organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyclo­hexyl­sulfinyl-2-methyl­naphtho­[2,1-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 27 February 2011; accepted 24 March 2011; online 31 March 2011)

In the title compound, C19H20O2S, the cyclo­hexyl ring adopts a chair conformation and the aryl­sulfinyl unit is positioned equatorial relative to the cyclo­hexyl group. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O hydrogen bonds. The O atom of the sulfinyl group is disordered over two orientations with site-occupancy factors of 0.923 (3) and 0.077 (3).

Related literature

For the pharmacological activity of naphtho­furan compounds, see: Einhorn et al. (1984[Einhorn, J., Demerseman, P., Royer, R., Cavier, R. & Gayral, P. (1984). Eur. J. Med. Chem. 19, 405-410.]); Hranjec et al. (2003[Hranjec, M., Grdisa, M., Pavelic, K., Boykin, D. W. & Karminski-Zamola, G. (2003). IL Farmaco, 58, 1319-1324.]); Mahadevan & Vaidya (2003[Mahadevan, K. M. & Vaidya, V. P. (2003). Indian J. Pharm. Sci. 65, 128-134.]). For structural studies of related 2-methyl­naphtho­[2,1-b]furan derivatives, see: Choi et al. (2006[Choi, H. D., Woo, H. M., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o3881-o3882.], 2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o1731-o1732.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20O2S

  • Mr = 312.41

  • Monoclinic, P 21 /n

  • a = 5.8424 (1) Å

  • b = 19.5900 (3) Å

  • c = 13.4314 (2) Å

  • β = 92.649 (1)°

  • V = 1535.62 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 K

  • 0.42 × 0.34 × 0.26 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.946

  • 14260 measured reflections

  • 3527 independent reflections

  • 3026 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.06

  • 3527 reflections

  • 210 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯O2Bi 0.98 2.12 2.848 (6) 130
C14—H14⋯O2Aii 1.00 2.38 3.2947 (19) 152
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds containing a naphthofuran ring have attracted much attention owing to their potent pharmacological properties such as antibacterial, antitumor and anthelmintic activities (Einhorn et al. , 1984, Hranjec et al., 2003, Mahadevan & Vaidya, 2003). As a part of our ongoing studies of the substituent effect on the solid state structures of 2-methylnaphtho[2,1-b]furan analogues (Choi et al., 2006, 2007), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphthofuran unit is essentially planar, with a mean deviation of 0.014 (1) Å from the least-squares plane defined by the thirteen constituent atoms. The cyclohexyl ring is in the chair form and arylsulfinyl moiety is positioned equatorial relative to the cyclohexyl group. The O atom of the sulfinyl group is disordered over two positions with site-occupancy factors, from refinement, of 0.923 (3) (part A) and 0.077 (3) (part B). The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds; the first one between a methyl H atom and and one of the disordered sulfinyl oxygen atoms(Table 1; C13—H13B···O2Bi), and the second one between a cyclohexyl H atom and the other disordered sulfinyl oxygen (Table 1; C14—H14···O2Aii).

Related literature top

For the pharmacological activity of naphthofuran compounds, see: Einhorn et al. (1984); Hranjec et al. (2003); Mahadevan & Vaidya (2003). For structural studies of related 2-methylnaphtho[2,1-b]furan derivatives, see: Choi et al. (2006, 2007).

Experimental top

77% 3-chloroperoxybenzoic acid (291 mg, 1.3 mmol) was added in small portions to a stirred solution of 1-cyclohexylsulfanyl-2-methylnaphtho[2,1-b] furan (355 mg, 1.2 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with a saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 74%, m.p. 429–430 K; Rf = 0.61 (hexane–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation frroomm acetone at room temperature

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) =1.2Ueq(C) for aryl, methine and methylene, and 1.5Ueq(C) for methyl H atoms. The O atom of sulfinyl group is disordered over two positions with site-ccupancy factors, from refinement of 0.923 (3) (part A) and 0.077 (3) (part B). The S—O distances were restrained to be within 0.001 Å of one another using the SADI and DELU commands.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. The O atom of sulfinyl group is disordered over two positions with site-occupancy factors, from refinement of 0.923 (3) (part A) and 0.077 (3) (part B).
[Figure 2] Fig. 2. A view of the C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x - 1/2, -y + 3/2,z - 1/2; (ii) x + 1, y, z; (iii) x + 1/2, - y + 3/2, z + 1/2 ; (iv) x - 1, y, z.]
1-Cyclohexylsulfinyl-2-methylnaphtho[2,1-b]furan top
Crystal data top
C19H20O2SF(000) = 664
Mr = 312.41Dx = 1.351 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6431 reflections
a = 5.8424 (1) Åθ = 2.6–27.5°
b = 19.5900 (3) ŵ = 0.22 mm1
c = 13.4314 (2) ÅT = 173 K
β = 92.649 (1)°Block, colourless
V = 1535.62 (4) Å30.42 × 0.34 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3527 independent reflections
Radiation source: rotating anode3026 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.037
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.8°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2125
Tmin = 0.916, Tmax = 0.946l = 1713
14260 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.104H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.6943P]
where P = (Fo2 + 2Fc2)/3
3527 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.56 e Å3
4 restraintsΔρmin = 0.49 e Å3
Crystal data top
C19H20O2SV = 1535.62 (4) Å3
Mr = 312.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8424 (1) ŵ = 0.22 mm1
b = 19.5900 (3) ÅT = 173 K
c = 13.4314 (2) Å0.42 × 0.34 × 0.26 mm
β = 92.649 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3527 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3026 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.946Rint = 0.037
14260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.06Δρmax = 0.56 e Å3
3527 reflectionsΔρmin = 0.49 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.41951 (7)0.69277 (2)0.70702 (3)0.02494 (12)
O10.37126 (19)0.80010 (6)0.45636 (8)0.0279 (3)
O2A0.1985 (2)0.65645 (7)0.69667 (10)0.0324 (4)0.923 (3)
O2B0.428 (3)0.7216 (7)0.8085 (4)0.032 (4)0.077 (3)
C10.4458 (3)0.74856 (8)0.60361 (11)0.0217 (3)
C20.6184 (3)0.80058 (8)0.59149 (11)0.0223 (3)
C30.8144 (3)0.82508 (8)0.64850 (12)0.0240 (3)
C40.8863 (3)0.80032 (9)0.74330 (12)0.0275 (4)
H40.80020.76560.77380.033*
C51.0795 (3)0.82587 (10)0.79219 (13)0.0349 (4)
H51.12640.80850.85590.042*
C61.2078 (3)0.87735 (10)0.74869 (15)0.0394 (5)
H61.34100.89470.78310.047*
C71.1428 (3)0.90261 (9)0.65739 (15)0.0363 (4)
H71.23160.93750.62880.044*
C80.9452 (3)0.87778 (8)0.60411 (13)0.0287 (4)
C90.8795 (3)0.90357 (9)0.50783 (14)0.0346 (4)
H90.97060.93810.47960.042*
C100.6905 (3)0.88046 (9)0.45488 (14)0.0338 (4)
H100.64700.89810.39090.041*
C110.5645 (3)0.82935 (8)0.49987 (12)0.0261 (3)
C120.3020 (3)0.75066 (8)0.52147 (12)0.0245 (3)
C130.0955 (3)0.71211 (9)0.48597 (13)0.0312 (4)
H13A0.13760.67910.43510.047*
H13B0.01900.74390.45720.047*
H13C0.03150.68780.54210.047*
C140.6408 (3)0.63113 (8)0.67666 (11)0.0218 (3)
H140.79190.65520.67730.026*
C150.5947 (3)0.59934 (8)0.57445 (12)0.0266 (3)
H15A0.60370.63500.52260.032*
H15B0.43810.57990.57020.032*
C160.7685 (3)0.54320 (9)0.55551 (13)0.0298 (4)
H16A0.73050.52170.49010.036*
H16B0.92320.56350.55300.036*
C170.7697 (3)0.48904 (9)0.63642 (14)0.0337 (4)
H17A0.88680.45410.62320.040*
H17B0.61840.46630.63590.040*
C180.8223 (3)0.52122 (9)0.73821 (13)0.0331 (4)
H18A0.97860.54080.74030.040*
H18B0.81750.48560.79040.040*
C190.6489 (3)0.57741 (9)0.75944 (12)0.0294 (4)
H19A0.49500.55690.76470.035*
H19B0.69200.59950.82390.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0245 (2)0.0235 (2)0.0274 (2)0.00162 (15)0.00739 (15)0.00115 (15)
O10.0266 (6)0.0291 (6)0.0277 (6)0.0003 (5)0.0021 (5)0.0036 (5)
O2A0.0207 (7)0.0343 (8)0.0425 (8)0.0019 (5)0.0062 (5)0.0037 (6)
O2B0.030 (8)0.022 (8)0.045 (7)0.003 (6)0.003 (6)0.014 (6)
C10.0208 (7)0.0193 (7)0.0251 (7)0.0015 (6)0.0029 (6)0.0013 (6)
C20.0225 (7)0.0188 (7)0.0259 (7)0.0019 (6)0.0042 (6)0.0017 (6)
C30.0224 (8)0.0200 (7)0.0297 (8)0.0003 (6)0.0039 (6)0.0065 (6)
C40.0264 (8)0.0275 (8)0.0287 (8)0.0014 (7)0.0018 (6)0.0066 (6)
C50.0320 (9)0.0392 (10)0.0331 (9)0.0013 (8)0.0027 (7)0.0119 (8)
C60.0266 (9)0.0409 (11)0.0504 (11)0.0073 (8)0.0003 (8)0.0200 (9)
C70.0291 (9)0.0293 (9)0.0510 (11)0.0079 (7)0.0080 (8)0.0116 (8)
C80.0272 (8)0.0211 (8)0.0384 (9)0.0012 (7)0.0078 (7)0.0060 (7)
C90.0369 (10)0.0245 (9)0.0434 (10)0.0058 (7)0.0112 (8)0.0024 (7)
C100.0381 (10)0.0280 (9)0.0356 (9)0.0004 (7)0.0058 (8)0.0076 (7)
C110.0245 (8)0.0242 (8)0.0297 (8)0.0014 (6)0.0018 (6)0.0004 (6)
C120.0235 (8)0.0229 (8)0.0274 (8)0.0024 (6)0.0033 (6)0.0010 (6)
C130.0258 (8)0.0359 (10)0.0315 (9)0.0028 (7)0.0015 (7)0.0034 (7)
C140.0192 (7)0.0203 (7)0.0260 (7)0.0001 (6)0.0020 (6)0.0012 (6)
C150.0295 (8)0.0243 (8)0.0260 (8)0.0041 (7)0.0007 (6)0.0015 (6)
C160.0317 (9)0.0251 (8)0.0327 (9)0.0044 (7)0.0023 (7)0.0043 (7)
C170.0328 (9)0.0227 (8)0.0454 (10)0.0048 (7)0.0009 (8)0.0005 (7)
C180.0338 (9)0.0292 (9)0.0362 (9)0.0051 (7)0.0013 (7)0.0074 (7)
C190.0314 (9)0.0289 (9)0.0279 (8)0.0019 (7)0.0023 (7)0.0034 (7)
Geometric parameters (Å, º) top
S1—O2B1.4741 (16)C10—C111.397 (2)
S1—O2A1.4752 (13)C10—H100.9500
S1—C11.7796 (16)C12—C131.483 (2)
S1—C141.8287 (15)C13—H13A0.9800
O1—C111.372 (2)C13—H13B0.9800
O1—C121.3782 (19)C13—H13C0.9800
C1—C121.356 (2)C14—C151.520 (2)
C1—C21.448 (2)C14—C191.530 (2)
C2—C111.377 (2)C14—H141.0000
C2—C31.431 (2)C15—C161.526 (2)
C3—C41.408 (2)C15—H15A0.9900
C3—C81.431 (2)C15—H15B0.9900
C4—C51.374 (2)C16—C171.519 (2)
C4—H40.9500C16—H16A0.9900
C5—C61.400 (3)C16—H16B0.9900
C5—H50.9500C17—C181.524 (3)
C6—C71.360 (3)C17—H17A0.9900
C6—H60.9500C17—H17B0.9900
C7—C81.416 (2)C18—C191.532 (2)
C7—H70.9500C18—H18A0.9900
C8—C91.424 (3)C18—H18B0.9900
C9—C101.363 (3)C19—H19A0.9900
C9—H90.9500C19—H19B0.9900
O2B—S1—O2A105.2 (6)C12—C13—H13A109.5
O2B—S1—C1119.1 (6)C12—C13—H13B109.5
O2A—S1—C1109.24 (8)H13A—C13—H13B109.5
O2B—S1—C14117.8 (6)C12—C13—H13C109.5
O2A—S1—C14106.57 (7)H13A—C13—H13C109.5
C1—S1—C1498.29 (7)H13B—C13—H13C109.5
C11—O1—C12106.44 (12)C15—C14—C19111.88 (13)
C12—C1—C2107.20 (14)C15—C14—S1111.98 (11)
C12—C1—S1125.51 (12)C19—C14—S1106.89 (10)
C2—C1—S1127.28 (12)C15—C14—H14108.7
C11—C2—C3119.04 (14)C19—C14—H14108.7
C11—C2—C1104.89 (14)S1—C14—H14108.7
C3—C2—C1136.07 (15)C14—C15—C16110.75 (13)
C4—C3—C2124.48 (15)C14—C15—H15A109.5
C4—C3—C8118.85 (15)C16—C15—H15A109.5
C2—C3—C8116.67 (15)C14—C15—H15B109.5
C5—C4—C3120.71 (16)C16—C15—H15B109.5
C5—C4—H4119.6H15A—C15—H15B108.1
C3—C4—H4119.6C17—C16—C15111.43 (14)
C4—C5—C6120.46 (18)C17—C16—H16A109.3
C4—C5—H5119.8C15—C16—H16A109.3
C6—C5—H5119.8C17—C16—H16B109.3
C7—C6—C5120.37 (17)C15—C16—H16B109.3
C7—C6—H6119.8H16A—C16—H16B108.0
C5—C6—H6119.8C16—C17—C18110.31 (14)
C6—C7—C8121.19 (17)C16—C17—H17A109.6
C6—C7—H7119.4C18—C17—H17A109.6
C8—C7—H7119.4C16—C17—H17B109.6
C7—C8—C9121.08 (16)C18—C17—H17B109.6
C7—C8—C3118.42 (16)H17A—C17—H17B108.1
C9—C8—C3120.49 (16)C17—C18—C19110.89 (14)
C10—C9—C8122.26 (16)C17—C18—H18A109.5
C10—C9—H9118.9C19—C18—H18A109.5
C8—C9—H9118.9C17—C18—H18B109.5
C9—C10—C11116.30 (16)C19—C18—H18B109.5
C9—C10—H10121.9H18A—C18—H18B108.1
C11—C10—H10121.9C14—C19—C18110.95 (13)
O1—C11—C2111.06 (14)C14—C19—H19A109.5
O1—C11—C10123.70 (15)C18—C19—H19A109.5
C2—C11—C10125.22 (16)C14—C19—H19B109.5
C1—C12—O1110.39 (14)C18—C19—H19B109.5
C1—C12—C13135.26 (15)H19A—C19—H19B108.0
O1—C12—C13114.34 (14)
O2B—S1—C1—C12129.3 (7)C12—O1—C11—C20.83 (17)
O2A—S1—C1—C128.48 (16)C12—O1—C11—C10177.79 (15)
C14—S1—C1—C12102.38 (15)C3—C2—C11—O1179.51 (13)
O2B—S1—C1—C249.3 (7)C1—C2—C11—O11.20 (17)
O2A—S1—C1—C2170.18 (13)C3—C2—C11—C101.9 (2)
C14—S1—C1—C278.96 (14)C1—C2—C11—C10177.40 (16)
C12—C1—C2—C111.11 (17)C9—C10—C11—O1179.38 (15)
S1—C1—C2—C11179.96 (12)C9—C10—C11—C21.0 (3)
C12—C1—C2—C3179.78 (17)C2—C1—C12—O10.64 (17)
S1—C1—C2—C30.9 (3)S1—C1—C12—O1179.53 (10)
C11—C2—C3—C4179.47 (15)C2—C1—C12—C13179.33 (17)
C1—C2—C3—C41.5 (3)S1—C1—C12—C131.8 (3)
C11—C2—C3—C81.3 (2)C11—O1—C12—C10.08 (17)
C1—C2—C3—C8177.71 (16)C11—O1—C12—C13178.90 (13)
C2—C3—C4—C5178.74 (15)O2B—S1—C14—C15173.0 (7)
C8—C3—C4—C50.5 (2)O2A—S1—C14—C1555.20 (13)
C3—C4—C5—C60.3 (3)C1—S1—C14—C1557.80 (12)
C4—C5—C6—C70.1 (3)O2B—S1—C14—C1950.1 (7)
C5—C6—C7—C80.0 (3)O2A—S1—C14—C1967.66 (12)
C6—C7—C8—C9179.00 (17)C1—S1—C14—C19179.35 (11)
C6—C7—C8—C30.1 (3)C19—C14—C15—C1654.42 (18)
C4—C3—C8—C70.3 (2)S1—C14—C15—C16174.40 (11)
C2—C3—C8—C7178.92 (14)C14—C15—C16—C1756.20 (18)
C4—C3—C8—C9179.24 (15)C15—C16—C17—C1857.71 (19)
C2—C3—C8—C90.0 (2)C16—C17—C18—C1957.25 (19)
C7—C8—C9—C10179.84 (17)C15—C14—C19—C1854.40 (18)
C3—C8—C9—C101.0 (3)S1—C14—C19—C18177.31 (12)
C8—C9—C10—C110.5 (3)C17—C18—C19—C1455.59 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O2Bi0.982.122.848 (6)130
C14—H14···O2Aii1.002.383.2947 (19)152
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H20O2S
Mr312.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)5.8424 (1), 19.5900 (3), 13.4314 (2)
β (°) 92.649 (1)
V3)1535.62 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.42 × 0.34 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.916, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
14260, 3527, 3026
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.06
No. of reflections3527
No. of parameters210
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.49

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O2Bi0.982.122.848 (6)130
C14—H14···O2Aii1.002.383.2947 (19)152
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o1731–o1732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Woo, H. M., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o3881–o3882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEinhorn, J., Demerseman, P., Royer, R., Cavier, R. & Gayral, P. (1984). Eur. J. Med. Chem. 19, 405–410.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHranjec, M., Grdisa, M., Pavelic, K., Boykin, D. W. & Karminski-Zamola, G. (2003). IL Farmaco, 58, 1319–1324.  CrossRef PubMed CAS Google Scholar
First citationMahadevan, K. M. & Vaidya, V. P. (2003). Indian J. Pharm. Sci. 65, 128–134.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds