovejero, P., Cano, M., Heras, J. V., Campo, J. A., Pinilla, E. & Torres, M. R. (2004). Eur. J. Inorg. Chem. pp. 3089–3098. CrossRef Google Scholar
Garcia-Pacios, V., Arroyo, M., Anton, N., Miguel, D. & Villaafane, F. (2009). Dalton Trans. pp. 2135–2141. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mohamed, A. A. & Fackler, J. P. (2002). Acta Cryst. C58, m228–m229. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dimethylnitropyrazolesilver(I) (Gallego et al., 2004; Gallego et al., 2005) and dimethylpyrazolesilver(I) (Mohamed & Fackler, 2002; Garcia-Pacios et al., 2009) complexes have become compounds of interest in recent years. A focus of this research has been on the structural and electronic factors that affect the various interactions of the pyrazole ligand. These bis substituted silver(I) complexes have been observed to most commonly form hydrogen bonds with other solvent anions (Mohamed & Fackler, 2002; Gallego et al., 2004; Gallego et al., 2005).
In the title compound (shown in Figure 1), both hydrogen atoms on the two dimethylpyrazole ligands are H-bonded to one hexafluoridoantimonate anion (distances of 2.158 (4)Å and 2.306 (4) Å). These two fluorine atoms of the anion are displaced slightly toward the hydrogen atoms resulting in a 176.5 (2)° F—Sb—F bond angle. Similar length H-bonds are seen in other dimethylpyrazolesilver(I) and pyrazolesilver(I) complexes. In a similar structure published by Gallego et al. (2004), the 3,5-dimethylpyrazole contains an additional nitro group at the pyrazole 4- position. The anion in this structure is CF3SO3-1. In this structure, the anion H-bonds to both pyrazole ligands, however, in this case, it is the silver cation that is structurally strained into an angle of 163.7°. Structures published by Mohamed & Fackler (2002) and Gallego et al. (2005) contained pyrazole ligands that did not have the H-atom in a syn planar position; however, in these structures each H-atom bonded to a different anion.
A Mogul geometry check (Bruno et al., 2004) of the title compound indicates that there are three unusual bond lengths: Ag1—N2 (2.100 Å), Ag1—N9 (2.102 Å), and N10—N9 (1.370 Å). The mean values are 2.139 (18) Å and 1.361 (4) Å, respectively. The bond lengths of these corresponding atoms in a structure published by Garcia-Pacios et al. (2009) (a structure that has an identical cation) are 2.087 Å, 2.098 Å, and 1.345Å (all flagged as unusual).
The silver cation is covalently coordinated to two pyrazole ligands. One antimonate anion H-bonds to both of these pyrazole ligands. This antimonate ion together with two additional antimonate ions form three relatively short Ag···F contacts. There is a 2.869 (6) Å separation between Ag1 and F21 of the anion at -x,-y,-z. There is a 2.920 (7) Å separation between Ag1 and F19 of the anion at 1 - x,-y,-z, and there is a 3.094 (7) Å separation between Ag1 and F21 of the anion at x,y,z. A long 3.219 (7) Å A g1···F19 separation effectively places the silver ion in an octahedral coordination environment. The view containing these contacts is shown in the enhanced Jmol figure, Figure 2. Conversely, one antimonate anion is surrounded by three silver cations with which it makes close contacts, shown in Figure 3.