metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(2-amino­ethane­sulfon­ato-κ2N,O)nickel(II)]-μ-1,4-bis­­(1H-imid­azol-1-yl)benzene-κ2N3:N3′]

aChemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
*Correspondence e-mail: liujinbiao07@126.com

(Received 18 February 2011; accepted 10 March 2011; online 15 March 2011)

In the hydro­thermally prepared title coordination polymer, [Ni(C2H6NO3S)2(C12H10N4)]n, the NiII ion and the 1,4-bis­(1H-imidazol-1-yl)benzene ligand occupy special positions on inversion centers. The metal ion shows a slightly distorted octa­hedral coordination geometry, being linked to two N atoms of two 1,4-bis­(imidazol-1-yl)benzene ligands and to two O and two N atoms of two chelating 2-amino­ethane­sulfonate ligands. The 1,4-bis­(imidazol-1-yl)benzene ligands bridge symmetry-related NiII ions forming polymeric chains along the [110] direction.

Related literature

For some examples of transition metal complexes of 2-amino­ethane­sulfonic acid (taurine), see: Cai et al. (2004[Cai, J.-H., Jiang, Y.-M., Wang, X.-J. & Liu, Z.-M. (2004). Acta Cryst. E60, m1659-m1661.], 2006[Cai, J.-H., Jiang, Y.-M. & Ng, S. W. (2006). Acta Cryst. E62, m3059-m3061.]); Jiang et al. (2006[Jiang, Y.-M., Wang, X.-J., Ying, X.-J., Zhong, F., Cai, J.-H. & He, K.-H. (2006). Inorg. Chem. Commun. 9, 1063-1066.], 2005[Jiang, Y.-M., Cai, J.-H., Liu, Z.-M. & Liu, X.-H. (2005). Acta Cryst. E61, m878-m880.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H6NO3S)2(C12H10N4)]

  • Mr = 517.23

  • Monoclinic, P 21 /c

  • a = 7.4559 (15) Å

  • b = 11.494 (2) Å

  • c = 12.481 (3) Å

  • β = 96.19 (3)°

  • V = 1063.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 295 K

  • 0.15 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.841, Tmax = 0.891

  • 10967 measured reflections

  • 2426 independent reflections

  • 1974 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.097

  • S = 1.14

  • 2426 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

N1—Ni1 2.079 (2)
Ni1—O1 2.1070 (18)
Ni1—N2 2.126 (2)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Taurine, an amino acid containing sulfur, has important physiological functions. In fact, taurine is one of the most abundant free amino-acid-like compounds found in the heart, the skeletal muscles and the nervous system. As part of our research on taurine complexes we report here the synthesis and crystal structure of the title nikel(II) complex with taurine and 1,4-bis(imidazol-1-yl)benzene.

The crystal structure shows that two taurine anions chelate to the NiII ion via terminal N and O atoms. In addition the NiII ion is coordinated to two bridging 1,4-bis(imidazol-1-yl)benzene ligands to form one-dimensional polymer. The NiII ion and 1,4-bis(imidazol-1-yl)benzene ligand are located on inversion center. The coordination environment around nickel(II) is shown in Fig. 1. The NiII atom is six-coordinated in a distorted octahedral geometry. N-H···O and C-H···O hydrogen bonds assemble the coordination polymers into a three-dimensional supramolecular network (Fig. 2). One of the taurine N–H groups is not involved in hydrogen bonding.

Related literature top

For some examples of transition metal complexes of 2-aminoethanesulfonic acid (taurine), see: Cai et al. (2004, 2006); Jiang et al. (2006, 2005).

Experimental top

Reagents and solvents used were of commercially available quality. A water solution (10 ml) of 2-aminoethanesulfonic acid (2.0 mmol) and KOH(2.0 mmol) was mixed with water solution (10 ml) of Ni(NO3)2.2H2O (1.0 mmol). 1,4-Bis(imidazol-1-yl)benzene (1 mmol) was added to the mixture, then dropped into a 23 ml Teflon-stainless steel reactor and heated at 423 K for 4 d. After cooling to room temperature, single crystals of the title compound were obtained (yield 30%). Analysis found (%): C37.27, H 4.36, N 16.32; calculated (%): C 37.14, H 4.19, N 16.24, IR (KBr, cm-1): 1031, 1166, 1233 (–SO3), 3256.6, 3300.8 (N—H).

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å, N—H = 0.90 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids shown at the 30% probability level. Symmetry code for the atoms with the B label: 2-x, -y, 2-z.
[Figure 2] Fig. 2. The crystal packing viewed down the a axis. Hydrogen bonds and short contacts are shown with dashed lines.
catena-Poly[[bis(2-aminoethanesulfonato- κ2N,O)nickel(II)]-µ-1,4-bis(1H-imidazol-1- yl)benzene-κ2N3:N3'] top
Crystal data top
[Ni(C2H6NO3S)2(C12H10N4)]F(000) = 536
Mr = 517.23Dx = 1.615 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9767 reflections
a = 7.4559 (15) Åθ = 3.0–27.5°
b = 11.494 (2) ŵ = 1.16 mm1
c = 12.481 (3) ÅT = 295 K
β = 96.19 (3)°Block, blue
V = 1063.4 (4) Å30.15 × 0.13 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
2426 independent reflections
Radiation source: fine-focus sealed tube1974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.841, Tmax = 0.891k = 1414
10967 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.7272P]
where P = (Fo2 + 2Fc2)/3
2426 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ni(C2H6NO3S)2(C12H10N4)]V = 1063.4 (4) Å3
Mr = 517.23Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.4559 (15) ŵ = 1.16 mm1
b = 11.494 (2) ÅT = 295 K
c = 12.481 (3) Å0.15 × 0.13 × 0.10 mm
β = 96.19 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2426 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1974 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.891Rint = 0.056
10967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.14Δρmax = 0.28 e Å3
2426 reflectionsΔρmin = 0.47 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8455 (3)0.0438 (2)0.85704 (19)0.0309 (6)
H1A0.89670.10700.83040.037*
H1B0.73650.06610.87440.037*
C10.8139 (5)0.0411 (3)0.7680 (3)0.0441 (9)
H1C0.74680.10690.79160.053*
H1D0.74200.00500.70760.053*
Ni11.00000.00001.00000.01926 (15)
S11.10651 (11)0.18961 (6)0.81832 (6)0.0343 (2)
N20.7881 (3)0.11099 (19)1.03850 (19)0.0270 (5)
O11.1241 (3)0.14000 (16)0.92774 (15)0.0286 (5)
N30.6253 (3)0.27144 (19)1.04500 (18)0.0252 (5)
C70.5608 (4)0.3874 (2)1.0207 (2)0.0233 (6)
O30.9938 (3)0.29267 (19)0.8110 (2)0.0523 (7)
O21.2806 (3)0.2066 (2)0.7786 (2)0.0556 (7)
C30.7630 (4)0.2182 (2)1.0020 (2)0.0310 (7)
H30.83140.25290.95270.037*
C50.6610 (4)0.0958 (3)1.1103 (3)0.0363 (8)
H50.64550.02781.14860.044*
C40.5626 (4)0.1936 (3)1.1170 (3)0.0352 (8)
H40.47140.20611.16090.042*
C60.6539 (5)0.4610 (3)0.9619 (3)0.0551 (11)
H60.75840.43530.93490.066*
C20.9901 (5)0.0834 (3)0.7320 (3)0.0456 (9)
H2A0.96590.11630.66040.055*
H2B1.06900.01690.72700.055*
C80.4054 (5)0.4257 (3)1.0584 (3)0.0551 (11)
H80.33930.37571.09770.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0350 (14)0.0287 (13)0.0289 (14)0.0018 (11)0.0032 (11)0.0013 (11)
C10.051 (2)0.046 (2)0.0330 (19)0.0049 (17)0.0058 (16)0.0065 (15)
Ni10.0240 (3)0.0133 (2)0.0217 (3)0.0050 (2)0.00797 (19)0.00226 (19)
S10.0476 (5)0.0250 (4)0.0340 (4)0.0060 (3)0.0211 (4)0.0105 (3)
N20.0303 (13)0.0198 (12)0.0326 (14)0.0079 (10)0.0114 (11)0.0040 (10)
O10.0359 (12)0.0209 (10)0.0307 (11)0.0019 (9)0.0104 (9)0.0061 (8)
N30.0255 (13)0.0181 (12)0.0339 (13)0.0077 (10)0.0114 (11)0.0028 (10)
C70.0245 (14)0.0172 (13)0.0289 (15)0.0076 (11)0.0061 (12)0.0001 (11)
O30.0687 (18)0.0327 (13)0.0596 (16)0.0189 (12)0.0253 (13)0.0237 (11)
O20.0602 (17)0.0518 (16)0.0625 (17)0.0040 (12)0.0420 (14)0.0083 (13)
C30.0374 (17)0.0217 (15)0.0375 (17)0.0116 (12)0.0199 (14)0.0063 (12)
C50.0379 (18)0.0232 (16)0.051 (2)0.0074 (13)0.0217 (16)0.0092 (14)
C40.0314 (17)0.0276 (16)0.050 (2)0.0064 (13)0.0205 (15)0.0082 (14)
C60.050 (2)0.0357 (18)0.088 (3)0.0263 (17)0.050 (2)0.0252 (19)
C20.070 (3)0.044 (2)0.0235 (17)0.0024 (18)0.0096 (16)0.0078 (14)
C80.052 (2)0.0331 (19)0.089 (3)0.0228 (17)0.048 (2)0.0285 (19)
Geometric parameters (Å, º) top
N1—C11.479 (4)N3—C31.355 (3)
N1—Ni12.079 (2)N3—C41.384 (4)
N1—H1A0.9000N3—C71.438 (3)
N1—H1B0.9000C7—C61.359 (4)
C1—C21.513 (5)C7—C81.369 (4)
C1—H1C0.9700C3—H30.9300
C1—H1D0.9700C5—C41.349 (4)
Ni1—O12.1070 (18)C5—H50.9300
Ni1—N22.126 (2)C4—H40.9300
S1—O31.450 (2)C6—H60.9300
S1—O21.452 (2)C2—H2A0.9700
S1—O11.473 (2)C2—H2B0.9700
S1—C21.790 (4)C8—C6i1.390 (4)
N2—C31.320 (3)C8—H80.9300
N2—C51.384 (4)
C1—N1—Ni1120.9 (2)O1—S1—C2106.43 (13)
C1—N1—H1A107.1C3—N2—C5105.1 (2)
Ni1—N1—H1A107.1C3—N2—Ni1124.28 (19)
C1—N1—H1B107.1C5—N2—Ni1130.42 (18)
Ni1—N1—H1B107.1S1—O1—Ni1133.89 (13)
H1A—N1—H1B106.8C3—N3—C4106.8 (2)
N1—C1—C2111.2 (3)C3—N3—C7125.9 (2)
N1—C1—H1C109.4C4—N3—C7127.4 (2)
C2—C1—H1C109.4C6—C7—C8119.1 (3)
N1—C1—H1D109.4C6—C7—N3120.8 (2)
C2—C1—H1D109.4C8—C7—N3120.1 (3)
H1C—C1—H1D108.0N2—C3—N3111.7 (2)
N1ii—Ni1—N1180.0N2—C3—H3124.1
N1ii—Ni1—O1ii92.64 (9)N3—C3—H3124.1
N1—Ni1—O1ii87.36 (9)C4—C5—N2110.5 (3)
N1ii—Ni1—O187.36 (9)C4—C5—H5124.8
N1—Ni1—O192.64 (9)N2—C5—H5124.8
O1ii—Ni1—O1180.0C5—C4—N3105.9 (3)
N1ii—Ni1—N2ii89.01 (10)C5—C4—H4127.0
N1—Ni1—N2ii90.99 (10)N3—C4—H4127.0
O1ii—Ni1—N2ii90.57 (8)C7—C6—C8i120.8 (3)
O1—Ni1—N2ii89.43 (8)C7—C6—H6119.6
N1ii—Ni1—N290.99 (10)C8i—C6—H6119.6
N1—Ni1—N289.01 (10)C1—C2—S1114.9 (2)
O1ii—Ni1—N289.43 (8)C1—C2—H2A108.5
O1—Ni1—N290.57 (8)S1—C2—H2A108.5
N2ii—Ni1—N2180.000 (1)C1—C2—H2B108.5
O3—S1—O2113.74 (15)S1—C2—H2B108.5
O3—S1—O1111.58 (13)H2A—C2—H2B107.5
O2—S1—O1112.03 (14)C7—C8—C6i120.1 (3)
O3—S1—C2106.22 (17)C7—C8—H8119.9
O2—S1—C2106.24 (16)C6i—C8—H8119.9
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1a···O3iii0.902.333.148 (3)151
C3—H3···O10.932.593.075 (4)113
C3—H3···O30.932.293.203 (4)165
C4—H4···O2iv0.932.373.274 (4)163
C8—H8···O2iv0.932.533.359 (4)149
Symmetry codes: (iii) x+2, y1/2, z+3/2; (iv) x1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2H6NO3S)2(C12H10N4)]
Mr517.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.4559 (15), 11.494 (2), 12.481 (3)
β (°) 96.19 (3)
V3)1063.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.15 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.841, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
10967, 2426, 1974
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.097, 1.14
No. of reflections2426
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.47

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
N1—Ni12.079 (2)Ni1—N22.126 (2)
Ni1—O12.1070 (18)
 

Acknowledgements

This work was supported by the Natural Science Foundation of Tian Jin.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J.-H., Jiang, Y.-M. & Ng, S. W. (2006). Acta Cryst. E62, m3059–m3061.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCai, J.-H., Jiang, Y.-M., Wang, X.-J. & Liu, Z.-M. (2004). Acta Cryst. E60, m1659–m1661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, Y.-M., Cai, J.-H., Liu, Z.-M. & Liu, X.-H. (2005). Acta Cryst. E61, m878–m880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, Y.-M., Wang, X.-J., Ying, X.-J., Zhong, F., Cai, J.-H. & He, K.-H. (2006). Inorg. Chem. Commun. 9, 1063–1066.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds