organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Di­hydro-9H-carbazole-4(3H)-thione

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 24 January 2011; accepted 21 February 2011; online 2 March 2011)

The crystal structure of the title compound, C12H11NS, features parallel chains of alternating N—H⋯S hydrogen-bonded mirror-image conformers along [10[\overline{1}]]. The mol­ecular conformation is that of an envelope, with all of the framework atoms except one close to a mean plane (rms deviation 0.054 Å); one C atom of the cyclo­hexene­thione ring forms the envelope flap, which makes a dihedral angle of 48.6 (1)° with the rest of the mol­ecule. There is a ππ* inter­action between pairs of enanti­omers in adjacent chains; the distance between parallel planes is 3.466 (1) Å.

Related literature

For related structures, see: Hökelek et al. (1998[Hökelek, T., Gündüz, H., Patir, S. & Uludaug, N. (1998). Acta Cryst. C54, 1297-1299.]); Ianelli et al. (1994[Ianelli, S., Nardelli, M., Belletti, D., Caubère, C., Caubère, P. & Jamart-Grégoire, B. (1994). Acta Cryst. C50, 1919-1922.]); Çaylak et al. (2007[Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913-o3914.]); Rodriguez et al. (1989[Rodriguez, J. G., Temprano, F., Esteban-Calderon, C. & Martinez-Ripoll, M. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 2117-2122.]). Hückel calculations were performed using Chem3DPro (Cambridgesoft, 2009[Cambridgesoft (2009). Chem3DPro. Cambridgesoft Corporation, Cambridge, MA, USA.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11NS

  • Mr = 201.28

  • Monoclinic, P 21 /n

  • a = 8.6353 (14) Å

  • b = 12.1395 (15) Å

  • c = 9.5808 (14) Å

  • β = 104.599 (10)°

  • V = 971.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 90 K

  • 0.38 × 0.33 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.900, Tmax = 0.958

  • 6145 measured reflections

  • 3305 independent reflections

  • 2915 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.04

  • 3305 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯S1i 0.88 2.45 3.3187 (9) 172
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (1, Fig.1) is the sulfur analog of substituted carbazole 1,2,3-trihydrocarbazol-4(9H)-one (2) (Rodriguez et al., 1989). Both 1 and 2 show the same molecular conformation (envelope, with flap angles 48.6 (1)° for 1 and 48.2 (1)° for 2) and similar H-bonded chains (Table 1) of alternating enantiomers (N···S = 3.319 (1) Å, N—H···S = 172.0 (1)°, and N···SC = 98.0 (1)° for 1, N···O = 2.829 (1) Å, N—H···O = 162.3 (1)° and H···OC = 117.5 (1)° for 2).

In 1, all H-bonded chains are parallel, extending along the [101] crystallographic direction, and adjacent chains 5.583 (1) Å apart are arranged in corrugated sheets parallel to the (010) crystallographic plane (Fig. 22)). The mean planes of adjacent sheets are 5.099 (1) Å apart, but enantiomers in adjacent sheets have parallel π-nodal planes and are only 3.466 (1) Å apart, indicative of a π-π* interaction. Extended Hückel calculations (Chem3DPro, Cambridgesoft, 2009) suggest that the π-HOMO and π*-LUMO orbitals in 1 are larger and closer in energy than those in 2. This may explain why molecules of 2 show no π-type interaction and are thus packed in a different pattern: H-bonded chains 5.359 (1) Å apart extend along the [011] and [011] directions in alternating sheets, so adjacent sheets are rotated by 76.5 (1)°. The distance between adjacent sheets is 4.979 (1) Å and the only interactions between them are C—H···C van der Waals and C—H···O contacts.

Related literature top

For related structures, see: Hökelek et al. (1998); Ianelli et al. (1994); Çaylak et al. (2007); Rodriguez et al. (1989). Hückel calculations were performed using Chem3DPro (Cambridgesoft, 2009).

Experimental top

A solution of 1,2-dihydrocarbazol-4(3H)-one (5.4 mmol) in anhydrous 1,2-dimethoxyethane (30 ml) was stirred at room temperature for 15 min. Upon dissolution, the solution was chilled in an ice-water bath. Lawesson reagent, 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide, (2.9 mmol) was added to the vigorously stirred cold solution. The resulting mixture was stirred for 5 min and then allowed to warm to room temperature. After stirring for an additional 10 min, the white suspension dissolved, and the reaction mixture turned deep orange. The reaction mixture was poured into 150 ml of chilled water and the orange suspension was extracted with CHCl3 (3 x 80 ml). Evaporation under reduced pressure left a deep orange residue, which was purified on a silica column (100 g). The orange band was eluted with ethyl acetate. Evaporation of the solvent in vacuo gave the title compound as a yellow powder (92%). Recrystallization from dichloromethane yielded yellow needles, m.p. 173–175°C.

Refinement top

All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95–0.99 Å, N—H 0.88 Å, Uiso=1.2Ueq, and thereafter refined as riding.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of 1 (50% probability displacement ellipsoids).
[Figure 2] Fig. 2. The unit cell, illustrating hydrogen bonds.
1,2-Dihydro-9H-carbazole-4(3H)-thione top
Crystal data top
C12H11NSF(000) = 424
Mr = 201.28Dx = 1.376 Mg m3
Monoclinic, P21/nMelting point: 447(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.6353 (14) ÅCell parameters from 3145 reflections
b = 12.1395 (15) Åθ = 2.8–31.8°
c = 9.5808 (14) ŵ = 0.29 mm1
β = 104.599 (10)°T = 90 K
V = 971.9 (2) Å3Prism, yellow
Z = 40.38 × 0.33 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
2915 reflections with I > 2σ(I)
ω and ϕ scansRint = 0.018
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
θmax = 31.8°, θmin = 2.8°
Tmin = 0.900, Tmax = 0.958h = 1212
6145 measured reflectionsk = 1715
3305 independent reflectionsl = 1414
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0381P)2 + 0.4607P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max = 0.001
wR(F2) = 0.087Δρmax = 0.42 e Å3
S = 1.04Δρmin = 0.30 e Å3
3305 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
128 parametersExtinction coefficient: 0.007 (2)
0 restraints
Crystal data top
C12H11NSV = 971.9 (2) Å3
Mr = 201.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6353 (14) ŵ = 0.29 mm1
b = 12.1395 (15) ÅT = 90 K
c = 9.5808 (14) Å0.38 × 0.33 × 0.15 mm
β = 104.599 (10)°
Data collection top
Nonius KappaCCD
diffractometer
3305 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2915 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.958Rint = 0.018
6145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
3305 reflectionsΔρmin = 0.30 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73572 (3)0.09251 (2)0.17793 (3)0.01632 (8)
N90.40190 (10)0.23264 (7)0.49231 (9)0.01459 (16)
H90.35960.27390.54860.018*
C10.64126 (13)0.35282 (8)0.50486 (11)0.01640 (19)
H1A0.64420.36930.60670.02*
H1B0.59750.41780.44560.02*
C20.81014 (12)0.32729 (9)0.49014 (11)0.01613 (19)
H2A0.86120.27240.56390.019*
H2B0.87560.39530.50720.019*
C30.80512 (12)0.28219 (8)0.33970 (11)0.01504 (18)
H3A0.7660.34090.26770.018*
H3B0.91530.26310.33550.018*
C40.69952 (12)0.18152 (8)0.29869 (10)0.01239 (17)
C50.40380 (12)0.00895 (8)0.27655 (10)0.01451 (18)
H50.47240.03980.22340.017*
C60.26491 (13)0.06343 (9)0.28577 (11)0.0179 (2)
H60.23940.13250.23890.021*
C70.16174 (13)0.01841 (9)0.36297 (12)0.0196 (2)
H70.06650.05670.36550.024*
C80.19647 (13)0.08102 (9)0.43570 (11)0.0181 (2)
H80.12730.11160.48850.022*
C100.53890 (12)0.25494 (8)0.45510 (10)0.01313 (17)
C110.56930 (11)0.17216 (8)0.36283 (10)0.01191 (17)
C120.44039 (11)0.09230 (8)0.34726 (10)0.01234 (17)
C130.33703 (12)0.13394 (8)0.42784 (10)0.01382 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01819 (13)0.01449 (12)0.01981 (13)0.00184 (8)0.01132 (9)0.00327 (8)
N90.0156 (4)0.0158 (4)0.0144 (4)0.0018 (3)0.0077 (3)0.0002 (3)
C10.0194 (5)0.0149 (4)0.0159 (4)0.0014 (4)0.0063 (4)0.0029 (3)
C20.0162 (4)0.0168 (4)0.0150 (4)0.0032 (4)0.0031 (3)0.0016 (3)
C30.0149 (4)0.0145 (4)0.0167 (4)0.0031 (3)0.0059 (3)0.0012 (3)
C40.0128 (4)0.0125 (4)0.0123 (4)0.0008 (3)0.0041 (3)0.0011 (3)
C50.0149 (4)0.0145 (4)0.0141 (4)0.0005 (3)0.0035 (3)0.0017 (3)
C60.0182 (5)0.0169 (5)0.0175 (4)0.0039 (4)0.0027 (4)0.0026 (4)
C70.0156 (5)0.0230 (5)0.0204 (5)0.0045 (4)0.0049 (4)0.0056 (4)
C80.0140 (4)0.0235 (5)0.0182 (4)0.0001 (4)0.0068 (4)0.0046 (4)
C100.0140 (4)0.0142 (4)0.0115 (4)0.0012 (3)0.0039 (3)0.0012 (3)
C110.0120 (4)0.0126 (4)0.0115 (4)0.0001 (3)0.0037 (3)0.0005 (3)
C120.0117 (4)0.0142 (4)0.0115 (4)0.0006 (3)0.0035 (3)0.0026 (3)
C130.0136 (4)0.0160 (4)0.0126 (4)0.0011 (3)0.0046 (3)0.0026 (3)
Geometric parameters (Å, º) top
C1—C101.4860 (14)C5—H50.95
C1—C21.5318 (14)C6—C71.4042 (16)
C1—H1A0.99C6—H60.95
C1—H1B0.99C7—C81.3882 (16)
C2—C31.5322 (14)C7—H70.95
C2—H2A0.99C8—C131.3920 (14)
C2—H2B0.99C8—H80.95
C3—C41.5162 (14)C10—N91.3463 (12)
C3—H3A0.99C10—C111.4061 (13)
C3—H3B0.99C11—C121.4553 (13)
C4—C111.4154 (13)C12—C131.4127 (13)
C4—S11.6692 (10)C13—N91.3988 (13)
C5—C61.3917 (14)N9—H90.88
C5—C121.4006 (13)
C10—C1—C2108.17 (8)C5—C6—C7121.32 (10)
C10—C1—H1A110.1C5—C6—H6119.3
C2—C1—H1A110.1C7—C6—H6119.3
C10—C1—H1B110.1C8—C7—C6121.15 (10)
C2—C1—H1B110.1C8—C7—H7119.4
H1A—C1—H1B108.4C6—C7—H7119.4
C1—C2—C3110.92 (8)C7—C8—C13117.08 (10)
C1—C2—H2A109.5C7—C8—H8121.5
C3—C2—H2A109.5C13—C8—H8121.5
C1—C2—H2B109.5N9—C10—C11109.79 (9)
C3—C2—H2B109.5N9—C10—C1124.55 (9)
H2A—C2—H2B108C11—C10—C1125.66 (9)
C4—C3—C2113.85 (8)C10—C11—C4120.68 (9)
C4—C3—H3A108.8C10—C11—C12106.34 (8)
C2—C3—H3A108.8C4—C11—C12132.83 (9)
C4—C3—H3B108.8C5—C12—C13118.80 (9)
C2—C3—H3B108.8C5—C12—C11135.05 (9)
H3A—C3—H3B107.7C13—C12—C11106.14 (8)
C11—C4—C3116.35 (8)C8—C13—N9128.98 (9)
C11—C4—S1123.85 (7)C8—C13—C12122.96 (10)
C3—C4—S1119.73 (7)N9—C13—C12108.06 (8)
C6—C5—C12118.64 (9)C10—N9—C13109.64 (8)
C6—C5—H5120.7C10—N9—H9125.2
C12—C5—H5120.7C13—N9—H9125.2
C10—C1—C2—C349.84 (11)C6—C5—C12—C131.45 (14)
C1—C2—C3—C455.67 (11)C6—C5—C12—C11179.79 (10)
C2—C3—C4—C1128.23 (12)C10—C11—C12—C5177.03 (10)
C2—C3—C4—S1154.52 (8)C4—C11—C12—C57.46 (19)
C12—C5—C6—C70.52 (15)C10—C11—C12—C131.84 (10)
C5—C6—C7—C81.47 (16)C4—C11—C12—C13173.67 (10)
C6—C7—C8—C130.35 (15)C7—C8—C13—N9178.60 (10)
C2—C1—C10—N9158.35 (9)C7—C8—C13—C121.70 (15)
C2—C1—C10—C1121.72 (13)C5—C12—C13—C82.64 (14)
N9—C10—C11—C4174.61 (9)C11—C12—C13—C8178.27 (9)
C1—C10—C11—C45.33 (15)C5—C12—C13—N9177.61 (8)
N9—C10—C11—C121.56 (11)C11—C12—C13—N91.47 (10)
C1—C10—C11—C12178.50 (9)C11—C10—N9—C130.66 (11)
C3—C4—C11—C102.22 (13)C1—C10—N9—C13179.40 (9)
S1—C4—C11—C10174.91 (7)C8—C13—N9—C10179.18 (10)
C3—C4—C11—C12177.20 (10)C12—C13—N9—C100.55 (11)
S1—C4—C11—C120.08 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···S1i0.882.453.3187 (9)172
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H11NS
Mr201.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)8.6353 (14), 12.1395 (15), 9.5808 (14)
β (°) 104.599 (10)
V3)971.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.38 × 0.33 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.900, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
6145, 3305, 2915
Rint0.018
(sin θ/λ)max1)0.741
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.04
No. of reflections3305
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.30

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···S1i0.882.453.3187 (9)172
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Footnotes

Current address: Winston-Salem State University, Winston-Salem, NC 27110, USA.

§Current address: University of South Florida, Tampa, Florida 33620, USA.

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationCambridgesoft (2009). Chem3DPro. Cambridgesoft Corporation, Cambridge, MA, USA.  Google Scholar
First citationÇaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H., Patir, S. & Uludaug, N. (1998). Acta Cryst. C54, 1297–1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIanelli, S., Nardelli, M., Belletti, D., Caubère, C., Caubère, P. & Jamart-Grégoire, B. (1994). Acta Cryst. C50, 1919–1922.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRodriguez, J. G., Temprano, F., Esteban-Calderon, C. & Martinez-Ripoll, M. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 2117–2122.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds