metal-organic compounds
Diazidobis(5,5′-dimethyl-2,2′-bipyridyl-κ2N,N′)cobalt(II) monohydrate
aDepartment of Computer Science, Faculty of Engineering, Vongchavalitkul University, Nakhon Ratchasima 30000, Thailand, and bDepartment of Physics, Faculty of Science and Technology, Thammasat University, Rangsit, Pathumthani 12121, Thailand
*Correspondence e-mail: jaturong_phat@hotmail.com
In the title compound, [Co(C12H12N2)2(N3)2]·H2O, the Co(II) ion is situated on a crystallographic twofold axis and adopts a distorted octahedral geometry with the two dmbpy (dmbpy = 5,5′-dimethyl-2,2′-bipyridyl) and the two azido ligands in a cis arrangement. The solvent water molecule and one methyl group of the dmbpy ligand are disordered over two sets of sites in a 1:1 ratio. The is stabilized by intramolecular C—H⋯N(dmbpy) and intermolecular O—H⋯N(azide) hydrogen bonds.
Related literature
For related structures with dmbpy ligands, see: Phatchimkun et al. (2009); van Albada et al. (2004, 2005); Catalan et al. (1995); Kooijman et al. (2002). For azido complexes, see: Ribas et al. (1999) and references therein. For Co—N bond lengths in azido-containing mononuclear Co(II) complexes, see: Cheng & Hu (2003). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 2002); cell COLLECT and DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811011305/fj2407sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811011305/fj2407Isup2.hkl
Preparation of [Co(dmbpy)2(N3)2]. H2O. A warm solution of dmbpy (0.181 g, 1.0 mmol) in methanol (15 cm3) was added to a hot aqueous solution (10 cm3) of Co(CH3COO)2 (0.123 g, 0.5 mmol). An aqueous solution (10 cm3) of NaN3 (0.081 g, 1.0 mmol) was then added to the reaction mixture. The pink solution was slowly evaporated at room temperature. Slightly red crystals of [Co(dmbpy)(N3)2] were deposited. The crystals were filtered off, washed with mother liquor and air-dried. Yield ca 75%. (Anal. Calc. for C24H26CoN10O (%): C, 54.44; H, 4.95; N, 26.45. Found: C, 54.08; H, 4.72; N, 26.27). IR (in cm-1): nas(N3) 2009 s, n(C—N) 1605 m, n(C—C) 1584 m.
The water O atom is disordered which site occupancies of 0.5 and 0.5. A l l non-H atom were refined anisotropically. H atoms in aromatic were placed in idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.969–1.02 Å [Uiso (H)=1.2Ueq (C)]. H atoms in disorder methyl group C(11) were placed at calculated positions, riding on their carrier atoms.
Data collection: COLLECT (Nonius, 2002); cell
COLLECT (Nonius, 2002) and DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of the title structure with the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. |
[Co(C12H12N2)2(N3)2]·H2O | F(000) = 1096 |
Mr = 529.46 | Dx = 1.439 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 7908 reflections |
a = 17.1030 (3) Å | θ = 0.5–0.6° |
b = 8.5544 (2) Å | µ = 0.74 mm−1 |
c = 16.7062 (5) Å | T = 298 K |
V = 2444.22 (10) Å3 | Plate, red |
Z = 4 | 0.30 × 0.25 × 0.06 mm |
Nonius KappaCCD diffractometer | 2606 independent reflections |
Radiation source: fine-focus sealed tube | 2176 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω scans | θmax = 26.7°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −21→20 |
Tmin = 0.801, Tmax = 0.957 | k = −9→10 |
13768 measured reflections | l = −18→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.067 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0369P)2 + 0.4953P] where P = (Fo2 + 2Fc2)/3 |
2606 reflections | (Δ/σ)max = 0.001 |
208 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
[Co(C12H12N2)2(N3)2]·H2O | V = 2444.22 (10) Å3 |
Mr = 529.46 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 17.1030 (3) Å | µ = 0.74 mm−1 |
b = 8.5544 (2) Å | T = 298 K |
c = 16.7062 (5) Å | 0.30 × 0.25 × 0.06 mm |
Nonius KappaCCD diffractometer | 2606 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2176 reflections with I > 2σ(I) |
Tmin = 0.801, Tmax = 0.957 | Rint = 0.022 |
13768 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.067 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.16 e Å−3 |
2606 reflections | Δρmin = −0.25 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 0.5000 | 0.74215 (2) | 0.7500 | 0.02599 (9) | |
O1 | 0.4695 (2) | 0.2010 (3) | 0.7390 (2) | 0.0867 (12) | 0.50 |
N1 | 0.38268 (6) | 0.73352 (12) | 0.71511 (7) | 0.0331 (2) | |
N2 | 0.45546 (6) | 0.56878 (12) | 0.82573 (6) | 0.0324 (2) | |
N3 | 0.47390 (7) | 0.91391 (14) | 0.83657 (7) | 0.0418 (3) | |
N4 | 0.41325 (7) | 0.92089 (14) | 0.87142 (7) | 0.0386 (3) | |
N5 | 0.35504 (8) | 0.9289 (2) | 0.90686 (9) | 0.0648 (4) | |
C1 | 0.35034 (8) | 0.81583 (17) | 0.65500 (8) | 0.0376 (3) | |
C2 | 0.27051 (8) | 0.81862 (18) | 0.63952 (9) | 0.0417 (3) | |
C3 | 0.22267 (9) | 0.73661 (18) | 0.69218 (10) | 0.0473 (4) | |
C4 | 0.25489 (9) | 0.65180 (19) | 0.75451 (9) | 0.0437 (3) | |
C5 | 0.33587 (7) | 0.64967 (16) | 0.76406 (7) | 0.0338 (3) | |
C6 | 0.37688 (7) | 0.55243 (15) | 0.82431 (7) | 0.0331 (3) | |
C7 | 0.33975 (9) | 0.44448 (18) | 0.87336 (9) | 0.0443 (3) | |
C8 | 0.38418 (9) | 0.34791 (18) | 0.92141 (9) | 0.0468 (4) | |
C9 | 0.46490 (9) | 0.35865 (16) | 0.92140 (8) | 0.0394 (3) | |
C10 | 0.49719 (8) | 0.47402 (16) | 0.87300 (8) | 0.0369 (3) | |
C11 | 0.51626 (11) | 0.24943 (17) | 0.96857 (11) | 0.0527 (4) | |
C12 | 0.23851 (11) | 0.9052 (2) | 0.56797 (11) | 0.0560 (4) | |
H1 | 0.3877 (9) | 0.8771 (18) | 0.6223 (9) | 0.045 (4)* | |
H3 | 0.1649 (12) | 0.7387 (19) | 0.6823 (11) | 0.064 (5)* | |
H4 | 0.2211 (9) | 0.5925 (19) | 0.7907 (9) | 0.050 (4)* | |
H7 | 0.2847 (10) | 0.434 (2) | 0.8706 (10) | 0.055 (5)* | |
H8 | 0.3590 (10) | 0.2688 (19) | 0.9545 (11) | 0.057 (5)* | |
H10 | 0.5560 (9) | 0.4903 (17) | 0.8720 (8) | 0.041 (4)* | |
H11A | 0.4975 | 0.2431 | 1.0226 | 0.079* | 0.50 |
H11B | 0.5689 | 0.2881 | 0.9685 | 0.079* | 0.50 |
H11C | 0.5150 | 0.1474 | 0.9446 | 0.079* | 0.50 |
H11D | 0.4887 | 0.1705 | 0.9986 | 0.079* | 0.50 |
H11E | 0.5459 | 0.3090 | 1.0125 | 0.079* | 0.50 |
H11F | 0.5566 | 0.1983 | 0.9373 | 0.079* | 0.50 |
H12A | 0.2140 (13) | 0.826 (3) | 0.5282 (14) | 0.093 (7)* | |
H12B | 0.1962 (13) | 0.974 (3) | 0.5817 (13) | 0.087 (7)* | |
H12C | 0.2796 (13) | 0.967 (3) | 0.5389 (13) | 0.086 (6)* | |
H1O | 0.514 (3) | 0.125 (6) | 0.712 (3) | 0.106 (16)* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02194 (13) | 0.02914 (14) | 0.02690 (14) | 0.000 | 0.00172 (8) | 0.000 |
O1 | 0.135 (4) | 0.0515 (13) | 0.074 (2) | 0.0214 (17) | 0.026 (2) | 0.0093 (15) |
N1 | 0.0284 (5) | 0.0368 (6) | 0.0340 (6) | 0.0012 (4) | 0.0010 (4) | −0.0002 (4) |
N2 | 0.0306 (6) | 0.0345 (6) | 0.0320 (5) | −0.0013 (4) | 0.0014 (4) | −0.0006 (4) |
N3 | 0.0409 (6) | 0.0431 (7) | 0.0414 (6) | −0.0021 (5) | 0.0078 (5) | −0.0071 (5) |
N4 | 0.0370 (6) | 0.0434 (6) | 0.0354 (6) | 0.0076 (5) | −0.0039 (5) | −0.0028 (5) |
N5 | 0.0394 (7) | 0.0930 (12) | 0.0621 (9) | 0.0146 (7) | 0.0087 (7) | −0.0108 (8) |
C1 | 0.0353 (7) | 0.0410 (7) | 0.0364 (7) | 0.0038 (6) | 0.0008 (6) | 0.0008 (6) |
C2 | 0.0362 (7) | 0.0451 (8) | 0.0440 (8) | 0.0079 (6) | −0.0047 (6) | −0.0027 (6) |
C3 | 0.0291 (7) | 0.0580 (10) | 0.0548 (9) | 0.0023 (6) | −0.0041 (6) | −0.0017 (7) |
C4 | 0.0307 (7) | 0.0520 (8) | 0.0483 (8) | −0.0034 (6) | 0.0019 (6) | 0.0018 (7) |
C5 | 0.0302 (6) | 0.0368 (7) | 0.0345 (6) | −0.0006 (5) | 0.0017 (5) | −0.0041 (5) |
C6 | 0.0297 (6) | 0.0373 (7) | 0.0323 (6) | −0.0021 (5) | 0.0027 (5) | −0.0033 (5) |
C7 | 0.0352 (7) | 0.0524 (9) | 0.0453 (8) | −0.0074 (6) | 0.0037 (6) | 0.0057 (7) |
C8 | 0.0505 (9) | 0.0481 (9) | 0.0418 (8) | −0.0096 (7) | 0.0055 (6) | 0.0096 (7) |
C9 | 0.0478 (8) | 0.0387 (7) | 0.0316 (7) | 0.0000 (6) | −0.0007 (6) | 0.0006 (6) |
C10 | 0.0353 (7) | 0.0390 (7) | 0.0365 (7) | 0.0003 (6) | −0.0009 (5) | 0.0017 (6) |
C11 | 0.0652 (11) | 0.0488 (9) | 0.0441 (9) | 0.0043 (7) | −0.0062 (8) | 0.0107 (7) |
C12 | 0.0451 (9) | 0.0679 (12) | 0.0551 (10) | 0.0106 (8) | −0.0099 (8) | 0.0100 (9) |
O1—O1i | 1.108 (8) | C5—C4 | 1.3943 (19) |
O1—H1O | 1.10 (5) | C2—C3 | 1.391 (2) |
Co1—N1i | 2.0907 (11) | C2—C12 | 1.509 (2) |
Co1—N1 | 2.0907 (11) | C8—C9 | 1.383 (2) |
Co1—N2i | 2.0929 (10) | C8—H8 | 0.974 (18) |
Co1—N2 | 2.0929 (10) | C10—C9 | 1.3903 (19) |
Co1—N3 | 2.1095 (11) | C10—H10 | 1.016 (16) |
Co1—N3i | 2.1095 (12) | C9—C11 | 1.505 (2) |
N2—C10 | 1.3379 (17) | C4—C3 | 1.384 (2) |
N2—C6 | 1.3515 (16) | C4—H4 | 0.978 (16) |
N1—C1 | 1.3454 (17) | C11—H11A | 0.9600 |
N1—C5 | 1.3505 (17) | C11—H11B | 0.9600 |
N4—N5 | 1.1604 (17) | C11—H11C | 0.9600 |
N4—N3 | 1.1909 (16) | C11—H11D | 0.9650 |
C1—C2 | 1.3898 (19) | C11—H11E | 1.0271 |
C1—H1 | 0.990 (15) | C11—H11F | 0.9703 |
C6—C7 | 1.3884 (19) | C12—H12B | 0.96 (2) |
C6—C5 | 1.4822 (18) | C12—H12C | 1.01 (2) |
C7—C8 | 1.380 (2) | C12—H12A | 1.04 (2) |
C7—H7 | 0.946 (17) | C3—H3 | 1.00 (2) |
O1i—O1—H1O | 58 (3) | C9—C8—H8 | 119.1 (10) |
N1i—Co1—N1 | 175.95 (6) | N2—C10—C9 | 124.16 (13) |
N1i—Co1—N2i | 78.13 (4) | N2—C10—H10 | 115.8 (8) |
N1—Co1—N2i | 98.96 (4) | C9—C10—H10 | 120.0 (8) |
N1i—Co1—N2 | 98.96 (4) | C8—C9—C10 | 116.33 (13) |
N1—Co1—N2 | 78.13 (4) | C8—C9—C11 | 122.76 (14) |
N2i—Co1—N2 | 89.76 (6) | C10—C9—C11 | 120.88 (14) |
N1i—Co1—N3 | 92.09 (5) | C3—C4—C5 | 119.25 (14) |
N1—Co1—N3 | 90.72 (5) | C3—C4—H4 | 120.1 (9) |
N2i—Co1—N3 | 170.08 (4) | C5—C4—H4 | 120.6 (9) |
N2—Co1—N3 | 90.12 (4) | C9—C11—H11A | 109.5 |
N1i—Co1—N3i | 90.72 (5) | C9—C11—H11B | 109.5 |
N1—Co1—N3i | 92.09 (5) | H11A—C11—H11B | 109.5 |
N2i—Co1—N3i | 90.12 (4) | C9—C11—H11C | 109.5 |
N2—Co1—N3i | 170.08 (4) | H11A—C11—H11C | 109.5 |
N3—Co1—N3i | 91.70 (7) | H11B—C11—H11C | 109.5 |
C10—N2—C6 | 118.56 (11) | C9—C11—H11D | 114.9 |
C10—N2—Co1 | 126.30 (9) | H11A—C11—H11D | 46.2 |
C6—N2—Co1 | 115.13 (8) | H11B—C11—H11D | 134.5 |
C1—N1—C5 | 119.08 (11) | H11C—C11—H11D | 64.5 |
C1—N1—Co1 | 125.75 (9) | C9—C11—H11E | 110.7 |
C5—N1—Co1 | 114.76 (9) | H11A—C11—H11E | 61.3 |
N5—N4—N3 | 178.48 (15) | H11B—C11—H11E | 50.7 |
N1—C1—C2 | 123.49 (13) | H11C—C11—H11E | 139.4 |
N1—C1—H1 | 115.0 (9) | H11D—C11—H11E | 102.5 |
C2—C1—H1 | 121.5 (9) | C9—C11—H11F | 114.4 |
N2—C6—C7 | 120.89 (12) | H11A—C11—H11F | 136.0 |
N2—C6—C5 | 115.11 (11) | H11B—C11—H11F | 59.1 |
C7—C6—C5 | 123.89 (12) | H11C—C11—H11F | 51.8 |
C8—C7—C6 | 119.32 (13) | H11D—C11—H11F | 108.3 |
C8—C7—H7 | 121.3 (10) | H11E—C11—H11F | 104.9 |
C6—C7—H7 | 119.2 (10) | C2—C12—H12B | 112.6 (13) |
N4—N3—Co1 | 123.67 (10) | C2—C12—H12C | 112.9 (13) |
N1—C5—C4 | 120.84 (12) | H12B—C12—H12C | 108.6 (18) |
N1—C5—C6 | 115.39 (11) | C2—C12—H12A | 109.6 (13) |
C4—C5—C6 | 123.71 (12) | H12B—C12—H12A | 104.3 (18) |
C1—C2—C3 | 116.83 (13) | H12C—C12—H12A | 108.5 (17) |
C1—C2—C12 | 120.81 (14) | C4—C3—C2 | 120.40 (14) |
C3—C2—C12 | 122.36 (14) | C4—C3—H3 | 121.7 (10) |
C7—C8—C9 | 120.64 (13) | C2—C3—H3 | 117.8 (10) |
C7—C8—H8 | 120.2 (11) | ||
N1i—Co1—N2—C10 | −7.07 (11) | N1—Co1—N3—N4 | 32.12 (12) |
N1—Co1—N2—C10 | 170.07 (11) | N2—Co1—N3—N4 | −46.01 (12) |
N2i—Co1—N2—C10 | 70.87 (10) | N3i—Co1—N3—N4 | 124.24 (13) |
N3—Co1—N2—C10 | −99.21 (11) | C1—N1—C5—C4 | −2.10 (19) |
N1i—Co1—N2—C6 | 174.06 (9) | Co1—N1—C5—C4 | 170.99 (11) |
N1—Co1—N2—C6 | −8.79 (9) | C1—N1—C5—C6 | 175.16 (11) |
N2i—Co1—N2—C6 | −108.00 (9) | Co1—N1—C5—C6 | −11.75 (14) |
N3—Co1—N2—C6 | 81.92 (9) | N2—C6—C5—N1 | 4.27 (16) |
N2i—Co1—N1—C1 | −88.45 (11) | C7—C6—C5—N1 | −172.02 (13) |
N2—Co1—N1—C1 | −176.30 (11) | N2—C6—C5—C4 | −178.57 (13) |
N3—Co1—N1—C1 | 93.73 (11) | C7—C6—C5—C4 | 5.1 (2) |
N3i—Co1—N1—C1 | 2.00 (11) | N1—C1—C2—C3 | 3.0 (2) |
N2i—Co1—N1—C5 | 98.99 (9) | N1—C1—C2—C12 | −176.10 (14) |
N2—Co1—N1—C5 | 11.14 (9) | C6—C7—C8—C9 | 0.4 (2) |
N3—Co1—N1—C5 | −78.82 (9) | C6—N2—C10—C9 | −0.1 (2) |
N3i—Co1—N1—C5 | −170.56 (9) | Co1—N2—C10—C9 | −178.91 (10) |
C5—N1—C1—C2 | −0.7 (2) | C7—C8—C9—C10 | 2.1 (2) |
Co1—N1—C1—C2 | −172.92 (10) | C7—C8—C9—C11 | −175.95 (15) |
C10—N2—C6—C7 | 2.80 (19) | N2—C10—C9—C8 | −2.3 (2) |
Co1—N2—C6—C7 | −178.24 (10) | N2—C10—C9—C11 | 175.74 (13) |
C10—N2—C6—C5 | −173.61 (11) | N1—C5—C4—C3 | 2.4 (2) |
Co1—N2—C6—C5 | 5.35 (14) | C6—C5—C4—C3 | −174.66 (13) |
N2—C6—C7—C8 | −3.0 (2) | C5—C4—C3—C2 | 0.1 (2) |
C5—C6—C7—C8 | 173.09 (13) | C1—C2—C3—C4 | −2.7 (2) |
N1i—Co1—N3—N4 | −144.98 (12) | C12—C2—C3—C4 | 176.44 (16) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···N3ii | 1.05 (5) | 1.99 (5) | 2.926 (3) | 141 (4) |
C3—H3···O1iii | 1.00 (2) | 2.51 (2) | 3.392 (4) | 147.1 (14) |
C1—H1···N3i | 0.991 (15) | 2.485 (15) | 3.1241 (18) | 121.9 (11) |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1, y−1, −z+3/2; (iii) −x+1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Co(C12H12N2)2(N3)2]·H2O |
Mr | 529.46 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 298 |
a, b, c (Å) | 17.1030 (3), 8.5544 (2), 16.7062 (5) |
V (Å3) | 2444.22 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.74 |
Crystal size (mm) | 0.30 × 0.25 × 0.06 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.801, 0.957 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13768, 2606, 2176 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.633 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.067, 1.03 |
No. of reflections | 2606 |
No. of parameters | 208 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.16, −0.25 |
Computer programs: , COLLECT (Nonius, 2002) and DENZO/SCALEPACK (Otwinowski & Minor, 1997), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···N3i | 1.05 (5) | 1.99 (5) | 2.926 (3) | 141 (4) |
C3—H3···O1ii | 1.00 (2) | 2.51 (2) | 3.392 (4) | 147.1 (14) |
C1—H1···N3iii | 0.991 (15) | 2.485 (15) | 3.1241 (18) | 121.9 (11) |
Symmetry codes: (i) −x+1, y−1, −z+3/2; (ii) −x+1/2, y+1/2, z; (iii) −x+1, y, −z+3/2. |
Acknowledgements
The authors would like to thank Vongchavalitkul University for financial support [grant 2/52 (7)] and also gratefully acknowledge Rajamangala University of Technology Isan for support.
References
Albada, G. A. van, Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 3733–3742. Google Scholar
Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Acta Cryst. E61, m1411–m1412. Web of Science CSD CrossRef IUCr Journals Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Catalan, K. J., Jackson, S., Zubkowski, J. D., Perry, D. L., Valente, E. J., Feliu, L. A. & Polanco, A. (1995). Polyhedron, 14, 2165–2171. CSD CrossRef CAS Web of Science Google Scholar
Cheng, Y. Q. & Hu, M. L. (2003). Z. Kristallogr. New Cryst. Struct. 218, 95–96. CAS Google Scholar
Kooijman, H., Spek, A. L., Albada, G. A. van & Reedijk, J. (2002). Acta Cryst. C58, m124–m126. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Phatchimkun, J., Kongsaeree, P., Suchaichit, N. & Chaichit, N. (2009). Acta Cryst. E65, m1020–m1021. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 1027, 193–195. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Over the last decades, much attention has been paid on azido bridging complexes in the molecule-based magnet research field because azide anion is not only a good bridging ligand for metal ions (such as Cu(II), Ni(II), Mn(II), Co(II) etc) but also an efficient magnetic coupler (Ribas, et al., 1999). On the other hand, azide can act as a monomeric ligand. More than 100 structures of compounds containing the azide anion and cobalt(II) have been reported in the Cambridge Structural Database (CSD; Version 5.29, November 2008 update; Allen, 2002). However, X-ray structures of monomeric compounds with CoII and azide are very rare. Only 16 crystal structures of cobalt(II) azido monomeric complexes have been reported (CSD code: BAWSIC, FURHEF, GURLEK, HIWDOH, HOVVIX, KAVSIJ, LEXXIW, MIRYAO, MONMAE, OHITTEE, PUBXEQ, RAKFUE, RARHAU, RAZHOP, RETDIE, and RUPTIG). Currently, there is no one report of crystal structure containing CoII and 5,5'-dimethyl-2,2'-bipyridyl. Here we report on another monomeric compound, namely [Co(dmbpy)2(N3)2]. H2O, where dmbpy is 5,5'-dimethyl-2,2'-bipyridyl.
It is found that Co ion is coordinated by four nitrogen atoms from dmbpy and two azido nitrogen atoms, taking a distorted octahedral geometry. The two bidentate ligands have a cis disposition around the metal ion, forming practically perpendicular planes [N1–Co–N1i 89.81 (6), N2–Co–N2i 175.94 (6)°]. The rigidity of these ligands causes the bond angles N1–Co–N2, 78.12 (4) to deviate significantly from orthogonality. This causes the geometry about the CoII ion to deviate slightly from that of an ideal octahedron. The Co–N(dmbpy) bond distances in a complex [2.0916 (12) and 2.1091 (13) Å] are almost the same as those found in the Co(II) compound of [CoII(phen)2(N3)2] (2.067 (2)–2.114 (2) Å) (Cheng & Hu, 2003). Good agreement is observed between the Co–N(azido) bond distance of 2.1091 (13) Å and those reported (Cheng & Hu, 2003) for azido containing mononuclear cobalt(II) complexes. The crystal structure is stabilized by intramolecular C—H···N and intermolecular O—H···N hydrogen bonds (Table 1).