organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Tri­fluoro­meth­yl)benzoic acid

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 21 February 2011; accepted 14 March 2011; online 19 March 2011)

In the title compound, C8H5F3O2, a halogenated derivative of benzoic acid, the carboxyl group is tilted by 16.8 (3)° with respect to the plane of the aromatic ring. In the crystal, O—H⋯O hydrogen bonding gives rise to carb­oxy­lic acid dimers, which are further connected into double chains along [1,1/4,1] by C—H⋯O contacts. C—H⋯F and C—F⋯π contacts are also observed.

Related literature

For the crystal structure of benzoic acid using X-ray diffraction, see Bruno & Randaccio (1980[Bruno, G. & Randaccio, L. (1980). Acta Cryst. B36, 1711-1712.]). For the crystal structure of benzoic acid applying neutron radiation, see Wilson et al. (1996[Wilson, C. C., Shankland, N. & Florence, A. J. (1996). J. Chem. Soc. Faraday Trans. 92, 5051-5057.]), and of ortho-fluoro­benzoic acid, see Krausse & Dunken (1966[Krausse, J. & Dunken, H. (1966). Acta Cryst. 20, 67-73.]). For the crystal structure of ortho-chloro­benzoic acid, see Ferguson & Sim (1961[Ferguson, G. & Sim, G. A. (1961). Acta Cryst. 14, 1262-1270.]); Polito et al. (2008[Polito, M., D'Oria, E., Maini, L., Karamertzanis, P. G., Grepioni, F., Braga, D. & Price, S. L. (2008). CrystEngComm, 10, 1848-1854.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5F3O2

  • Mr = 190.12

  • Monoclinic, P 21 /c

  • a = 4.8816 (3) Å

  • b = 20.6948 (14) Å

  • c = 7.9697 (5) Å

  • β = 109.544 (4)°

  • V = 758.74 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 200 K

  • 0.50 × 0.50 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 7115 measured reflections

  • 1889 independent reflections

  • 1548 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.113

  • S = 1.06

  • 1889 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.81 2.6459 (19) 173
C6—H6⋯O2ii 0.95 2.66 3.590 (3) 167
C6—H6⋯F3ii 0.95 2.63 3.303 (3) 128
C7—H7⋯O1iii 0.95 2.66 3.411 (2) 137
C8—F1⋯Cgiv 1.34 (1) 3.48 (1) 4.806 (2) 170 (1)
Symmetry codes: (i) -x+3, -y, -z+1; (ii) x-1, y, z-1; (iii) -x+2, -y, -z; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzoic acid has found widespread use as a ligand in coordination chemistry for a variety of transition metals and elements from the s- and p-block of the periodic system of the elements. It can act as a neutral or – upon deprotonation – an anionic ligand and serve as mono- or bidentate ligand. By varying the substituents on the phenyl moiety, the acidity of the carboxylic acid group can be fine-tuned. Particular interest rests in benzoic acid derivatives showing an asymmetric pattern of substituents on the aromatic moiety due to different possible orientations of the ligand in coordination compounds and the possible formation of stereoisomeric products. At the beginning of a comprehensive study aimed at rationalizing the coordination behaviour of various benzoic acid derivatives towards a number of transition metals in dependence of the pH value of the reaction batches it seemed interesting to determine the crystal structure of the title compound to enable comparative studies. The crystal structure of unsubstituted benzoic acid (Bruno & Randaccio (1980); Wilson et al. (1996)) as well as the crystal structures of benzoic acid derivatives bearing a halogen atom in an ortho-position to the carboxylic acid group (Krausse & Dunken (1966); Ferguson & Sim (1961); Polito et al. (2008)) are apparent in the literature.

C–C–C angles within the phenyl ring span a range of 118 ° to 121 ° with the biggest as well as the smallest angle found on both C-atoms in the ortho-position to the C-atom bearing the carboxylic acid group. The latter one is found on the carbon atom bearing the trifluoromethyl group (Fig. 1).

The carboxylic acid group is slightly tilted with respect to the plane of the aromatic moiety. The least-squares planes defined by their respective atoms enclose an angle of 16.81 (26) °.

In the crystal structure, hydrogen bonds between the carboxylic acid groups of two molecules give rise to centrosymmetric dimers. These are further connected into double chains along [1 1/4 1] by C–H···O contacts whose range falls slightly below the sum of van-der-Waals radii of the corresponding atoms (Fig. 2). The latter contacts can be observed between the hydrogen atoms bonded to the carbon atoms in the ortho- as well as the meta-position to the carboxylic acid group and have the alcoholic as well as the carbonylic O-atom as acceptor. Additionally, the H-atom in the meta-position to the carboxylic acid group forms a contact to one of the fluorine atoms of the trifluoromethyl group. In terms of graph-set analysis (Etter et al. (1990); Bernstein et al. (1995).), the descriptor for the classical hydrogen bonds building the centrosymmetric dimers is R22(8) on the unitary level while the C–H···O-contacts necessitate a C11(6)R22(10) descriptor on the same level. No π-stacking is obvious in the compound, however, a C–F···Cg interaction (F···Cg: 3.4803 (17) Å) can be observed.

The packing of the compound is shown in Figure 3.

Related literature top

For the crystal structure of benzoic acid using X-ray diffraction, see Bruno & Randaccio (1980). For the crystal structure of benzoic acid applying neutron radiation, see Wilson et al. (1996). For the crystal structure of ortho-fluorobenzoic acid, see Krausse & Dunken (1966). For the crystal structure of ortho-chlorobenzoic acid, see Ferguson & Sim (1961); Polito et al. (2008). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The compound was obtained commercially (fluorochem). Crystals suitable for the X-ray diffraction study were grown from an aqueous solution of the compound.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the carboxylic acid group was allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. Hydrogen bonds are depicted with blue dashed lines, C–H···O contacts with yellow dashed lines and C–H···F contacts with red dashed lines. Symmetry operators: i x + 1, y, z + 1; ii -x + 3, -y, -z + 1; iii -x + 2, -y, -z; iv x - 1, y, z - 1.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
2-(Trifluoromethyl)benzoic acid top
Crystal data top
C8H5F3O2F(000) = 384
Mr = 190.12Dx = 1.664 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4165 reflections
a = 4.8816 (3) Åθ = 2.7–28.3°
b = 20.6948 (14) ŵ = 0.17 mm1
c = 7.9697 (5) ÅT = 200 K
β = 109.544 (4)°Platelet, colourless
V = 758.74 (8) Å30.50 × 0.50 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1548 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 28.3°, θmin = 3.4°
ϕ and ω scansh = 66
7115 measured reflectionsk = 2727
1889 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.680P]
where P = (Fo2 + 2Fc2)/3
1889 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C8H5F3O2V = 758.74 (8) Å3
Mr = 190.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.8816 (3) ŵ = 0.17 mm1
b = 20.6948 (14) ÅT = 200 K
c = 7.9697 (5) Å0.50 × 0.50 × 0.09 mm
β = 109.544 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
1548 reflections with I > 2σ(I)
7115 measured reflectionsRint = 0.048
1889 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
1889 reflectionsΔρmin = 0.33 e Å3
119 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.8290 (3)0.22541 (7)0.5490 (2)0.0602 (5)
F21.2257 (3)0.17857 (6)0.56593 (18)0.0453 (3)
F30.9086 (3)0.12968 (7)0.65393 (16)0.0455 (3)
O11.2631 (3)0.01372 (7)0.27504 (18)0.0366 (3)
H11.40440.00800.33970.055*
O21.2658 (3)0.05058 (7)0.53681 (17)0.0368 (3)
C11.1610 (4)0.04997 (8)0.3755 (2)0.0262 (4)
C20.9025 (4)0.08893 (8)0.2720 (2)0.0252 (3)
C30.7956 (4)0.14205 (8)0.3418 (2)0.0264 (4)
C40.5485 (4)0.17387 (9)0.2361 (3)0.0324 (4)
H40.47660.20970.28330.039*
C50.4046 (5)0.15424 (10)0.0626 (3)0.0366 (4)
H50.23360.17610.00780.044*
C60.5102 (5)0.10294 (11)0.0075 (3)0.0381 (5)
H60.41370.08970.12680.046*
C70.7571 (4)0.07086 (10)0.0963 (2)0.0329 (4)
H70.82920.03570.04670.040*
C80.9405 (4)0.16805 (9)0.5273 (3)0.0334 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0651 (10)0.0483 (8)0.0547 (8)0.0222 (7)0.0035 (7)0.0228 (7)
F20.0332 (7)0.0462 (7)0.0510 (7)0.0084 (5)0.0069 (6)0.0134 (6)
F30.0422 (7)0.0658 (9)0.0285 (6)0.0038 (6)0.0119 (5)0.0006 (6)
O10.0363 (8)0.0448 (8)0.0270 (6)0.0172 (6)0.0084 (6)0.0008 (6)
O20.0342 (8)0.0455 (8)0.0255 (6)0.0146 (6)0.0034 (5)0.0036 (6)
C10.0231 (8)0.0258 (8)0.0293 (8)0.0008 (6)0.0083 (7)0.0006 (7)
C20.0227 (8)0.0275 (8)0.0254 (8)0.0014 (6)0.0081 (6)0.0015 (7)
C30.0264 (9)0.0269 (8)0.0269 (8)0.0000 (7)0.0101 (7)0.0009 (7)
C40.0331 (10)0.0297 (9)0.0352 (9)0.0070 (7)0.0126 (8)0.0039 (8)
C50.0328 (10)0.0389 (10)0.0342 (10)0.0091 (8)0.0062 (8)0.0081 (8)
C60.0358 (11)0.0469 (11)0.0266 (9)0.0061 (9)0.0036 (8)0.0002 (8)
C70.0331 (10)0.0372 (10)0.0270 (9)0.0062 (8)0.0080 (7)0.0023 (7)
C80.0300 (10)0.0343 (10)0.0341 (10)0.0052 (8)0.0084 (8)0.0065 (8)
Geometric parameters (Å, º) top
F1—C81.341 (2)C3—C41.385 (3)
F2—C81.339 (2)C3—C81.509 (3)
F3—C81.333 (2)C4—C51.386 (3)
O1—C11.311 (2)C4—H40.9500
O1—H10.8400C5—C61.378 (3)
O2—C11.214 (2)C5—H50.9500
C1—C21.492 (2)C6—C71.382 (3)
C2—C71.393 (2)C6—H60.9500
C2—C31.409 (2)C7—H70.9500
C1—O1—H1109.5C6—C5—H5120.1
O2—C1—O1122.74 (16)C4—C5—H5120.1
O2—C1—C2123.96 (16)C5—C6—C7119.81 (19)
O1—C1—C2113.29 (15)C5—C6—H6120.1
C7—C2—C3118.36 (16)C7—C6—H6120.1
C7—C2—C1117.59 (16)C6—C7—C2121.46 (18)
C3—C2—C1124.05 (16)C6—C7—H7119.3
C4—C3—C2119.55 (17)C2—C7—H7119.3
C4—C3—C8117.00 (16)F3—C8—F2107.39 (16)
C2—C3—C8123.43 (16)F3—C8—F1105.94 (17)
C3—C4—C5121.01 (18)F2—C8—F1105.20 (16)
C3—C4—H4119.5F3—C8—C3113.20 (16)
C5—C4—H4119.5F2—C8—C3113.19 (16)
C6—C5—C4119.79 (18)F1—C8—C3111.35 (16)
O2—C1—C2—C7162.52 (18)C4—C5—C6—C70.8 (3)
O1—C1—C2—C716.4 (2)C5—C6—C7—C20.4 (3)
O2—C1—C2—C316.7 (3)C3—C2—C7—C61.3 (3)
O1—C1—C2—C3164.37 (17)C1—C2—C7—C6177.90 (19)
C7—C2—C3—C41.1 (3)C4—C3—C8—F3108.95 (19)
C1—C2—C3—C4178.06 (17)C2—C3—C8—F372.5 (2)
C7—C2—C3—C8177.38 (18)C4—C3—C8—F2128.55 (19)
C1—C2—C3—C83.4 (3)C2—C3—C8—F250.0 (2)
C2—C3—C4—C50.0 (3)C4—C3—C8—F110.3 (3)
C8—C3—C4—C5178.62 (18)C2—C3—C8—F1168.25 (18)
C3—C4—C5—C61.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.812.6459 (19)173
C6—H6···O2ii0.952.663.590 (3)167
C6—H6···F3ii0.952.633.303 (3)128
C7—H7···O1iii0.952.663.411 (2)137
C8—F1···Cgiv1.34 (1)3.48 (1)4.806 (2)170 (1)
Symmetry codes: (i) x+3, y, z+1; (ii) x1, y, z1; (iii) x+2, y, z; (iv) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H5F3O2
Mr190.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)4.8816 (3), 20.6948 (14), 7.9697 (5)
β (°) 109.544 (4)
V3)758.74 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.50 × 0.50 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7115, 1889, 1548
Rint0.048
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.113, 1.06
No. of reflections1889
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.33

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.812.6459 (19)173.0
C6—H6···O2ii0.952.663.590 (3)167
C6—H6···F3ii0.952.633.303 (3)128
C7—H7···O1iii0.952.663.411 (2)137
C8—F1···Cgiv1.341 (2)3.4803 (17)4.806 (2)169.96 (13)
Symmetry codes: (i) x+3, y, z+1; (ii) x1, y, z1; (iii) x+2, y, z; (iv) x, y1/2, z1/2.
 

Acknowledgements

The authors thank Mr Robert Bell for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, G. & Randaccio, L. (1980). Acta Cryst. B36, 1711–1712.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, G. & Sim, G. A. (1961). Acta Cryst. 14, 1262–1270.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKrausse, J. & Dunken, H. (1966). Acta Cryst. 20, 67–73.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPolito, M., D'Oria, E., Maini, L., Karamertzanis, P. G., Grepioni, F., Braga, D. & Price, S. L. (2008). CrystEngComm, 10, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, C. C., Shankland, N. & Florence, A. J. (1996). J. Chem. Soc. Faraday Trans. 92, 5051–5057.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds