organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(1-Methyl-1H-pyrrol-2-yl)-1-phenyl­prop-2-en-1-one

aAnalytical Center, Changzhou University, Changzhou 213164, People's Republic of China, bSchool of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, People's Republic of China, and cKey Laboratory of Fine Petrochemical Technology, Changzhou University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: shaoying810724@163.com

(Received 18 January 2011; accepted 10 March 2011; online 15 March 2011)

The crystal structure of the title compound, C14H13NO, exhibits an E configuration. The conjugated compound is slightly twisted with a dihedral angle of 29.3° between the benzene and pyrrole rings. Two inter­molecular C—H⋯O inter­actions lead to a dimer. In the crystal, intermolecular C—H⋯O interactions generate an inversion dimer.

Related literature

For related literature on chalcone and its derivatives, see: Kelly et al. (2004[Kelly, D. R., Caroff, E., Flood, R. W., Heal, W. & Roberts, S. M. (2004). Chem. Commun. pp. 2016-2017.]); Takahashi et al. (2005[Takahashi, Y., Yamamoto, Y., Katagiri, K., Danjo, H., Yamaguchi, K. & Imamoto, T. (2005). J. Org. Chem. 70, 9009-9012.]). For the anti­cancer properties of chalcone derivatives, see: Zi & Simoneau (2005[Zi, X. & Simoneau, A. R. (2005). Cancer Res. 65, 3479-3486.]); Bennasroune et al. (2004[Bennasroune, A., Gardin, A., Aunis, D., Cremel, G. & Hubert, P. (2004). Crit. Rev. Oncol. Hematol. 50, 23-38.]); Moriarty et al. (2006[Moriarty, K. J., Koblish, H. K., Garrabrant, T., Maisuria, J., Khalil, E., Ali, F., Petrounia, I. P., Crysler, C. S., Maroney, A. C., Johnson, D. L. & Galemmo, R. A. (2006). Bioorg. Med. Chem. Lett. 16, 5778-5783.]). For a related structure, see Jing (2009[Jing, L.-H. (2009). Acta Cryst. E65, o2515.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO

  • Mr = 211.25

  • Monoclinic, P 21 /c

  • a = 13.209 (2) Å

  • b = 4.8849 (9) Å

  • c = 18.036 (3) Å

  • β = 102.394 (4)°

  • V = 1136.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.985

  • 5920 measured reflections

  • 1996 independent reflections

  • 1459 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.153

  • S = 1.00

  • 1996 reflections

  • 146 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯O1i 0.96 2.49 3.434 (2) 169
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcone and its derivatives have been of interest because they can serve as precursors for the biosynthesis of flavonoids and substrates for the evaluation of many organic reactions (Kelly et al., 2004; Takahashi et al., 2005). The most important naturally occurring chalcone has shown potential as a drug candidate, flavokawain A from kava extracts which has strong anti-proliferative and apoptotic effects against human bladder cancer cells (Zi et al., 2005). Pyrrole-based derivatives were also reported as potent anticancer agents (Bennasroune et al., 2004; Moriarty et al., 2006). We now report the structure of a chalcone derivative with an N-methyl pyrrole group.

The title compound exists as the most stable (E)-configuration (Fig.1). The pyrrole ring is connected to the phenyl group through the C5—C6=C7—C8—C9 chain with the C=C bond length being 1.332 (3) Å. The dihedral angle between the benzene ring and pyrrole ring is 29.3°, larger than that of (E)-3-(4-Fluorophenyl)-1-phenyl-2- propen-1-one (Jing, 2009) which demonstrate that the pyrrole unit influences the twist between the two rings.

There is a intramolecular C6—H6···O1 interaction between the carbonyl and olefinic H atom (Table 1). In its packing structure, hydrogen-bonded dimers are formed via intermolecular C1—H1C···O1 interactionss (Fig.2).

Related literature top

For related literature on chalcone and its derivatives, see: Kelly et al. (2004); Takahashi et al. (2005). For the anticancer properties of chalcone derivatives, see: Zi et al. (2005); Bennasroune et al. (2004); Moriarty et al. (2006). For a related structure, see Jing et al. (2009).

Experimental top

A solution of 1-methylpyrrole-2-carboxaldehyde (0.20 g, 1.8 mmol) in ethanol (15 ml) was added slowly to a mixture of acetophenone (0.22 g, 1.8 mmol) and KOH (0.10 g, 1.8 mmol) in methanol (30 ml) over 30 minutes at room temperature. The mixture was stirred for 16 h, and the yellow solid (0.31 g, 88.6%) was collected by filtration. Single crystals suitable for X-ray diffraction were obtained after recrystallization from ethanol.

Refinement top

Methyl H atoms were placed in calculated positions, with C—H = 0.96 Å, and refined using a riding model, with Uiso(H) = 1.5Ueq(C). Benzene and ethylene H atoms were also assigned to calculated positions with C—H = 0.93 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART [APEX2?] (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of title compound showing the hydrogen-bonding dimer.
(E)-3-(1-Methyl-1H-pyrrol-2-yl)-1-phenylprop-2-en-1-one top
Crystal data top
C14H13NOF(000) = 448
Mr = 211.25Dx = 1.235 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1712 reflections
a = 13.209 (2) Åθ = 2.3–27.0°
b = 4.8849 (9) ŵ = 0.08 mm1
c = 18.036 (3) ÅT = 296 K
β = 102.394 (4)°Prism, yellow
V = 1136.6 (4) Å30.25 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1996 independent reflections
Radiation source: fine-focus sealed tube1459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1415
Tmin = 0.981, Tmax = 0.985k = 55
5920 measured reflectionsl = 2117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.038P]
where P = (Fo2 + 2Fc2)/3
1996 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.12 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C14H13NOV = 1136.6 (4) Å3
Mr = 211.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.209 (2) ŵ = 0.08 mm1
b = 4.8849 (9) ÅT = 296 K
c = 18.036 (3) Å0.25 × 0.22 × 0.20 mm
β = 102.394 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
1996 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1459 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.036
5920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.153H-atom parameters constrained
S = 1.00Δρmax = 0.12 e Å3
1996 reflectionsΔρmin = 0.19 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.49092 (14)0.6200 (4)0.10561 (11)0.0666 (5)
H1A0.53210.76280.13380.100*
H1B0.45860.68670.05610.100*
H1C0.53450.46680.10060.100*
C20.39810 (16)0.6409 (4)0.21180 (10)0.0628 (5)
H20.43670.78350.23800.075*
C30.31956 (16)0.5074 (4)0.23440 (11)0.0671 (5)
H30.29540.54090.27830.080*
C40.28227 (14)0.3116 (4)0.17956 (10)0.0599 (5)
H40.22860.18920.18040.072*
C50.33895 (13)0.3300 (3)0.12319 (9)0.0497 (4)
C60.33082 (14)0.1826 (3)0.05417 (9)0.0528 (5)
H60.38060.22000.02610.063*
C70.25918 (14)0.0039 (4)0.02554 (10)0.0555 (5)
H70.20720.04420.05140.067*
C80.26049 (14)0.1460 (3)0.04539 (9)0.0533 (5)
C90.16992 (13)0.3136 (3)0.08205 (9)0.0522 (5)
C100.07359 (15)0.2885 (4)0.06423 (11)0.0693 (6)
H100.06450.16750.02640.083*
C110.00986 (17)0.4435 (5)0.10267 (13)0.0820 (6)
H110.07480.42330.09110.098*
C120.00353 (19)0.6241 (5)0.15709 (13)0.0828 (7)
H120.05200.72950.18200.099*
C130.0988 (2)0.6518 (4)0.17544 (13)0.0791 (6)
H130.10740.77520.21280.095*
C140.18079 (16)0.4978 (4)0.13874 (10)0.0636 (5)
H140.24480.51640.15180.076*
N10.41137 (10)0.5347 (3)0.14553 (7)0.0526 (4)
O10.33614 (10)0.1304 (3)0.07478 (7)0.0721 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0590 (11)0.0738 (12)0.0670 (12)0.0017 (10)0.0131 (9)0.0013 (10)
C20.0711 (12)0.0597 (11)0.0545 (10)0.0080 (9)0.0067 (9)0.0111 (9)
C30.0788 (13)0.0739 (12)0.0514 (11)0.0111 (10)0.0204 (9)0.0058 (9)
C40.0664 (11)0.0655 (11)0.0496 (10)0.0013 (9)0.0164 (8)0.0008 (8)
C50.0557 (10)0.0477 (9)0.0449 (9)0.0075 (8)0.0091 (7)0.0017 (7)
C60.0621 (10)0.0502 (9)0.0477 (9)0.0061 (8)0.0152 (8)0.0039 (7)
C70.0610 (11)0.0597 (10)0.0471 (9)0.0040 (8)0.0149 (8)0.0000 (8)
C80.0607 (10)0.0529 (10)0.0468 (9)0.0049 (8)0.0126 (8)0.0016 (7)
C90.0605 (11)0.0487 (9)0.0460 (9)0.0056 (8)0.0082 (7)0.0069 (7)
C100.0669 (12)0.0757 (12)0.0644 (12)0.0061 (10)0.0120 (9)0.0022 (10)
C110.0627 (13)0.0969 (15)0.0819 (15)0.0026 (12)0.0056 (11)0.0084 (13)
C120.0885 (16)0.0747 (14)0.0731 (14)0.0180 (12)0.0095 (12)0.0096 (11)
C130.0952 (16)0.0692 (13)0.0691 (13)0.0103 (12)0.0090 (12)0.0103 (10)
C140.0760 (13)0.0622 (11)0.0505 (10)0.0003 (9)0.0085 (9)0.0053 (8)
N10.0548 (9)0.0533 (8)0.0483 (8)0.0064 (7)0.0081 (6)0.0003 (6)
O10.0733 (9)0.0885 (10)0.0591 (8)0.0093 (7)0.0244 (7)0.0155 (7)
Geometric parameters (Å, º) top
C1—N11.456 (2)C7—C81.459 (2)
C1—H1A0.9600C7—H70.9300
C1—H1B0.9600C8—O11.2298 (19)
C1—H1C0.9600C8—C91.483 (2)
C2—N11.349 (2)C9—C101.383 (2)
C2—C31.360 (3)C9—C141.392 (2)
C2—H20.9300C10—C111.393 (3)
C3—C41.388 (3)C10—H100.9300
C3—H30.9300C11—C121.359 (3)
C4—C51.389 (2)C11—H110.9300
C4—H40.9300C12—C131.375 (3)
C5—N11.383 (2)C12—H120.9300
C5—C61.422 (2)C13—C141.367 (3)
C6—C71.335 (2)C13—H130.9300
C6—H60.9300C14—H140.9300
N1—C1—H1A109.5O1—C8—C7120.81 (16)
N1—C1—H1B109.5O1—C8—C9119.64 (15)
H1A—C1—H1B109.5C7—C8—C9119.56 (16)
N1—C1—H1C109.5C10—C9—C14118.22 (17)
H1A—C1—H1C109.5C10—C9—C8122.82 (16)
H1B—C1—H1C109.5C14—C9—C8118.92 (16)
N1—C2—C3109.48 (17)C9—C10—C11120.35 (19)
N1—C2—H2125.3C9—C10—H10119.8
C3—C2—H2125.3C11—C10—H10119.8
C2—C3—C4107.09 (17)C12—C11—C10120.0 (2)
C2—C3—H3126.5C12—C11—H11120.0
C4—C3—H3126.5C10—C11—H11120.0
C3—C4—C5108.21 (16)C11—C12—C13120.4 (2)
C3—C4—H4125.9C11—C12—H12119.8
C5—C4—H4125.9C13—C12—H12119.8
N1—C5—C4106.34 (14)C14—C13—C12120.0 (2)
N1—C5—C6122.59 (15)C14—C13—H13120.0
C4—C5—C6131.06 (16)C12—C13—H13120.0
C7—C6—C5126.73 (17)C13—C14—C9121.0 (2)
C7—C6—H6116.6C13—C14—H14119.5
C5—C6—H6116.6C9—C14—H14119.5
C6—C7—C8121.53 (17)C2—N1—C5108.86 (15)
C6—C7—H7119.2C2—N1—C1124.94 (16)
C8—C7—H7119.2C5—N1—C1126.19 (14)
N1—C2—C3—C40.4 (2)C8—C9—C10—C11177.39 (17)
C2—C3—C4—C50.4 (2)C9—C10—C11—C121.2 (3)
C3—C4—C5—N11.03 (18)C10—C11—C12—C131.1 (3)
C3—C4—C5—C6178.39 (17)C11—C12—C13—C140.2 (3)
N1—C5—C6—C7175.01 (15)C12—C13—C14—C90.6 (3)
C4—C5—C6—C74.3 (3)C10—C9—C14—C130.6 (3)
C5—C6—C7—C8178.64 (15)C8—C9—C14—C13178.38 (16)
C6—C7—C8—O111.5 (3)C3—C2—N1—C51.1 (2)
C6—C7—C8—C9169.16 (15)C3—C2—N1—C1177.72 (16)
O1—C8—C9—C10163.32 (17)C4—C5—N1—C21.29 (18)
C7—C8—C9—C1017.3 (2)C6—C5—N1—C2178.19 (15)
O1—C8—C9—C1414.4 (2)C4—C5—N1—C1177.48 (15)
C7—C8—C9—C14164.97 (15)C6—C5—N1—C13.0 (2)
C14—C9—C10—C110.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···O1i0.962.493.434 (2)169
C6—H6···O10.932.482.797 (2)100
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H13NO
Mr211.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.209 (2), 4.8849 (9), 18.036 (3)
β (°) 102.394 (4)
V3)1136.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5920, 1996, 1459
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.153, 1.00
No. of reflections1996
No. of parameters146
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.19

Computer programs: SMART [APEX2?] (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···O1i0.96002.49003.434 (2)169.00
C6—H6···O10.93002.48002.797 (2)100.00
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge Changzhou University for financial support (grant Nos. ZMF 1002100 and ZMF 10020010).

References

First citationBennasroune, A., Gardin, A., Aunis, D., Cremel, G. & Hubert, P. (2004). Crit. Rev. Oncol. Hematol. 50, 23–38.  Web of Science CrossRef PubMed Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJing, L.-H. (2009). Acta Cryst. E65, o2515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKelly, D. R., Caroff, E., Flood, R. W., Heal, W. & Roberts, S. M. (2004). Chem. Commun. pp. 2016–2017.  CrossRef Google Scholar
First citationMoriarty, K. J., Koblish, H. K., Garrabrant, T., Maisuria, J., Khalil, E., Ali, F., Petrounia, I. P., Crysler, C. S., Maroney, A. C., Johnson, D. L. & Galemmo, R. A. (2006). Bioorg. Med. Chem. Lett. 16, 5778–5783.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, Y., Yamamoto, Y., Katagiri, K., Danjo, H., Yamaguchi, K. & Imamoto, T. (2005). J. Org. Chem. 70, 9009–9012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZi, X. & Simoneau, A. R. (2005). Cancer Res. 65, 3479–3486.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds