metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m516-m517

Di­azido­bis­­(5,5′-di­methyl-2,2′-bi­pyridyl-κ2N,N′)cobalt(II) monohydrate

aDepartment of Computer Science, Faculty of Engineering, Vongchavalitkul University, Nakhon Ratchasima 30000, Thailand, and bDepartment of Physics, Faculty of Science and Technology, Thammasat University, Rangsit, Pathumthani 12121, Thailand
*Correspondence e-mail: jaturong_phat@hotmail.com

(Received 16 March 2011; accepted 27 March 2011; online 31 March 2011)

In the title compound, [Co(C12H12N2)2(N3)2]·H2O, the Co(II) ion is situated on a crystallographic twofold axis and adopts a distorted octa­hedral geometry with the two dmbpy (dmbpy = 5,5′-dimethyl-2,2′-bipyrid­yl) and the two azido ligands in a cis arrangement. The solvent water mol­ecule and one methyl group of the dmbpy ligand are disordered over two sets of sites in a 1:1 ratio. The crystal structure is stabilized by intra­molecular C—H⋯N(dmbpy) and inter­molecular O—H⋯N(azide) hydrogen bonds.

Related literature

For related structures with dmbpy ligands, see: Phatchimkun et al. (2009[Phatchimkun, J., Kongsaeree, P., Suchaichit, N. & Chaichit, N. (2009). Acta Cryst. E65, m1020-m1021.]); van Albada et al. (2004[Albada, G. A. van, Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 3733-3742.], 2005[Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Acta Cryst. E61, m1411-m1412.]); Catalan et al. (1995[Catalan, K. J., Jackson, S., Zubkowski, J. D., Perry, D. L., Valente, E. J., Feliu, L. A. & Polanco, A. (1995). Polyhedron, 14, 2165-2171.]); Kooijman et al. (2002[Kooijman, H., Spek, A. L., Albada, G. A. van & Reedijk, J. (2002). Acta Cryst. C58, m124-m126.]). For azido complexes, see: Ribas et al. (1999[Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 1027, 193-195.]) and references therein. For Co—N bond lengths in azido-containing mononuclear Co(II) complexes, see: Cheng & Hu (2003[Cheng, Y. Q. & Hu, M. L. (2003). Z. Kristallogr. New Cryst. Struct. 218, 95-96.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H12N2)2(N3)2]·H2O

  • Mr = 529.46

  • Orthorhombic, P b c n

  • a = 17.1030 (3) Å

  • b = 8.5544 (2) Å

  • c = 16.7062 (5) Å

  • V = 2444.22 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.801, Tmax = 0.957

  • 13768 measured reflections

  • 2606 independent reflections

  • 2176 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.067

  • S = 1.03

  • 2606 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1 2.0907 (11)
Co1—N2 2.0929 (10)
Co1—N3 2.1095 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N3i 1.05 (5) 1.99 (5) 2.926 (3) 141 (4)
C3—H3⋯O1ii 1.00 (2) 2.51 (2) 3.392 (4) 147.1 (14)
C1—H1⋯N3iii 0.991 (15) 2.485 (15) 3.1241 (18) 121.9 (11)
Symmetry codes: (i) [-x+1, y-1, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT and DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over the last decades, much attention has been paid on azido bridging complexes in the molecule-based magnet research field because azide anion is not only a good bridging ligand for metal ions (such as Cu(II), Ni(II), Mn(II), Co(II) etc) but also an efficient magnetic coupler (Ribas, et al., 1999). On the other hand, azide can act as a monomeric ligand. More than 100 structures of compounds containing the azide anion and cobalt(II) have been reported in the Cambridge Structural Database (CSD; Version 5.29, November 2008 update; Allen, 2002). However, X-ray structures of monomeric compounds with CoII and azide are very rare. Only 16 crystal structures of cobalt(II) azido monomeric complexes have been reported (CSD code: BAWSIC, FURHEF, GURLEK, HIWDOH, HOVVIX, KAVSIJ, LEXXIW, MIRYAO, MONMAE, OHITTEE, PUBXEQ, RAKFUE, RARHAU, RAZHOP, RETDIE, and RUPTIG). Currently, there is no one report of crystal structure containing CoII and 5,5'-dimethyl-2,2'-bipyridyl. Here we report on another monomeric compound, namely [Co(dmbpy)2(N3)2]. H2O, where dmbpy is 5,5'-dimethyl-2,2'-bipyridyl.

It is found that Co ion is coordinated by four nitrogen atoms from dmbpy and two azido nitrogen atoms, taking a distorted octahedral geometry. The two bidentate ligands have a cis disposition around the metal ion, forming practically perpendicular planes [N1–Co–N1i 89.81 (6), N2–Co–N2i 175.94 (6)°]. The rigidity of these ligands causes the bond angles N1–Co–N2, 78.12 (4) to deviate significantly from orthogonality. This causes the geometry about the CoII ion to deviate slightly from that of an ideal octahedron. The Co–N(dmbpy) bond distances in a complex [2.0916 (12) and 2.1091 (13) Å] are almost the same as those found in the Co(II) compound of [CoII(phen)2(N3)2] (2.067 (2)–2.114 (2) Å) (Cheng & Hu, 2003). Good agreement is observed between the Co–N(azido) bond distance of 2.1091 (13) Å and those reported (Cheng & Hu, 2003) for azido containing mononuclear cobalt(II) complexes. The crystal structure is stabilized by intramolecular C—H···N and intermolecular O—H···N hydrogen bonds (Table 1).

Related literature top

For related dmbpy structures, see: Phatchimkun et al. (2009); van Albada et al. (2004, 2005); Catalan et al. (1995); Kooijman et al. (2002). For azido complexes, see: Ribas et al. (1999) and references therein. For Co—N bond lengths in azido-containing mononuclear Co(II) complexes, see: Cheng & Hu (2003). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Preparation of [Co(dmbpy)2(N3)2]. H2O. A warm solution of dmbpy (0.181 g, 1.0 mmol) in methanol (15 cm3) was added to a hot aqueous solution (10 cm3) of Co(CH3COO)2 (0.123 g, 0.5 mmol). An aqueous solution (10 cm3) of NaN3 (0.081 g, 1.0 mmol) was then added to the reaction mixture. The pink solution was slowly evaporated at room temperature. Slightly red crystals of [Co(dmbpy)(N3)2] were deposited. The crystals were filtered off, washed with mother liquor and air-dried. Yield ca 75%. (Anal. Calc. for C24H26CoN10O (%): C, 54.44; H, 4.95; N, 26.45. Found: C, 54.08; H, 4.72; N, 26.27). IR (in cm-1): nas(N3) 2009 s, n(C—N) 1605 m, n(C—C) 1584 m.

Refinement top

The water O atom is disordered which site occupancies of 0.5 and 0.5. A l l non-H atom were refined anisotropically. H atoms in aromatic were placed in idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.969–1.02 Å [Uiso (H)=1.2Ueq (C)]. H atoms in disorder methyl group C(11) were placed at calculated positions, riding on their carrier atoms.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: COLLECT (Nonius, 2002) and DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title structure with the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
Diazidobis(5,5'-dimethyl-2,2'-bipyridyl-κ2N,N')cobalt(II) monohydrate top
Crystal data top
[Co(C12H12N2)2(N3)2]·H2OF(000) = 1096
Mr = 529.46Dx = 1.439 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 7908 reflections
a = 17.1030 (3) Åθ = 0.5–0.6°
b = 8.5544 (2) ŵ = 0.74 mm1
c = 16.7062 (5) ÅT = 298 K
V = 2444.22 (10) Å3Plate, red
Z = 40.30 × 0.25 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
2606 independent reflections
Radiation source: fine-focus sealed tube2176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 26.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2120
Tmin = 0.801, Tmax = 0.957k = 910
13768 measured reflectionsl = 1821
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.4953P]
where P = (Fo2 + 2Fc2)/3
2606 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Co(C12H12N2)2(N3)2]·H2OV = 2444.22 (10) Å3
Mr = 529.46Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 17.1030 (3) ŵ = 0.74 mm1
b = 8.5544 (2) ÅT = 298 K
c = 16.7062 (5) Å0.30 × 0.25 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
2606 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2176 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.957Rint = 0.022
13768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.16 e Å3
2606 reflectionsΔρmin = 0.25 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50000.74215 (2)0.75000.02599 (9)
O10.4695 (2)0.2010 (3)0.7390 (2)0.0867 (12)0.50
N10.38268 (6)0.73352 (12)0.71511 (7)0.0331 (2)
N20.45546 (6)0.56878 (12)0.82573 (6)0.0324 (2)
N30.47390 (7)0.91391 (14)0.83657 (7)0.0418 (3)
N40.41325 (7)0.92089 (14)0.87142 (7)0.0386 (3)
N50.35504 (8)0.9289 (2)0.90686 (9)0.0648 (4)
C10.35034 (8)0.81583 (17)0.65500 (8)0.0376 (3)
C20.27051 (8)0.81862 (18)0.63952 (9)0.0417 (3)
C30.22267 (9)0.73661 (18)0.69218 (10)0.0473 (4)
C40.25489 (9)0.65180 (19)0.75451 (9)0.0437 (3)
C50.33587 (7)0.64967 (16)0.76406 (7)0.0338 (3)
C60.37688 (7)0.55243 (15)0.82431 (7)0.0331 (3)
C70.33975 (9)0.44448 (18)0.87336 (9)0.0443 (3)
C80.38418 (9)0.34791 (18)0.92141 (9)0.0468 (4)
C90.46490 (9)0.35865 (16)0.92140 (8)0.0394 (3)
C100.49719 (8)0.47402 (16)0.87300 (8)0.0369 (3)
C110.51626 (11)0.24943 (17)0.96857 (11)0.0527 (4)
C120.23851 (11)0.9052 (2)0.56797 (11)0.0560 (4)
H10.3877 (9)0.8771 (18)0.6223 (9)0.045 (4)*
H30.1649 (12)0.7387 (19)0.6823 (11)0.064 (5)*
H40.2211 (9)0.5925 (19)0.7907 (9)0.050 (4)*
H70.2847 (10)0.434 (2)0.8706 (10)0.055 (5)*
H80.3590 (10)0.2688 (19)0.9545 (11)0.057 (5)*
H100.5560 (9)0.4903 (17)0.8720 (8)0.041 (4)*
H11A0.49750.24311.02260.079*0.50
H11B0.56890.28810.96850.079*0.50
H11C0.51500.14740.94460.079*0.50
H11D0.48870.17050.99860.079*0.50
H11E0.54590.30901.01250.079*0.50
H11F0.55660.19830.93730.079*0.50
H12A0.2140 (13)0.826 (3)0.5282 (14)0.093 (7)*
H12B0.1962 (13)0.974 (3)0.5817 (13)0.087 (7)*
H12C0.2796 (13)0.967 (3)0.5389 (13)0.086 (6)*
H1O0.514 (3)0.125 (6)0.712 (3)0.106 (16)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02194 (13)0.02914 (14)0.02690 (14)0.0000.00172 (8)0.000
O10.135 (4)0.0515 (13)0.074 (2)0.0214 (17)0.026 (2)0.0093 (15)
N10.0284 (5)0.0368 (6)0.0340 (6)0.0012 (4)0.0010 (4)0.0002 (4)
N20.0306 (6)0.0345 (6)0.0320 (5)0.0013 (4)0.0014 (4)0.0006 (4)
N30.0409 (6)0.0431 (7)0.0414 (6)0.0021 (5)0.0078 (5)0.0071 (5)
N40.0370 (6)0.0434 (6)0.0354 (6)0.0076 (5)0.0039 (5)0.0028 (5)
N50.0394 (7)0.0930 (12)0.0621 (9)0.0146 (7)0.0087 (7)0.0108 (8)
C10.0353 (7)0.0410 (7)0.0364 (7)0.0038 (6)0.0008 (6)0.0008 (6)
C20.0362 (7)0.0451 (8)0.0440 (8)0.0079 (6)0.0047 (6)0.0027 (6)
C30.0291 (7)0.0580 (10)0.0548 (9)0.0023 (6)0.0041 (6)0.0017 (7)
C40.0307 (7)0.0520 (8)0.0483 (8)0.0034 (6)0.0019 (6)0.0018 (7)
C50.0302 (6)0.0368 (7)0.0345 (6)0.0006 (5)0.0017 (5)0.0041 (5)
C60.0297 (6)0.0373 (7)0.0323 (6)0.0021 (5)0.0027 (5)0.0033 (5)
C70.0352 (7)0.0524 (9)0.0453 (8)0.0074 (6)0.0037 (6)0.0057 (7)
C80.0505 (9)0.0481 (9)0.0418 (8)0.0096 (7)0.0055 (6)0.0096 (7)
C90.0478 (8)0.0387 (7)0.0316 (7)0.0000 (6)0.0007 (6)0.0006 (6)
C100.0353 (7)0.0390 (7)0.0365 (7)0.0003 (6)0.0009 (5)0.0017 (6)
C110.0652 (11)0.0488 (9)0.0441 (9)0.0043 (7)0.0062 (8)0.0107 (7)
C120.0451 (9)0.0679 (12)0.0551 (10)0.0106 (8)0.0099 (8)0.0100 (9)
Geometric parameters (Å, º) top
O1—O1i1.108 (8)C5—C41.3943 (19)
O1—H1O1.10 (5)C2—C31.391 (2)
Co1—N1i2.0907 (11)C2—C121.509 (2)
Co1—N12.0907 (11)C8—C91.383 (2)
Co1—N2i2.0929 (10)C8—H80.974 (18)
Co1—N22.0929 (10)C10—C91.3903 (19)
Co1—N32.1095 (11)C10—H101.016 (16)
Co1—N3i2.1095 (12)C9—C111.505 (2)
N2—C101.3379 (17)C4—C31.384 (2)
N2—C61.3515 (16)C4—H40.978 (16)
N1—C11.3454 (17)C11—H11A0.9600
N1—C51.3505 (17)C11—H11B0.9600
N4—N51.1604 (17)C11—H11C0.9600
N4—N31.1909 (16)C11—H11D0.9650
C1—C21.3898 (19)C11—H11E1.0271
C1—H10.990 (15)C11—H11F0.9703
C6—C71.3884 (19)C12—H12B0.96 (2)
C6—C51.4822 (18)C12—H12C1.01 (2)
C7—C81.380 (2)C12—H12A1.04 (2)
C7—H70.946 (17)C3—H31.00 (2)
O1i—O1—H1O58 (3)C9—C8—H8119.1 (10)
N1i—Co1—N1175.95 (6)N2—C10—C9124.16 (13)
N1i—Co1—N2i78.13 (4)N2—C10—H10115.8 (8)
N1—Co1—N2i98.96 (4)C9—C10—H10120.0 (8)
N1i—Co1—N298.96 (4)C8—C9—C10116.33 (13)
N1—Co1—N278.13 (4)C8—C9—C11122.76 (14)
N2i—Co1—N289.76 (6)C10—C9—C11120.88 (14)
N1i—Co1—N392.09 (5)C3—C4—C5119.25 (14)
N1—Co1—N390.72 (5)C3—C4—H4120.1 (9)
N2i—Co1—N3170.08 (4)C5—C4—H4120.6 (9)
N2—Co1—N390.12 (4)C9—C11—H11A109.5
N1i—Co1—N3i90.72 (5)C9—C11—H11B109.5
N1—Co1—N3i92.09 (5)H11A—C11—H11B109.5
N2i—Co1—N3i90.12 (4)C9—C11—H11C109.5
N2—Co1—N3i170.08 (4)H11A—C11—H11C109.5
N3—Co1—N3i91.70 (7)H11B—C11—H11C109.5
C10—N2—C6118.56 (11)C9—C11—H11D114.9
C10—N2—Co1126.30 (9)H11A—C11—H11D46.2
C6—N2—Co1115.13 (8)H11B—C11—H11D134.5
C1—N1—C5119.08 (11)H11C—C11—H11D64.5
C1—N1—Co1125.75 (9)C9—C11—H11E110.7
C5—N1—Co1114.76 (9)H11A—C11—H11E61.3
N5—N4—N3178.48 (15)H11B—C11—H11E50.7
N1—C1—C2123.49 (13)H11C—C11—H11E139.4
N1—C1—H1115.0 (9)H11D—C11—H11E102.5
C2—C1—H1121.5 (9)C9—C11—H11F114.4
N2—C6—C7120.89 (12)H11A—C11—H11F136.0
N2—C6—C5115.11 (11)H11B—C11—H11F59.1
C7—C6—C5123.89 (12)H11C—C11—H11F51.8
C8—C7—C6119.32 (13)H11D—C11—H11F108.3
C8—C7—H7121.3 (10)H11E—C11—H11F104.9
C6—C7—H7119.2 (10)C2—C12—H12B112.6 (13)
N4—N3—Co1123.67 (10)C2—C12—H12C112.9 (13)
N1—C5—C4120.84 (12)H12B—C12—H12C108.6 (18)
N1—C5—C6115.39 (11)C2—C12—H12A109.6 (13)
C4—C5—C6123.71 (12)H12B—C12—H12A104.3 (18)
C1—C2—C3116.83 (13)H12C—C12—H12A108.5 (17)
C1—C2—C12120.81 (14)C4—C3—C2120.40 (14)
C3—C2—C12122.36 (14)C4—C3—H3121.7 (10)
C7—C8—C9120.64 (13)C2—C3—H3117.8 (10)
C7—C8—H8120.2 (11)
N1i—Co1—N2—C107.07 (11)N1—Co1—N3—N432.12 (12)
N1—Co1—N2—C10170.07 (11)N2—Co1—N3—N446.01 (12)
N2i—Co1—N2—C1070.87 (10)N3i—Co1—N3—N4124.24 (13)
N3—Co1—N2—C1099.21 (11)C1—N1—C5—C42.10 (19)
N1i—Co1—N2—C6174.06 (9)Co1—N1—C5—C4170.99 (11)
N1—Co1—N2—C68.79 (9)C1—N1—C5—C6175.16 (11)
N2i—Co1—N2—C6108.00 (9)Co1—N1—C5—C611.75 (14)
N3—Co1—N2—C681.92 (9)N2—C6—C5—N14.27 (16)
N2i—Co1—N1—C188.45 (11)C7—C6—C5—N1172.02 (13)
N2—Co1—N1—C1176.30 (11)N2—C6—C5—C4178.57 (13)
N3—Co1—N1—C193.73 (11)C7—C6—C5—C45.1 (2)
N3i—Co1—N1—C12.00 (11)N1—C1—C2—C33.0 (2)
N2i—Co1—N1—C598.99 (9)N1—C1—C2—C12176.10 (14)
N2—Co1—N1—C511.14 (9)C6—C7—C8—C90.4 (2)
N3—Co1—N1—C578.82 (9)C6—N2—C10—C90.1 (2)
N3i—Co1—N1—C5170.56 (9)Co1—N2—C10—C9178.91 (10)
C5—N1—C1—C20.7 (2)C7—C8—C9—C102.1 (2)
Co1—N1—C1—C2172.92 (10)C7—C8—C9—C11175.95 (15)
C10—N2—C6—C72.80 (19)N2—C10—C9—C82.3 (2)
Co1—N2—C6—C7178.24 (10)N2—C10—C9—C11175.74 (13)
C10—N2—C6—C5173.61 (11)N1—C5—C4—C32.4 (2)
Co1—N2—C6—C55.35 (14)C6—C5—C4—C3174.66 (13)
N2—C6—C7—C83.0 (2)C5—C4—C3—C20.1 (2)
C5—C6—C7—C8173.09 (13)C1—C2—C3—C42.7 (2)
N1i—Co1—N3—N4144.98 (12)C12—C2—C3—C4176.44 (16)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N3ii1.05 (5)1.99 (5)2.926 (3)141 (4)
C3—H3···O1iii1.00 (2)2.51 (2)3.392 (4)147.1 (14)
C1—H1···N3i0.991 (15)2.485 (15)3.1241 (18)121.9 (11)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y1, z+3/2; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Co(C12H12N2)2(N3)2]·H2O
Mr529.46
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)17.1030 (3), 8.5544 (2), 16.7062 (5)
V3)2444.22 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.30 × 0.25 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.801, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
13768, 2606, 2176
Rint0.022
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.067, 1.03
No. of reflections2606
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.25

Computer programs: , COLLECT (Nonius, 2002) and DENZO/SCALEPACK (Otwinowski & Minor, 1997), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—N12.0907 (11)Co1—N32.1095 (11)
Co1—N22.0929 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N3i1.05 (5)1.99 (5)2.926 (3)141 (4)
C3—H3···O1ii1.00 (2)2.51 (2)3.392 (4)147.1 (14)
C1—H1···N3iii0.991 (15)2.485 (15)3.1241 (18)121.9 (11)
Symmetry codes: (i) x+1, y1, z+3/2; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z+3/2.
 

Acknowledgements

The authors would like to thank Vongchavalitkul University for financial support [grant 2/52 (7)] and also gratefully acknowledge Rajamangala University of Technology Isan for support.

References

First citationAlbada, G. A. van, Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 3733–3742.  Google Scholar
First citationAlbada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Acta Cryst. E61, m1411–m1412.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCatalan, K. J., Jackson, S., Zubkowski, J. D., Perry, D. L., Valente, E. J., Feliu, L. A. & Polanco, A. (1995). Polyhedron, 14, 2165–2171.  CSD CrossRef CAS Web of Science Google Scholar
First citationCheng, Y. Q. & Hu, M. L. (2003). Z. Kristallogr. New Cryst. Struct. 218, 95–96.  CAS Google Scholar
First citationKooijman, H., Spek, A. L., Albada, G. A. van & Reedijk, J. (2002). Acta Cryst. C58, m124–m126.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPhatchimkun, J., Kongsaeree, P., Suchaichit, N. & Chaichit, N. (2009). Acta Cryst. E65, m1020–m1021.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRibas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 1027, 193–195.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m516-m517
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds