organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyridine-3-carboxamidinium chloride

aCollege of Chemical Engineering & Materials, Eastern Liaoning University, No. 325 Wenhua Road, Yuanbao District, Dandong City, Liaoning Province 118003, People's Republic of China, and bExperiment Center, Eastern Liaoning University, No. 325 Wenhua Road, Yuanbao District, Dandong City, Liaoning Province 118003, People's Republic of China
*Correspondence e-mail: berylliu8090@sina.com

(Received 17 November 2010; accepted 20 January 2011; online 5 March 2011)

The title compound, C6H8N3+·Cl, crystallizes with two formula units in the asymmetric unit. The cations are non-planar with the –C(NH2)2 groups twisted relative to the ring planes by 36.7 (3) and 37.8 (3)°. The cations are linked into chains through N—H⋯N hydrogen bonds. N—H⋯Cl hydrogen bonds link the chains into a three-dimensional network.

Related literature

For structures of pyridine-carboxamidinium chlorides, see: Fan et al. (2009[Fan, P., Wang, L. & Zhang, H. (2009). Acta Cryst. E65, o2408.]); Chen et al. (2010[Chen, Q., Zhang, H., Zhang, F. & Liu, F. (2010). Acta Cryst. E66, o3169.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N3+·Cl

  • Mr = 157.60

  • Orthorhombic, P n a 21

  • a = 10.9485 (7) Å

  • b = 33.1581 (14) Å

  • c = 4.1488 (5) Å

  • V = 1506.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.845, Tmax = 0.930

  • 14201 measured reflections

  • 3213 independent reflections

  • 2953 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.071

  • S = 1.00

  • 3213 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1246 Friedel pairs

  • Flack parameter: 0.0019 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯N4 0.86 2.07 2.880 (2) 157
N5—H5B⋯Cl2 0.86 2.29 3.1403 (15) 170
N6—H6B⋯Cl1 0.86 2.36 3.1562 (16) 155
N2—H2A⋯N1i 0.86 2.22 2.990 (2) 149
N2—H2B⋯Cl2ii 0.86 2.31 3.1452 (13) 165
N3—H3A⋯Cl2iii 0.86 2.27 3.1040 (16) 164
N5—H5A⋯Cl1iv 0.86 2.46 3.2373 (16) 150
N6—H6A⋯Cl1iv 0.86 2.41 3.2013 (16) 152
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (iii) x, y, z+1; (iv) [-x+2, -y+1, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

During the last decade, much interest has been focused on the synthesis of pyridine carboximidamidate derivatives because of their very potent antibacterial activities, interesting biological properties and applications in coordination chemistry.

The title compound is an organic salt which crystallizes with two formula units in the asymmetric unit (Fig. 1). The molecules are nonplanar with the C(NH2)2 groups twisted out of the ring planes with the twist angles of 36.7 (3) ° and 37.8 (3) °. The bond lengths and angles in title compound are in the normal ranges comparable with those in the related structure (Fan et al., 2009).

In the crystal structure, pyridine-3-carboximidamidate cations are linked by N—H···N hydrogen bonds to form one-dimensional supramolecular molecular chain (Fig. 2). Cl1 ion bridges two pyridine carboximidamidate cations through N—H···Cl hydrogen bonding and Cl2 ion triple-bridges three cations through N—H···Cl hydrogen bonding. Thus, one-dimensional chains of cations are linked by N—H···Cl interactions into a three-dimensional network (Fig. 3).

Related literature top

For structures of pyridine-carboxamidinium chlorides, see: Fan et al. (2009); Chen et al. (2010).

Experimental top

To a solution of sodium methoxide (5.15 mmol) in methnol (50 ml) was added 3-cyanopyridine (5.2 g, 4.99 mmol). The mixture was stirred at room temperature for 2 h. Then ammonium chloride (2.9 g, 5.42 mmol) was slowly added to the resulting solution and the mixture was stirred at room temperature for 48 h. The resulting suspension was filtered and the solvent was removed from the filtrate under reduced pressure. Purification by washing with diethylether gave 3-amidinopyridine chloride (5.74 g, 94%) as an off-white solid. Block-shaped crystals suitable for X-ray diffraction were obtained by recrystallization from from ethanol.

Refinement top

H atoms were placed in calculated positions and treated as riding on their parent atoms (C—H = 0.93 Å, N-H = 0.86 Å) and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of one-dimensional supramolecular chain in the title compound.
[Figure 3] Fig. 3. The crystal packing of the title compound shown down the x axis. Hydrogen bonds are shown with dashed lines.
Pyridine-3-carboxamidinium chloride top
Crystal data top
C6H8N3+·ClF(000) = 656
Mr = 157.60Dx = 1.390 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3213 reflections
a = 10.9485 (7) Åθ = 3.1–27.5°
b = 33.1581 (14) ŵ = 0.43 mm1
c = 4.1488 (5) ÅT = 293 K
V = 1506.1 (2) Å3Block, colorless
Z = 80.40 × 0.35 × 0.17 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3213 independent reflections
Radiation source: fine-focus sealed tube2953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1414
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 4242
Tmin = 0.845, Tmax = 0.930l = 45
14201 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.3352P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.002
S = 1.00Δρmax = 0.18 e Å3
3213 reflectionsΔρmin = 0.18 e Å3
182 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.061 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1246 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.0019 (5)
Crystal data top
C6H8N3+·ClV = 1506.1 (2) Å3
Mr = 157.60Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 10.9485 (7) ŵ = 0.43 mm1
b = 33.1581 (14) ÅT = 293 K
c = 4.1488 (5) Å0.40 × 0.35 × 0.17 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3213 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2953 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.930Rint = 0.033
14201 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.18 e Å3
S = 1.00Δρmin = 0.18 e Å3
3213 reflectionsAbsolute structure: Flack (1983), 1246 Friedel pairs
182 parametersAbsolute structure parameter: 0.0019 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.80408 (4)0.549620 (13)0.75756 (15)0.05193 (15)
Cl20.82982 (4)0.318730 (12)0.22533 (15)0.04986 (15)
N20.49341 (12)0.25905 (4)1.1812 (4)0.0384 (3)
H2A0.56350.25411.26610.046*
H2B0.43720.24091.18350.046*
N10.17495 (13)0.28055 (4)0.6167 (4)0.0392 (4)
N40.56768 (13)0.39520 (4)0.6649 (4)0.0427 (4)
C30.30154 (15)0.34172 (5)0.9320 (5)0.0359 (4)
H30.34440.36221.03480.043*
C20.35090 (13)0.30307 (5)0.9096 (4)0.0294 (3)
N30.55529 (14)0.32232 (5)1.0408 (6)0.0540 (5)
H3A0.62610.31811.12390.065*
H3B0.53900.34510.95210.065*
C10.28379 (13)0.27351 (4)0.7498 (5)0.0321 (3)
H10.31640.24770.73520.038*
N50.93657 (14)0.40511 (4)0.3554 (5)0.0515 (5)
H5A1.01430.40750.33290.062*
H5B0.90300.38170.34310.062*
N60.91881 (14)0.47268 (4)0.4274 (5)0.0511 (5)
H6A0.99650.47540.40530.061*
H6B0.87390.49350.46220.061*
C70.68741 (16)0.40022 (5)0.6164 (5)0.0376 (4)
H70.74090.38090.69710.045*
C120.86919 (16)0.43713 (5)0.4083 (5)0.0366 (4)
C60.47248 (14)0.29402 (5)1.0493 (5)0.0328 (3)
C50.12821 (16)0.31783 (5)0.6479 (5)0.0448 (5)
H50.05120.32280.56240.054*
C80.73540 (15)0.43301 (4)0.4505 (4)0.0332 (4)
C40.18844 (16)0.34905 (5)0.7998 (5)0.0440 (5)
H40.15330.37450.81260.053*
C90.65596 (16)0.46198 (5)0.3279 (5)0.0400 (4)
H90.68530.48460.21980.048*
C110.49241 (17)0.42297 (5)0.5413 (5)0.0432 (4)
H110.40890.41960.57180.052*
C100.53172 (17)0.45609 (5)0.3720 (5)0.0433 (4)
H100.47570.47440.28790.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0348 (2)0.0464 (2)0.0746 (4)0.00362 (16)0.0023 (3)0.0112 (3)
Cl20.0345 (2)0.03388 (19)0.0812 (4)0.00596 (15)0.0204 (2)0.0130 (2)
N20.0260 (6)0.0361 (7)0.0531 (10)0.0005 (5)0.0083 (6)0.0086 (7)
N10.0318 (7)0.0404 (7)0.0454 (9)0.0045 (6)0.0117 (6)0.0005 (7)
N40.0342 (7)0.0342 (6)0.0597 (11)0.0032 (5)0.0011 (7)0.0042 (7)
C30.0339 (8)0.0309 (8)0.0428 (10)0.0015 (6)0.0054 (7)0.0025 (8)
C20.0230 (7)0.0320 (7)0.0332 (8)0.0020 (6)0.0022 (6)0.0043 (7)
N30.0291 (7)0.0421 (8)0.0907 (14)0.0092 (6)0.0213 (8)0.0190 (9)
C10.0292 (7)0.0307 (7)0.0363 (9)0.0015 (5)0.0041 (8)0.0015 (8)
N50.0326 (7)0.0328 (7)0.0890 (15)0.0001 (6)0.0051 (8)0.0079 (8)
N60.0359 (8)0.0336 (7)0.0837 (14)0.0037 (6)0.0103 (8)0.0099 (9)
C70.0348 (8)0.0285 (7)0.0495 (11)0.0022 (6)0.0024 (7)0.0008 (8)
C120.0347 (8)0.0318 (7)0.0433 (10)0.0002 (6)0.0015 (7)0.0025 (8)
C60.0239 (7)0.0348 (8)0.0396 (9)0.0021 (6)0.0046 (7)0.0004 (7)
C50.0281 (8)0.0510 (10)0.0552 (13)0.0046 (7)0.0141 (8)0.0008 (9)
C80.0324 (8)0.0276 (7)0.0397 (10)0.0003 (6)0.0010 (7)0.0046 (7)
C40.0364 (8)0.0391 (8)0.0565 (13)0.0098 (7)0.0067 (8)0.0020 (9)
C90.0413 (9)0.0313 (7)0.0473 (12)0.0021 (7)0.0011 (8)0.0036 (7)
C110.0306 (8)0.0410 (9)0.0580 (12)0.0010 (7)0.0038 (8)0.0026 (9)
C100.0400 (9)0.0383 (9)0.0516 (11)0.0076 (7)0.0066 (8)0.0031 (8)
Geometric parameters (Å, º) top
N2—C61.303 (2)N5—H5A0.8600
N2—H2A0.8600N5—H5B0.8600
N2—H2B0.8600N6—C121.300 (2)
N1—C11.334 (2)N6—H6A0.8600
N1—C51.344 (2)N6—H6B0.8600
N4—C71.337 (2)C7—C81.390 (2)
N4—C111.338 (2)C7—H70.9300
C3—C41.376 (2)C12—C81.482 (2)
C3—C21.394 (2)C5—C41.380 (3)
C3—H30.9300C5—H50.9300
C2—C11.393 (2)C8—C91.392 (2)
C2—C61.483 (2)C4—H40.9300
N3—C61.305 (2)C9—C101.386 (3)
N3—H3A0.8600C9—H90.9300
N3—H3B0.8600C11—C101.373 (3)
C1—H10.9300C11—H110.9300
N5—C121.311 (2)C10—H100.9300
C6—N2—H2A120.0C8—C7—H7118.6
C6—N2—H2B120.0N6—C12—N5120.60 (16)
H2A—N2—H2B120.0N6—C12—C8119.31 (15)
C1—N1—C5117.47 (14)N5—C12—C8120.08 (14)
C7—N4—C11117.45 (16)N2—C6—N3121.94 (15)
C4—C3—C2118.99 (16)N2—C6—C2120.16 (14)
C4—C3—H3120.5N3—C6—C2117.88 (15)
C2—C3—H3120.5N1—C5—C4123.50 (16)
C1—C2—C3118.31 (14)N1—C5—H5118.2
C1—C2—C6121.15 (14)C4—C5—H5118.2
C3—C2—C6120.54 (14)C7—C8—C9118.99 (16)
C6—N3—H3A120.0C7—C8—C12120.30 (15)
C6—N3—H3B120.0C9—C8—C12120.71 (15)
H3A—N3—H3B120.0C3—C4—C5118.66 (15)
N1—C1—C2123.03 (14)C3—C4—H4120.7
N1—C1—H1118.5C5—C4—H4120.7
C2—C1—H1118.5C10—C9—C8117.87 (16)
C12—N5—H5A120.0C10—C9—H9121.1
C12—N5—H5B120.0C8—C9—H9121.1
H5A—N5—H5B120.0N4—C11—C10123.61 (17)
C12—N6—H6A120.0N4—C11—H11118.2
C12—N6—H6B120.0C10—C11—H11118.2
H6A—N6—H6B120.0C11—C10—C9119.20 (17)
N4—C7—C8122.86 (16)C11—C10—H10120.4
N4—C7—H7118.6C9—C10—H10120.4
C4—C3—C2—C10.8 (3)N4—C7—C8—C12179.21 (18)
C4—C3—C2—C6179.98 (18)N6—C12—C8—C7141.6 (2)
C5—N1—C1—C21.7 (3)N5—C12—C8—C737.8 (3)
C3—C2—C1—N10.2 (3)N6—C12—C8—C937.8 (3)
C6—C2—C1—N1178.99 (18)N5—C12—C8—C9142.8 (2)
C11—N4—C7—C81.2 (3)C2—C3—C4—C50.4 (3)
C1—C2—C6—N236.7 (3)N1—C5—C4—C31.2 (3)
C3—C2—C6—N2144.10 (19)C7—C8—C9—C101.4 (3)
C1—C2—C6—N3144.72 (19)C12—C8—C9—C10179.20 (17)
C3—C2—C6—N334.5 (3)C7—N4—C11—C100.6 (3)
C1—N1—C5—C42.1 (3)N4—C11—C10—C91.0 (3)
N4—C7—C8—C90.2 (3)C8—C9—C10—C111.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N40.862.072.880 (2)157
N5—H5B···Cl20.862.293.1403 (15)170
N6—H6B···Cl10.862.363.1562 (16)155
N2—H2A···N1i0.862.222.990 (2)149
N2—H2B···Cl2ii0.862.313.1452 (13)165
N3—H3A···Cl2iii0.862.273.1040 (16)164
N5—H5A···Cl1iv0.862.463.2373 (16)150
N6—H6A···Cl1iv0.862.413.2013 (16)152
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z+1; (iii) x, y, z+1; (iv) x+2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC6H8N3+·Cl
Mr157.60
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)10.9485 (7), 33.1581 (14), 4.1488 (5)
V3)1506.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.40 × 0.35 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.845, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
14201, 3213, 2953
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 1.00
No. of reflections3213
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18
Absolute structureFlack (1983), 1246 Friedel pairs
Absolute structure parameter0.0019 (5)

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N40.862.072.880 (2)157
N5—H5B···Cl20.862.293.1403 (15)170
N6—H6B···Cl10.862.363.1562 (16)155
N2—H2A···N1i0.862.222.990 (2)149
N2—H2B···Cl2ii0.862.313.1452 (13)165
N3—H3A···Cl2iii0.862.273.1040 (16)164
N5—H5A···Cl1iv0.862.463.2373 (16)150
N6—H6A···Cl1iv0.862.413.2013 (16)152
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z+1; (iii) x, y, z+1; (iv) x+2, y+1, z1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Education Department of Liaoning Province (2009 A 265) and Liaoning University.

References

First citationChen, Q., Zhang, H., Zhang, F. & Liu, F. (2010). Acta Cryst. E66, o3169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFan, P., Wang, L. & Zhang, H. (2009). Acta Cryst. E65, o2408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds