organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Amino­phen­yl)-1-phenyl­diazenium 2,4,6-tri­nitro­phenolate

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bBIO-21 Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3052, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 19 February 2011; accepted 9 March 2011; online 12 March 2011)

In the title salt, C12H12N3+·C6H2N3O7, the diazenyl group of the 4-(phenyl­diazen­yl)aniline mol­ecule is protonated and forms a hydrogen bond with the phenolate O-atom acceptor of the picrate anion. Structure extension occurs through two symmetrical inter-ion three-centre amine N—H⋯O,O′nitro hydrogen-bonding associations [graph set R12(4)], giving a convoluted two-dimensional network structure.

Related literature

For the diazo-dye precursor aniline yellow [4-(phenyl­diazen­yl)aniline], see: O'Neil (2001[O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 74. Whitehouse Station, New Jersey: Merck & Co.]). For structural data on diazenyl-protonated salts of aniline yellow, see: Yatsenko et al. (2000[Yatsenko, A. V., Chernyshev, V. V., Kurbakov, A. I. & Schenk, H. (2000). Acta Cryst. C56, 892-894.]); Mahmoudkhani & Langer (2001a[Mahmoudkhani, A. H. & Langer, V. (2001a). Acta Cryst. E57, o839-o841.]); Smith et al. (2009[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2009). Acta Cryst. C65, o543-o548.]). For amine-protonated salts of aniline yellow, see: Mahmoudkhani & Langer (2001b[Mahmoudkhani, A. H. & Langer, V. (2001b). Acta Cryst. E57, o898-o900.]); Smith et al. (2008[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2008). Acta Cryst. C64, o123-o127.]). For hydrogen-bonding graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N3+·C6H2N3O7

  • Mr = 426.35

  • Monoclinic, P 21 /n

  • a = 5.4506 (2) Å

  • b = 16.8974 (5) Å

  • c = 19.9386 (6) Å

  • β = 94.063 (3)°

  • V = 1831.75 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 180 K

  • 0.35 × 0.18 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini-S CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.885, Tmax = 0.980

  • 12224 measured reflections

  • 3593 independent reflections

  • 2278 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.075

  • S = 0.87

  • 3593 reflections

  • 292 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O1A 0.879 (18) 2.045 (18) 2.9039 (18) 165.4 (16)
N4—H41⋯O41Ai 0.89 (2) 2.44 (2) 3.211 (2) 145.0 (16)
N4—H41⋯O42Ai 0.89 (2) 2.29 (2) 3.127 (2) 156.9 (15)
N4—H42⋯O61Aii 0.88 (2) 2.33 (2) 3.170 (2) 159 (2)
N4—H42⋯O62Aii 0.88 (2) 2.36 (2) 3.126 (2) 145 (2)
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The diazo-dye precursor 4-(phenyldiazenyl)aniline (aniline yellow) (O'Neil, 2001) has been found to react with strong acids to form salts through protonation of the diazenyl group rather than the amine group of the molecule, e.g with the hydrochloride (Yatsenko et al., 2000; Mahmoudkhani & Langer, 2001a), and with 5-sulfosalicylic acid (Smith et al., 2009). With benzenesulfonic acid (Smith et al., 2009), the structure of the dichroic salt showed the 1:1 presence of both the diazenyl- and the amine-protonated forms. The phenylhydrazin-1-ium salts are invariably coloured purple-black or red-black as distinct from the amine-protonated salts which are orange-red e.g. the oxalate (Mahmoudkhani & Langer, 2001b) and the nitro-substituted phthalates and isophthalates (Smith et al., 2008). Our 1:1 stoichiometric reaction of aniline yellow with picric acid in 80% ethanol-water gave red-black crystals of the title salt, (I), and the structure is reported here.

In the structure of (I) (Fig. 1) the diazenyl group of the 4-(phenyldiazenyl)aniline molecule is protonated and forms a hydrogen bond with the phenolate O acceptor of the picrate anion (Table 1). A secondary weak C2—H2···O1A interaction [3.344 (2) Å] is also present. Structure extension occurs through two symmetrical inter-ion three-centre amine NH···O,O'nitro hydrogen-bonding associations [graph set R21(4) (Etter et al., 1990)], giving a convoluted two-dimensional network structure (Fig. 2). There are no ππ interactions involving the phenyl rings of the cations [minimum inter-ring centroid separation, 4.058 (1) Å]. In the crystal packing there are three close non-bonding intermolecular interactions associated with the nitro groups: O21A···N6Aiii, 2.8640 (18) Å and O21A···C6Aiii, 2.974 (2) Å (symmetry code (iii) x + 1, y, z ) and O22A···N4Aiv, 2.8987 (19) Å (symmetry code (iv) -x + 1, -y + 1, -z ).

The cation in (I) is essentially planar, the C6—C1—N1—N11 and C21—C11—N11—N1 torsion angles being -174.89 (14) and 176.74 (14)° respectively. With the picrate anion, the two ortho-related nitro groups are rotated out of the benzene plane [torsion angles C1A—C2A—N2A—O22A, 145.46 (15)° and C5A—C6A—N6A—O62A, -163.83 (15)°] while the para-related nitro group is essentially coplanar with the ring [C3A—C4A—N4A—O42A, 179.40 (15)°].

Related literature top

For the diazo-dye precursor aniline yellow [4-(phenyldiazenyl)aniline], see: O'Neil (2001). For structural data on diazenyl-protonated salts of aniline yellow, see: Yatsenko et al. (2000); Mahmoudkhani & Langer (2001a); Smith et al. (2009). For amine-protonated salts of aniline yellow, see: Mahmoudkhani & Langer (2001b); Smith et al. (2008). For hydrogen-bonding graph-set analysis, see: Etter et al. (1990).

Experimental top

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of 4-(phenyldiazenyl)aniline (aniline yellow) and picric acid in 50 ml of 80% ethanol-water. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave red-black prisms of (I) (m.p. 443–445 K) from which a specimen was cleaved for the X-ray analysis.

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the refinement at calculated positions and using a riding-model approximation [C—H = 0.93 Å], with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom naming scheme for the diazenyl-protonated cation and the picrate anion in (I). The inter-species hydrogen bond is shown as a dashed line and displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The hydrogen-bonded sheet structure of (I), with non-associative H atoms omitted and hydrogen bonds shown as dashed lines. For symmetry codes, see Table 1.
2-(4-Aminophenyl)-1-phenyldiazenium 2,4,6-trinitrophenolate top
Crystal data top
C12H12N3+·C6H2N3O7F(000) = 880
Mr = 426.35Dx = 1.546 Mg m3
Monoclinic, P21/nMelting point = 443–445 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.4506 (2) ÅCell parameters from 3903 reflections
b = 16.8974 (5) Åθ = 3.2–28.7°
c = 19.9386 (6) ŵ = 0.12 mm1
β = 94.063 (3)°T = 180 K
V = 1831.75 (10) Å3Prism, red-black
Z = 40.35 × 0.18 × 0.15 mm
Data collection top
Oxford Diffraction Gemini-S CCD detector
diffractometer
3593 independent reflections
Radiation source: fine-focus sealed tube2278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2020
Tmin = 0.885, Tmax = 0.980l = 2224
12224 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 0.87 w = 1/[σ2(Fo2) + (0.0376P)2]
where P = (Fo2 + 2Fc2)/3
3593 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H12N3+·C6H2N3O7V = 1831.75 (10) Å3
Mr = 426.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.4506 (2) ŵ = 0.12 mm1
b = 16.8974 (5) ÅT = 180 K
c = 19.9386 (6) Å0.35 × 0.18 × 0.15 mm
β = 94.063 (3)°
Data collection top
Oxford Diffraction Gemini-S CCD detector
diffractometer
3593 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2278 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.980Rint = 0.035
12224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.14 e Å3
3593 reflectionsΔρmin = 0.23 e Å3
292 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5298 (2)0.49802 (8)0.36091 (6)0.0251 (4)
N40.2497 (3)0.32118 (10)0.25985 (9)0.0344 (6)
N110.6596 (2)0.54559 (8)0.32635 (7)0.0252 (5)
C10.3432 (3)0.45678 (9)0.33086 (8)0.0222 (5)
C20.2730 (3)0.45249 (10)0.26070 (8)0.0269 (6)
C30.0809 (3)0.40706 (10)0.23773 (8)0.0276 (5)
C40.0594 (3)0.36418 (9)0.28318 (8)0.0238 (5)
C50.0074 (3)0.36874 (9)0.35319 (8)0.0254 (5)
C60.2047 (3)0.41246 (10)0.37563 (8)0.0264 (5)
C110.8581 (3)0.58730 (10)0.35919 (8)0.0242 (5)
C211.0003 (3)0.63434 (10)0.32020 (9)0.0296 (6)
C311.1992 (3)0.67474 (10)0.35069 (9)0.0343 (6)
C411.2563 (3)0.66787 (11)0.41880 (9)0.0385 (7)
C511.1132 (3)0.62021 (12)0.45732 (9)0.0410 (7)
C610.9138 (3)0.57997 (11)0.42795 (9)0.0336 (6)
O1A0.5381 (2)0.60880 (7)0.19268 (6)0.0355 (4)
O21A0.9876 (2)0.55846 (7)0.15684 (7)0.0441 (5)
O22A0.9183 (2)0.48046 (7)0.07170 (7)0.0434 (5)
O41A0.5231 (2)0.62072 (8)0.12058 (6)0.0504 (5)
O42A0.2254 (2)0.70145 (8)0.10480 (6)0.0402 (4)
O61A0.0343 (2)0.74572 (7)0.11123 (7)0.0408 (5)
O62A0.2079 (2)0.72543 (7)0.20024 (6)0.0392 (5)
N2A0.8675 (2)0.53839 (9)0.10537 (8)0.0300 (5)
N4A0.3933 (3)0.65722 (9)0.08305 (7)0.0330 (5)
N6A0.1562 (3)0.71719 (8)0.13953 (7)0.0299 (5)
C1A0.5121 (3)0.62347 (9)0.13155 (8)0.0239 (6)
C2A0.6597 (3)0.58734 (9)0.08148 (8)0.0238 (5)
C3A0.6232 (3)0.59705 (9)0.01357 (8)0.0250 (6)
C4A0.4368 (3)0.64710 (10)0.01148 (8)0.0251 (5)
C5A0.2883 (3)0.68524 (10)0.03106 (8)0.0245 (5)
C6A0.3236 (3)0.67494 (9)0.09927 (8)0.0231 (5)
H20.360100.481200.230500.0320*
H30.039800.403800.191700.0330*
H50.084100.341800.383500.0300*
H60.250800.413500.421400.0320*
H110.626 (3)0.5560 (10)0.2835 (9)0.041 (6)*
H210.962500.638700.274100.0360*
H311.294900.706700.325000.0410*
H410.289 (3)0.3182 (12)0.2157 (11)0.061 (7)*
H420.337 (4)0.2946 (13)0.2877 (12)0.077 (8)*
H431.390300.695100.439000.0460*
H511.152400.615500.503300.0490*
H610.817700.548300.453800.0400*
H3A0.721600.570600.015400.0300*
H5A0.163100.718200.013500.0290*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0268 (7)0.0258 (8)0.0234 (8)0.0003 (7)0.0058 (6)0.0002 (6)
N40.0355 (9)0.0423 (10)0.0250 (10)0.0121 (8)0.0001 (8)0.0059 (8)
N110.0281 (8)0.0296 (8)0.0178 (8)0.0013 (7)0.0017 (6)0.0019 (7)
C10.0235 (8)0.0239 (9)0.0195 (9)0.0015 (7)0.0027 (7)0.0006 (7)
C20.0299 (9)0.0301 (10)0.0212 (10)0.0019 (8)0.0050 (7)0.0056 (8)
C30.0306 (9)0.0336 (10)0.0183 (9)0.0029 (8)0.0005 (7)0.0039 (8)
C40.0228 (8)0.0245 (9)0.0243 (9)0.0020 (8)0.0031 (7)0.0016 (7)
C50.0304 (9)0.0261 (9)0.0206 (9)0.0019 (8)0.0080 (7)0.0029 (7)
C60.0333 (9)0.0287 (10)0.0174 (9)0.0033 (8)0.0041 (7)0.0003 (7)
C110.0252 (9)0.0253 (9)0.0222 (9)0.0004 (8)0.0020 (7)0.0028 (8)
C210.0343 (10)0.0315 (10)0.0230 (10)0.0004 (8)0.0018 (8)0.0018 (8)
C310.0343 (10)0.0343 (11)0.0349 (11)0.0081 (9)0.0059 (9)0.0008 (9)
C410.0359 (10)0.0438 (12)0.0352 (12)0.0103 (9)0.0008 (9)0.0113 (9)
C510.0437 (11)0.0564 (13)0.0228 (10)0.0103 (10)0.0018 (9)0.0077 (9)
C610.0374 (10)0.0416 (11)0.0224 (10)0.0081 (9)0.0073 (8)0.0027 (9)
O1A0.0393 (7)0.0468 (8)0.0200 (7)0.0047 (6)0.0011 (5)0.0078 (6)
O21A0.0375 (7)0.0409 (8)0.0506 (9)0.0030 (6)0.0194 (7)0.0055 (7)
O22A0.0449 (8)0.0397 (8)0.0463 (9)0.0160 (7)0.0083 (7)0.0007 (7)
O41A0.0556 (8)0.0749 (10)0.0222 (7)0.0169 (8)0.0133 (6)0.0041 (7)
O42A0.0471 (8)0.0470 (8)0.0252 (7)0.0101 (7)0.0069 (6)0.0066 (6)
O61A0.0296 (7)0.0452 (8)0.0484 (9)0.0091 (6)0.0075 (6)0.0098 (7)
O62A0.0582 (8)0.0378 (8)0.0236 (8)0.0076 (6)0.0163 (6)0.0070 (6)
N2A0.0259 (8)0.0291 (9)0.0350 (9)0.0019 (7)0.0013 (7)0.0069 (7)
N4A0.0368 (8)0.0425 (10)0.0200 (8)0.0007 (8)0.0040 (7)0.0005 (7)
N6A0.0347 (9)0.0266 (8)0.0297 (9)0.0066 (7)0.0119 (7)0.0060 (7)
C1A0.0241 (9)0.0270 (10)0.0204 (10)0.0082 (7)0.0000 (7)0.0026 (7)
C2A0.0201 (8)0.0233 (9)0.0276 (10)0.0005 (7)0.0006 (7)0.0025 (8)
C3A0.0244 (9)0.0279 (10)0.0231 (10)0.0000 (8)0.0049 (7)0.0041 (7)
C4A0.0278 (9)0.0308 (10)0.0169 (9)0.0006 (8)0.0025 (7)0.0009 (7)
C5A0.0236 (8)0.0256 (9)0.0242 (9)0.0035 (8)0.0004 (7)0.0016 (7)
C6A0.0231 (9)0.0252 (9)0.0216 (9)0.0021 (7)0.0067 (7)0.0040 (7)
Geometric parameters (Å, º) top
O1A—C1A1.242 (2)C11—C211.387 (2)
O21A—N2A1.225 (2)C11—C611.389 (2)
O22A—N2A1.230 (2)C21—C311.385 (2)
O41A—N4A1.2312 (19)C31—C411.377 (3)
O42A—N4A1.236 (2)C41—C511.390 (3)
O61A—N6A1.2434 (19)C51—C611.377 (2)
O62A—N6A1.2311 (18)C2—H20.9300
N1—C11.339 (2)C3—H30.9300
N1—N111.3002 (18)C5—H50.9300
N4—C41.324 (2)C6—H60.9300
N11—C111.413 (2)C21—H210.9300
N4—H410.89 (2)C31—H310.9300
N4—H420.88 (2)C41—H430.9300
N11—H110.879 (18)C51—H510.9300
N2A—C2A1.455 (2)C61—H610.9300
N4A—C4A1.440 (2)C1A—C2A1.460 (2)
N6A—C6A1.446 (2)C1A—C6A1.460 (2)
C1—C61.422 (2)C2A—C3A1.365 (2)
C1—C21.426 (2)C3A—C4A1.388 (2)
C2—C31.352 (2)C4A—C5A1.374 (2)
C3—C41.425 (2)C5A—C6A1.371 (2)
C4—C51.420 (2)C3A—H3A0.9300
C5—C61.354 (2)C5A—H5A0.9300
N11—N1—C1120.61 (13)C3—C2—H2120.00
N1—N11—C11119.37 (13)C2—C3—H3120.00
C4—N4—H41120.3 (12)C4—C3—H3120.00
C4—N4—H42120.3 (15)C6—C5—H5120.00
H41—N4—H42119.4 (19)C4—C5—H5120.00
C11—N11—H11116.8 (11)C1—C6—H6119.00
N1—N11—H11123.7 (11)C5—C6—H6119.00
O21A—N2A—O22A123.37 (13)C11—C21—H21120.00
O21A—N2A—C2A118.30 (14)C31—C21—H21120.00
O22A—N2A—C2A118.29 (14)C41—C31—H31120.00
O42A—N4A—C4A119.03 (14)C21—C31—H31120.00
O41A—N4A—C4A118.78 (14)C51—C41—H43120.00
O41A—N4A—O42A122.19 (14)C31—C41—H43120.00
O61A—N6A—C6A118.63 (14)C41—C51—H51120.00
O61A—N6A—O62A121.87 (15)C61—C51—H51120.00
O62A—N6A—C6A119.49 (14)C51—C61—H61120.00
N1—C1—C6114.41 (14)C11—C61—H61120.00
N1—C1—C2127.45 (15)O1A—C1A—C2A123.89 (14)
C2—C1—C6118.13 (14)O1A—C1A—C6A125.39 (15)
C1—C2—C3120.59 (15)C2A—C1A—C6A110.63 (14)
C2—C3—C4120.74 (15)N2A—C2A—C1A117.89 (14)
C3—C4—C5119.09 (14)N2A—C2A—C3A116.65 (14)
N4—C4—C5121.03 (15)C1A—C2A—C3A125.44 (15)
N4—C4—C3119.89 (15)C2A—C3A—C4A118.82 (15)
C4—C5—C6119.79 (15)N4A—C4A—C3A119.61 (15)
C1—C6—C5121.61 (15)N4A—C4A—C5A119.56 (15)
N11—C11—C21117.80 (14)C3A—C4A—C5A120.81 (15)
C21—C11—C61120.86 (16)C4A—C5A—C6A120.36 (15)
N11—C11—C61121.32 (15)N6A—C6A—C1A120.09 (14)
C11—C21—C31119.20 (16)N6A—C6A—C5A116.00 (14)
C21—C31—C41120.45 (16)C1A—C6A—C5A123.90 (15)
C31—C41—C51119.84 (16)C2A—C3A—H3A121.00
C41—C51—C61120.53 (17)C4A—C3A—H3A121.00
C11—C61—C51119.12 (16)C4A—C5A—H5A120.00
C1—C2—H2120.00C6A—C5A—H5A120.00
C1—N1—N11—C11178.90 (14)C4—C5—C6—C12.4 (2)
N11—N1—C1—C25.7 (2)N11—C11—C21—C31178.72 (15)
N11—N1—C1—C6174.89 (14)C61—C11—C21—C310.4 (3)
N1—N11—C11—C21176.74 (14)N11—C11—C61—C51178.27 (16)
N1—N11—C11—C611.6 (2)C21—C11—C61—C510.0 (3)
O21A—N2A—C2A—C1A36.9 (2)C11—C21—C31—C410.5 (3)
O21A—N2A—C2A—C3A141.62 (15)C21—C31—C41—C510.1 (3)
O22A—N2A—C2A—C1A145.46 (15)C31—C41—C51—C610.3 (3)
O22A—N2A—C2A—C3A36.1 (2)C41—C51—C61—C110.3 (3)
O41A—N4A—C4A—C5A177.77 (16)O1A—C1A—C2A—N2A7.4 (2)
O42A—N4A—C4A—C3A179.40 (15)O1A—C1A—C2A—C3A174.32 (16)
O41A—N4A—C4A—C3A0.2 (2)C6A—C1A—C2A—N2A175.85 (13)
O42A—N4A—C4A—C5A1.4 (2)C6A—C1A—C2A—C3A2.5 (2)
O61A—N6A—C6A—C1A163.87 (14)O1A—C1A—C6A—N6A3.5 (2)
O61A—N6A—C6A—C5A14.6 (2)O1A—C1A—C6A—C5A174.90 (16)
O62A—N6A—C6A—C5A163.83 (15)C2A—C1A—C6A—N6A179.79 (14)
O62A—N6A—C6A—C1A17.7 (2)C2A—C1A—C6A—C5A1.8 (2)
C6—C1—C2—C30.4 (2)N2A—C2A—C3A—C4A176.08 (14)
N1—C1—C6—C5178.82 (15)C1A—C2A—C3A—C4A2.3 (2)
N1—C1—C2—C3179.05 (16)C2A—C3A—C4A—N4A179.13 (15)
C2—C1—C6—C51.7 (2)C2A—C3A—C4A—C5A1.2 (2)
C1—C2—C3—C41.7 (3)N4A—C4A—C5A—C6A178.58 (15)
C2—C3—C4—N4178.74 (16)C3A—C4A—C5A—C6A0.6 (3)
C2—C3—C4—C51.0 (2)C4A—C5A—C6A—N6A179.50 (15)
C3—C4—C5—C61.1 (2)C4A—C5A—C6A—C1A1.1 (3)
N4—C4—C5—C6179.24 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O1A0.879 (18)2.045 (18)2.9039 (18)165.4 (16)
N4—H41···O41Ai0.89 (2)2.44 (2)3.211 (2)145.0 (16)
N4—H41···O42Ai0.89 (2)2.29 (2)3.127 (2)156.9 (15)
N4—H42···O61Aii0.88 (2)2.33 (2)3.170 (2)159 (2)
N4—H42···O62Aii0.88 (2)2.36 (2)3.126 (2)145 (2)
C2—H2···O1A0.932.503.344 (2)151
C3A—H3A···O22Aiii0.932.483.384 (2)163
C5A—H5A···O61A0.932.342.663 (2)100
C21—H21···O62Aiv0.932.533.123 (2)122
C31—H31···O62Aiv0.932.523.123 (2)123
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y1/2, z+1/2; (iii) x+2, y+1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H12N3+·C6H2N3O7
Mr426.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)180
a, b, c (Å)5.4506 (2), 16.8974 (5), 19.9386 (6)
β (°) 94.063 (3)
V3)1831.75 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.35 × 0.18 × 0.15
Data collection
DiffractometerOxford Diffraction Gemini-S CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.885, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
12224, 3593, 2278
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.075, 0.87
No. of reflections3593
No. of parameters292
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O1A0.879 (18)2.045 (18)2.9039 (18)165.4 (16)
N4—H41···O41Ai0.89 (2)2.44 (2)3.211 (2)145.0 (16)
N4—H41···O42Ai0.89 (2)2.29 (2)3.127 (2)156.9 (15)
N4—H42···O61Aii0.88 (2)2.33 (2)3.170 (2)159 (2)
N4—H42···O62Aii0.88 (2)2.36 (2)3.126 (2)145 (2)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology, and the University of Melbourne.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMahmoudkhani, A. H. & Langer, V. (2001a). Acta Cryst. E57, o839–o841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahmoudkhani, A. H. & Langer, V. (2001b). Acta Cryst. E57, o898–o900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationO'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 74. Whitehouse Station, New Jersey: Merck & Co.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2008). Acta Cryst. C64, o123–o127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2009). Acta Cryst. C65, o543–o548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYatsenko, A. V., Chernyshev, V. V., Kurbakov, A. I. & Schenk, H. (2000). Acta Cryst. C56, 892–894.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds