organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{2-[5-(3,5-Di­fluoro­phen­yl)-2-methyl­thio­phen-3-yl]-3,3,4,4,5,5-hexa­fluoro­cyclo­pent-1-en-1-yl}-1,5-di­methyl­pyrrole-2-carbo­nitrile

aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
*Correspondence e-mail: fan200203@163.com

(Received 27 February 2011; accepted 15 March 2011; online 23 March 2011)

In the title compound, C23H14F8N2S, the dihedral angles between the pyrrole and thio­phene groups and the almost planar C—C=C—C unit of the cyclo­pentene ring (r.m.s. deviation = 0.4193 Å) are 43.6 (5) and 50.1 (2)°, respectively. The distance of 3.612 (3) Å between the potentially reactive C atoms of the two heteroaryl substituents is short enough to enable a photocyclization reaction.

Related literature

The title compound belongs to a new family of organic photochromic diaryl­ethene compounds with an unsymmetrically substituted hexa­fluoro­cyclo­pentene unit. For background to these compounds, see: Pu et al. (2007[Pu, S.-Z., Liu, G., Shen, L. & Xu, J.-K. (2007). Org. Lett., 9, 2139-2142.]); Liu et al. (2011[Liu, G., Pu, S.-Z., Wang, X.-M., Liu, W.-J. & Yang, T.-S. (2011). Dyes Pigments, 90, 71-81.]). For details of the synthesis, see: Fan et al. (2011[Fan, C.-B., Yang, P., Wang, X.-M., Liu, G., Jiang, X.-X., Chen, H.-Z., Tao, X.-T., Wang, M. & Jiang, M.-H. (2011). Sol. Energy Mater. Sol. Cells, 95, 992-1000.]).

[Scheme 1]

Experimental

Crystal data
  • C23H14F8N2S

  • Mr = 502.42

  • Monoclinic, P 21 /c

  • a = 11.873 (2) Å

  • b = 12.063 (2) Å

  • c = 16.208 (3) Å

  • β = 109.225 (3)°

  • V = 2191.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 294 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.947, Tmax = 0.973

  • 10859 measured reflections

  • 3870 independent reflections

  • 2075 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.108

  • S = 1.00

  • 3870 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound when dissolved in hexane shows photochromism. Upon irradiation with 365 nm light, the colorless hexane solution turns blue rapidly. The blue compound displays an absorption maximum at 592 nm. Upon irradiation with visible light with wavelength longer than 510 nm, the blue hexane solution reverts to its initial colorless state; a colorless hexane solution of the title compound has two absorption maximum at 253 nm and 294 nm. In a polymethylmethacrylate amorphous film, the title diarylethene also exhibits photochromism similar to that in hexane.

Related literature top

The title compound belongs to a new family of organic photochromic diarylethene compounds with an unsymmetrically substituted hexafluorocyclopentene unit. For background to these compounds, see: Pu et al. (2007); Liu et al. (2011). For details of the synthesis, see: Fan et al. (2011).

Experimental top

To a tetrahydrofuran solution of 1-bromo-3,5-difluorobenzene (1.93 g, 10.0 mmol) was added 3-bromo-2-methyl-5-thienylboronic acid (2.50 g, 11.3 mmol) (Fan et al., 2011) in the presence of Pd(PPh3)4 (0.3 g) and Na2CO3 (6.4 g, 60 mmol) in 20 ml H2O. After refluxing for 15 h, the product, 3-Bromo-2-methyl-5-(3,5-difluorophenyl)thiophene (1.94 g, 6.73 mmol), was collected and dried (yield 67.3%). This compound (0.67 g, 2.3 mmol) was reacted with 1-(2-cyano-1,5-dimethyl-4-pyrrol-1-yl)-3,3,4,4,5,5- hexafluorocyclopent-1-ene (0.66 g, 2.30 mmol)(Liu et al., 2011) and with n-butyl lithium 2.5 M in hexane (0.92 ml, 2.30 mmol) at 195 K under a nitrogen atmosphere. After an hour, the reaction was quenched by addition of water. The solid product was purified by column chromatography on silica with petroleum ether as the eluent to give the title compound (0.55 g, 1.10 mmol) in 47.8% yield. Analysis calc. for C23H14F8N2S: C 54.98, H, 2.81%; fFound C 55.02, H 2.95%.

Refinement top

All H atoms were placed in calculated positionswith C—H equal 0.93 Å for aromatic and 0.96 Å for CH3 groups. They were included in the refinement in the riding model approximation with isotropic displacement parameters set equal to 1.2Ueq(C) and 1.5Ueq(C) of the carrier atom for the aromatic and methyl H atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
4-{2-[5-(3,5-Difluorophenyl)-2-methylthiophen-3-yl]-3,3,4,4,5,5- hexafluorocyclopent-1-en-1-yl}-1,5-dimethylpyrrole-2-carbonitrile top
Crystal data top
C23H14F8N2SF(000) = 1016
Mr = 502.42Dx = 1.523 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1969 reflections
a = 11.873 (2) Åθ = 2.2–21.0°
b = 12.063 (2) ŵ = 0.23 mm1
c = 16.208 (3) ÅT = 294 K
β = 109.225 (3)°Block, colourless
V = 2191.9 (7) Å30.24 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3870 independent reflections
Radiation source: fine-focus sealed tube2075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.947, Tmax = 0.973k = 147
10859 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0294P)2 + 1.1725P]
where P = (Fo2 + 2Fc2)/3
3870 reflections(Δ/σ)max < 0.001
310 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H14F8N2SV = 2191.9 (7) Å3
Mr = 502.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.873 (2) ŵ = 0.23 mm1
b = 12.063 (2) ÅT = 294 K
c = 16.208 (3) Å0.24 × 0.20 × 0.12 mm
β = 109.225 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3870 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2075 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.973Rint = 0.052
10859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
3870 reflectionsΔρmin = 0.23 e Å3
310 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20592 (8)0.64459 (8)0.08798 (6)0.0544 (3)
F10.1023 (3)0.5715 (2)0.22785 (15)0.1251 (10)
F20.3477 (2)0.7314 (2)0.08674 (16)0.1138 (9)
F30.12870 (18)1.04692 (16)0.16690 (13)0.0782 (7)
F40.31802 (19)1.04374 (18)0.19007 (13)0.0794 (7)
F50.1543 (2)1.10471 (19)0.32403 (14)0.0904 (7)
F60.3169 (2)1.17628 (17)0.31582 (13)0.0908 (8)
F70.3056 (2)1.01110 (17)0.45684 (13)0.0798 (7)
F80.44533 (17)1.01423 (16)0.39904 (12)0.0738 (6)
N10.2949 (2)0.6232 (2)0.45199 (17)0.0506 (7)
N20.5482 (3)0.5675 (3)0.6326 (2)0.0928 (12)
C10.1419 (3)0.7236 (3)0.0150 (2)0.0584 (10)
H10.15220.75960.03280.070*
C20.2385 (3)0.7008 (4)0.0874 (3)0.0714 (12)
C30.2293 (4)0.6494 (3)0.1595 (3)0.0772 (13)
H30.29570.63520.20820.093*
C40.1168 (4)0.6197 (3)0.1564 (3)0.0771 (12)
C50.0167 (3)0.6391 (3)0.0855 (2)0.0630 (10)
H50.05800.61650.08600.076*
C60.0287 (3)0.6927 (3)0.0134 (2)0.0485 (9)
C70.0764 (3)0.7213 (3)0.06179 (19)0.0442 (8)
C80.0902 (3)0.8070 (3)0.11854 (19)0.0477 (9)
H80.03030.85830.11500.057*
C90.2049 (3)0.8111 (3)0.18408 (18)0.0433 (8)
C100.2779 (3)0.7270 (3)0.17555 (19)0.0459 (8)
C110.4044 (3)0.7020 (3)0.2296 (2)0.0637 (10)
H11A0.44240.76850.25780.096*
H11B0.44640.67390.19250.096*
H11C0.40530.64750.27290.096*
C120.2404 (2)0.8972 (3)0.25172 (19)0.0425 (8)
C130.2332 (3)1.0168 (3)0.2267 (2)0.0513 (9)
C140.2579 (3)1.0803 (3)0.3117 (2)0.0552 (9)
C150.3261 (3)0.9968 (3)0.3807 (2)0.0515 (9)
C160.2898 (2)0.8857 (3)0.33946 (19)0.0412 (8)
C170.3125 (3)0.7868 (3)0.39402 (18)0.0421 (8)
C180.2400 (3)0.6945 (3)0.3864 (2)0.0458 (8)
C190.1198 (3)0.6706 (3)0.3228 (2)0.0636 (10)
H19A0.12700.61790.28040.095*
H19B0.08520.73790.29380.095*
H19C0.06970.64050.35320.095*
C200.4144 (3)0.7692 (3)0.4683 (2)0.0487 (9)
H200.47810.81780.49020.058*
C210.4025 (3)0.6688 (3)0.5020 (2)0.0503 (9)
C220.4826 (4)0.6117 (3)0.5744 (3)0.0648 (10)
C230.2477 (3)0.5162 (3)0.4684 (2)0.0763 (12)
H23A0.17770.52820.48450.115*
H23B0.30700.47860.51500.115*
H23C0.22740.47170.41650.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0588 (6)0.0534 (6)0.0508 (5)0.0051 (5)0.0180 (4)0.0076 (5)
F10.156 (2)0.127 (2)0.0683 (16)0.0037 (19)0.0043 (16)0.0514 (16)
F20.0529 (15)0.164 (3)0.1049 (18)0.0014 (16)0.0008 (13)0.0156 (18)
F30.0771 (15)0.0648 (14)0.0678 (13)0.0198 (11)0.0099 (11)0.0011 (11)
F40.0955 (17)0.0751 (16)0.0794 (15)0.0045 (13)0.0449 (13)0.0115 (12)
F50.0856 (17)0.0976 (19)0.0857 (16)0.0291 (14)0.0254 (13)0.0200 (14)
F60.1210 (19)0.0524 (14)0.0784 (15)0.0257 (13)0.0048 (13)0.0062 (12)
F70.1296 (19)0.0614 (14)0.0532 (13)0.0118 (13)0.0366 (13)0.0117 (11)
F80.0577 (13)0.0680 (14)0.0752 (14)0.0230 (11)0.0058 (10)0.0032 (12)
N10.0634 (19)0.0405 (17)0.0494 (17)0.0112 (15)0.0208 (15)0.0042 (15)
N20.102 (3)0.081 (3)0.075 (2)0.010 (2)0.002 (2)0.016 (2)
C10.056 (2)0.068 (3)0.046 (2)0.007 (2)0.0096 (18)0.0015 (19)
C20.057 (3)0.078 (3)0.066 (3)0.015 (2)0.003 (2)0.018 (2)
C30.085 (3)0.065 (3)0.055 (3)0.022 (3)0.013 (2)0.006 (2)
C40.104 (4)0.064 (3)0.052 (3)0.014 (3)0.010 (3)0.015 (2)
C50.069 (2)0.063 (3)0.055 (2)0.009 (2)0.017 (2)0.012 (2)
C60.055 (2)0.049 (2)0.038 (2)0.0065 (18)0.0112 (17)0.0029 (17)
C70.0455 (19)0.047 (2)0.0369 (18)0.0029 (16)0.0097 (15)0.0031 (17)
C80.0425 (19)0.052 (2)0.0449 (19)0.0078 (16)0.0097 (16)0.0023 (18)
C90.0421 (19)0.050 (2)0.0345 (18)0.0041 (17)0.0083 (15)0.0031 (16)
C100.0448 (19)0.053 (2)0.0412 (19)0.0045 (17)0.0163 (15)0.0009 (17)
C110.048 (2)0.076 (3)0.063 (2)0.015 (2)0.0135 (18)0.000 (2)
C120.0367 (18)0.050 (2)0.0378 (19)0.0023 (16)0.0078 (15)0.0015 (17)
C130.044 (2)0.057 (2)0.048 (2)0.0072 (18)0.0083 (17)0.0036 (19)
C140.055 (2)0.046 (2)0.060 (2)0.0015 (19)0.0124 (19)0.0044 (19)
C150.053 (2)0.050 (2)0.045 (2)0.0128 (18)0.0073 (17)0.0046 (19)
C160.0323 (17)0.048 (2)0.0430 (19)0.0066 (15)0.0118 (15)0.0011 (17)
C170.0427 (19)0.046 (2)0.0364 (18)0.0034 (17)0.0115 (15)0.0006 (16)
C180.0460 (19)0.048 (2)0.045 (2)0.0111 (18)0.0171 (16)0.0070 (18)
C190.055 (2)0.069 (3)0.064 (2)0.023 (2)0.0148 (18)0.013 (2)
C200.050 (2)0.048 (2)0.045 (2)0.0089 (17)0.0101 (17)0.0056 (18)
C210.052 (2)0.051 (2)0.045 (2)0.0011 (19)0.0112 (17)0.0002 (18)
C220.074 (3)0.054 (2)0.061 (3)0.001 (2)0.015 (2)0.000 (2)
C230.098 (3)0.056 (2)0.079 (3)0.025 (2)0.034 (2)0.007 (2)
Geometric parameters (Å, º) top
S1—C101.713 (3)C8—H80.9300
S1—C71.724 (3)C9—C101.370 (4)
F1—C41.357 (4)C9—C121.467 (4)
F2—C21.352 (4)C10—C111.499 (4)
F3—C131.349 (3)C11—H11A0.9600
F4—C131.366 (4)C11—H11B0.9600
F5—C141.343 (4)C11—H11C0.9600
F6—C141.343 (4)C12—C161.355 (4)
F7—C151.345 (4)C12—C131.494 (4)
F8—C151.364 (3)C13—C141.518 (4)
N1—C181.357 (4)C14—C151.524 (5)
N1—C211.381 (4)C15—C161.496 (4)
N1—C231.467 (4)C16—C171.457 (4)
N2—C221.139 (4)C17—C181.387 (4)
C1—C21.372 (5)C17—C201.414 (4)
C1—C61.387 (4)C18—C191.487 (4)
C1—H10.9300C19—H19A0.9600
C2—C31.359 (5)C19—H19B0.9600
C3—C41.367 (5)C19—H19C0.9600
C3—H30.9300C20—C211.355 (4)
C4—C51.375 (5)C20—H200.9300
C5—C61.383 (4)C21—C221.422 (5)
C5—H50.9300C23—H23A0.9600
C6—C71.470 (4)C23—H23B0.9600
C7—C81.357 (4)C23—H23C0.9600
C8—C91.426 (4)
C10—S1—C793.06 (15)F4—C13—C12111.3 (3)
C18—N1—C21108.7 (3)F3—C13—C14112.0 (3)
C18—N1—C23125.9 (3)F4—C13—C14109.0 (3)
C21—N1—C23125.4 (3)C12—C13—C14105.3 (3)
C2—C1—C6119.6 (4)F5—C14—F6107.0 (3)
C2—C1—H1120.2F5—C14—C13109.4 (3)
C6—C1—H1120.2F6—C14—C13114.9 (3)
F2—C2—C3118.7 (4)F5—C14—C15109.1 (3)
F2—C2—C1118.2 (4)F6—C14—C15113.0 (3)
C3—C2—C1123.1 (4)C13—C14—C15103.3 (3)
C2—C3—C4116.3 (4)F7—C15—F8105.5 (3)
C2—C3—H3121.9F7—C15—C16114.3 (3)
C4—C3—H3121.9F8—C15—C16111.1 (3)
F1—C4—C3118.6 (4)F7—C15—C14112.1 (3)
F1—C4—C5117.9 (4)F8—C15—C14108.7 (3)
C3—C4—C5123.4 (4)C16—C15—C14105.0 (3)
C4—C5—C6119.0 (4)C12—C16—C17130.5 (3)
C4—C5—H5120.5C12—C16—C15109.8 (3)
C6—C5—H5120.5C17—C16—C15119.6 (3)
C5—C6—C1118.6 (3)C18—C17—C20106.7 (3)
C5—C6—C7121.0 (3)C18—C17—C16128.1 (3)
C1—C6—C7120.3 (3)C20—C17—C16125.1 (3)
C8—C7—C6128.4 (3)N1—C18—C17108.3 (3)
C8—C7—S1110.1 (2)N1—C18—C19121.6 (3)
C6—C7—S1121.5 (2)C17—C18—C19130.0 (3)
C7—C8—C9113.8 (3)C18—C19—H19A109.5
C7—C8—H8123.1C18—C19—H19B109.5
C9—C8—H8123.1H19A—C19—H19B109.5
C10—C9—C8112.3 (3)C18—C19—H19C109.5
C10—C9—C12124.3 (3)H19A—C19—H19C109.5
C8—C9—C12123.3 (3)H19B—C19—H19C109.5
C9—C10—C11129.4 (3)C21—C20—C17107.6 (3)
C9—C10—S1110.7 (2)C21—C20—H20126.2
C11—C10—S1119.8 (2)C17—C20—H20126.2
C10—C11—H11A109.5C20—C21—N1108.6 (3)
C10—C11—H11B109.5C20—C21—C22129.4 (3)
H11A—C11—H11B109.5N1—C21—C22122.0 (3)
C10—C11—H11C109.5N2—C22—C21178.8 (4)
H11A—C11—H11C109.5N1—C23—H23A109.5
H11B—C11—H11C109.5N1—C23—H23B109.5
C16—C12—C9129.1 (3)H23A—C23—H23B109.5
C16—C12—C13110.4 (3)N1—C23—H23C109.5
C9—C12—C13120.3 (3)H23A—C23—H23C109.5
F3—C13—F4105.0 (3)H23B—C23—H23C109.5
F3—C13—C12114.3 (3)
C6—C1—C2—F2179.6 (3)C12—C13—C14—F6146.1 (3)
C6—C1—C2—C30.6 (6)F3—C13—C14—C15147.3 (3)
F2—C2—C3—C4179.6 (3)F4—C13—C14—C1597.0 (3)
C1—C2—C3—C40.6 (6)C12—C13—C14—C1522.5 (3)
C2—C3—C4—F1177.8 (3)F5—C14—C15—F732.5 (4)
C2—C3—C4—C50.2 (6)F6—C14—C15—F786.4 (4)
F1—C4—C5—C6177.1 (3)C13—C14—C15—F7148.8 (3)
C3—C4—C5—C60.9 (6)F5—C14—C15—F8148.8 (3)
C4—C5—C6—C10.9 (5)F6—C14—C15—F829.9 (4)
C4—C5—C6—C7176.3 (3)C13—C14—C15—F894.9 (3)
C2—C1—C6—C50.2 (5)F5—C14—C15—C1692.2 (3)
C2—C1—C6—C7177.0 (3)F6—C14—C15—C16148.9 (3)
C5—C6—C7—C8150.7 (3)C13—C14—C15—C1624.1 (3)
C1—C6—C7—C826.4 (5)C9—C12—C16—C176.6 (5)
C5—C6—C7—S128.1 (4)C13—C12—C16—C17178.4 (3)
C1—C6—C7—S1154.7 (3)C9—C12—C16—C15172.1 (3)
C10—S1—C7—C80.5 (3)C13—C12—C16—C152.9 (4)
C10—S1—C7—C6179.5 (3)F7—C15—C16—C12140.7 (3)
C6—C7—C8—C9179.4 (3)F8—C15—C16—C1299.9 (3)
S1—C7—C8—C90.5 (3)C14—C15—C16—C1217.5 (4)
C7—C8—C9—C100.3 (4)F7—C15—C16—C1740.4 (4)
C7—C8—C9—C12179.3 (3)F8—C15—C16—C1778.9 (4)
C8—C9—C10—C11179.3 (3)C14—C15—C16—C17163.7 (3)
C12—C9—C10—C110.3 (5)C12—C16—C17—C1840.4 (5)
C8—C9—C10—S10.1 (3)C15—C16—C17—C18141.1 (3)
C12—C9—C10—S1178.9 (2)C12—C16—C17—C20141.8 (3)
C7—S1—C10—C90.3 (3)C15—C16—C17—C2036.7 (4)
C7—S1—C10—C11179.6 (3)C21—N1—C18—C170.0 (4)
C10—C9—C12—C1652.0 (5)C23—N1—C18—C17179.1 (3)
C8—C9—C12—C16129.1 (3)C21—N1—C18—C19177.9 (3)
C10—C9—C12—C13122.7 (3)C23—N1—C18—C191.2 (5)
C8—C9—C12—C1356.2 (4)C20—C17—C18—N10.7 (3)
C16—C12—C13—F3136.2 (3)C16—C17—C18—N1178.8 (3)
C9—C12—C13—F348.3 (4)C20—C17—C18—C19177.0 (3)
C16—C12—C13—F4105.1 (3)C16—C17—C18—C191.1 (6)
C9—C12—C13—F470.5 (4)C18—C17—C20—C211.1 (4)
C16—C12—C13—C1412.9 (4)C16—C17—C20—C21179.3 (3)
C9—C12—C13—C14171.6 (3)C17—C20—C21—N11.1 (4)
F3—C13—C14—F531.2 (4)C17—C20—C21—C22177.4 (3)
F4—C13—C14—F5146.9 (3)C18—N1—C21—C200.7 (4)
C12—C13—C14—F593.6 (3)C23—N1—C21—C20178.4 (3)
F3—C13—C14—F689.1 (4)C18—N1—C21—C22178.0 (3)
F4—C13—C14—F626.6 (4)C23—N1—C21—C223.0 (5)

Experimental details

Crystal data
Chemical formulaC23H14F8N2S
Mr502.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)11.873 (2), 12.063 (2), 16.208 (3)
β (°) 109.225 (3)
V3)2191.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.24 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.947, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
10859, 3870, 2075
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.108, 1.00
No. of reflections3870
No. of parameters310
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant Nos. 50673070, 50973077), the Natural Science Foundation of Jiangxi Province (2010GZH0040) and the Science and Technology Development Project of Suzhou (SYJG0931).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, C.-B., Yang, P., Wang, X.-M., Liu, G., Jiang, X.-X., Chen, H.-Z., Tao, X.-T., Wang, M. & Jiang, M.-H. (2011). Sol. Energy Mater. Sol. Cells, 95, 992–1000.  CrossRef CAS Google Scholar
First citationLiu, G., Pu, S.-Z., Wang, X.-M., Liu, W.-J. & Yang, T.-S. (2011). Dyes Pigments, 90, 71–81.  CrossRef CAS Google Scholar
First citationPu, S.-Z., Liu, G., Shen, L. & Xu, J.-K. (2007). Org. Lett., 9, 2139–2142.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds