organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-6-[2-(cyclo­pentyl­­idene)hydrazin-1-yl]pyridazine

aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, bApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and dInstitute of Chemistry, University of the Punjab, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 20 March 2011; accepted 27 March 2011; online 31 March 2011)

The asymmetric unit of the title compound, C9H11ClN4, contains two virtually planar mol­ecules that differ in conformation about the bond connecting the hydrazine and pyridazine units. The 3-chloro-6-hydrazinylpyridazine and cyclo­pentane groups are oriented at dihedral angles of 4.5 (3) and 8.8 (4)° in the two mol­ecules. In the crystal, the mol­ecules form a one dimensional polymeric structure extending along the a axis via N—H⋯N hydrogen bonds. The crystal stucired was an inversion twin [ratio of the twin domains = 0.73 (9):0.27 (9)].

Related literature

For related structures, see: Ather et al. (2010a[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010a). Acta Cryst. E66, o2107.],b[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66, o2441.],c[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010c). Acta Cryst. E66, o2499.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11ClN4

  • Mr = 210.67

  • Orthorhombic, P c a 21

  • a = 10.180 (5) Å

  • b = 9.870 (5) Å

  • c = 20.049 (3) Å

  • V = 2014.5 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 K

  • 0.30 × 0.15 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.950

  • 7740 measured reflections

  • 3355 independent reflections

  • 2130 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.120

  • S = 1.00

  • 3355 reflections

  • 254 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1307 Friedel pairs

  • Flack parameter: 0.73 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N5i 0.86 2.52 3.295 (5) 150
N3—H3A⋯N6i 0.86 2.27 3.088 (5) 159
N7—H7⋯N1ii 0.86 2.19 3.041 (5) 170
Symmetry codes: (i) [-x+1, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation to on our studies on 3-chloro-6-hydrazinylpyridazine derivatives (Ather et al., 2010a,b,c), the title compound (Fig. 1) is being reported here.

There are two symmetry independent molecule in the asymmetric unit of title compound that differ in conformation. In one molecule 3-chloro-6-hydrazinylpyridazine moiety A (C1—C4/N1—N4/CL1) and cyclopentane group B (C5–C9) are planar with r. m. s. deviations of 0.0104 and 0.0354 Å. The dihedral angle between A/B is 8.5 (4)°. In the second symmetry independent molecule 3-chloro-6-hydrazinylpyridazine moiety C (C10—C13/N5—N8/CL2) and cyclopentane gruop D (C14–C18) are also planar with r. m. s. deviations of 0.0068 and 0.0046 Å. The dihedral angle between C/D is 4.5 (3)°. The title compound consists of one dimensional polymeric chains via N–H···N hydrogen bonds extending along the crystallographic a-axis (Table 1, Fig. 2).

Related literature top

For related structures, see: Ather et al. (2010a,b,c). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

3-Chloro-6-hydrazinylpyridazine (0.5 g, 3.46 mmol), dissolved in ethanol (10 ml) and refluxed for 15 min. Cyclopentanone (0.291 g, 3.459 mmol) was added to the formar solution and refluxed about 3 h, till the completion of reaction monitored through TLC. On completion of the reaction mixture was concenterated under vacuum. The crude product was recrystallized in ethanol which yielded the light yellow needles of the title compound.

Refinement top

The structure was refined as an inversion twin with 0.73 (9):0.27((9) ratio of the twin domains. The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The partial packing diagram (PLATON; Spek, 2009) showing polymeric chains extending along the a-axis. The H-atoms of cyclopentane are omitted for clarity.
3-Chloro-6-{2-[cyclopentylidene]hydrazin-1-yl}pyridazine top
Crystal data top
C9H11ClN4F(000) = 880
Mr = 210.67Dx = 1.389 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1374 reflections
a = 10.180 (5) Åθ = 2.9–28.3°
b = 9.870 (5) ŵ = 0.34 mm1
c = 20.049 (3) ÅT = 296 K
V = 2014.5 (15) Å3Needle, light yellow
Z = 80.30 × 0.15 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3355 independent reflections
Radiation source: fine-focus sealed tube2130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 7.60 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1211
Tmin = 0.942, Tmax = 0.950l = 2419
7740 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.053P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3355 reflectionsΔρmax = 0.18 e Å3
254 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 1307 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.73 (9)
Crystal data top
C9H11ClN4V = 2014.5 (15) Å3
Mr = 210.67Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 10.180 (5) ŵ = 0.34 mm1
b = 9.870 (5) ÅT = 296 K
c = 20.049 (3) Å0.30 × 0.15 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3355 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2130 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.950Rint = 0.044
7740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.120Δρmax = 0.18 e Å3
S = 1.00Δρmin = 0.17 e Å3
3355 reflectionsAbsolute structure: Flack (1983), 1307 Friedel pairs
254 parametersAbsolute structure parameter: 0.73 (9)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05268 (12)0.05719 (13)0.64742 (7)0.0730 (4)
N10.2266 (4)0.1211 (3)0.5585 (2)0.0563 (10)
N20.3221 (4)0.1007 (3)0.5124 (2)0.0540 (10)
N30.4576 (4)0.0479 (3)0.4564 (2)0.0564 (10)
H3A0.48480.12900.44880.068*
N40.5125 (4)0.0589 (3)0.4229 (2)0.0576 (10)
C10.3608 (4)0.0263 (4)0.5012 (2)0.0403 (10)
C20.3031 (4)0.1383 (4)0.5338 (2)0.0495 (11)
H20.33020.22610.52400.059*
C30.2085 (4)0.1165 (4)0.5791 (2)0.0489 (12)
H30.16860.18710.60220.059*
C40.1736 (4)0.0193 (4)0.5896 (2)0.0490 (12)
C50.5972 (5)0.0292 (4)0.3777 (3)0.0553 (12)
C60.6610 (5)0.1391 (5)0.3385 (3)0.0860 (17)
H6A0.71470.19580.36710.103*
H6B0.59550.19540.31690.103*
C70.7435 (8)0.0690 (6)0.2881 (4)0.112 (3)
H7A0.83490.09340.29450.134*
H7B0.71750.09720.24360.134*
C80.7283 (7)0.0760 (6)0.2945 (4)0.101 (2)
H8A0.68590.11250.25510.121*
H8B0.81370.11870.29910.121*
C90.6450 (4)0.1042 (4)0.3559 (2)0.0574 (12)
H9A0.69720.14660.39060.069*
H9B0.57200.16340.34490.069*
Cl20.72267 (11)0.48307 (11)0.15057 (7)0.0678 (4)
N50.5643 (3)0.6264 (3)0.07810 (19)0.0544 (10)
N60.4710 (3)0.6489 (3)0.03214 (19)0.0512 (9)
N70.3193 (3)0.5761 (3)0.04280 (19)0.0527 (10)
H70.29690.65900.04950.063*
N80.2597 (4)0.4729 (3)0.0777 (2)0.0555 (11)
C100.4144 (4)0.5451 (4)0.0025 (2)0.0444 (11)
C110.4524 (4)0.4099 (4)0.0162 (2)0.0471 (11)
H110.41240.33770.00570.056*
C120.5459 (4)0.3885 (4)0.0607 (2)0.0466 (11)
H120.57440.30140.07100.056*
C130.6001 (4)0.5023 (4)0.0916 (2)0.0464 (11)
C140.1787 (4)0.5052 (4)0.1230 (3)0.0533 (12)
C150.1343 (4)0.6416 (4)0.1458 (3)0.0658 (12)
H15A0.09280.69080.10960.079*
H15B0.20800.69430.16220.079*
C160.0371 (6)0.6142 (7)0.2012 (3)0.105 (2)
H16A0.06660.65690.24210.125*
H16B0.04800.65150.18960.125*
C170.0264 (7)0.4674 (7)0.2109 (4)0.095 (2)
H17A0.05090.44420.25620.114*
H17B0.06370.43890.20380.114*
C180.1122 (5)0.3979 (5)0.1643 (3)0.0870 (19)
H18A0.06170.33770.13590.104*
H18B0.17700.34460.18820.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0700 (7)0.0779 (9)0.0711 (9)0.0235 (6)0.0072 (8)0.0036 (8)
N10.068 (3)0.0344 (19)0.067 (3)0.0143 (19)0.000 (2)0.0021 (19)
N20.069 (2)0.0250 (17)0.068 (3)0.0104 (17)0.008 (2)0.0068 (17)
N30.077 (3)0.0236 (18)0.068 (3)0.0011 (16)0.011 (2)0.0014 (18)
N40.070 (3)0.034 (2)0.068 (3)0.0026 (17)0.005 (2)0.0077 (19)
C10.050 (3)0.029 (2)0.042 (3)0.0022 (17)0.005 (2)0.0016 (18)
C20.065 (3)0.026 (2)0.057 (3)0.000 (2)0.003 (3)0.0006 (19)
C30.057 (3)0.032 (2)0.058 (3)0.005 (2)0.006 (3)0.0003 (19)
C40.050 (3)0.046 (3)0.052 (3)0.014 (2)0.010 (2)0.005 (2)
C50.065 (3)0.039 (3)0.062 (3)0.008 (2)0.003 (3)0.002 (2)
C60.100 (4)0.048 (3)0.110 (5)0.008 (3)0.035 (4)0.016 (3)
C70.149 (7)0.072 (4)0.114 (6)0.012 (4)0.069 (5)0.006 (4)
C80.117 (6)0.069 (4)0.119 (6)0.008 (3)0.056 (5)0.010 (4)
C90.069 (3)0.051 (3)0.053 (3)0.003 (2)0.007 (3)0.000 (2)
Cl20.0699 (7)0.0664 (8)0.0672 (8)0.0042 (6)0.0083 (7)0.0049 (7)
N50.066 (3)0.035 (2)0.063 (3)0.0066 (17)0.002 (2)0.0023 (17)
N60.061 (2)0.0271 (18)0.066 (2)0.0021 (16)0.001 (2)0.0045 (17)
N70.061 (2)0.0283 (18)0.069 (3)0.0018 (17)0.006 (2)0.0037 (18)
N80.063 (2)0.033 (2)0.070 (3)0.0065 (18)0.010 (2)0.0003 (18)
C100.053 (3)0.028 (2)0.052 (3)0.0021 (18)0.005 (2)0.001 (2)
C110.055 (3)0.025 (2)0.062 (3)0.0033 (18)0.001 (3)0.003 (2)
C120.055 (3)0.026 (2)0.058 (3)0.0014 (19)0.004 (3)0.0035 (19)
C130.052 (2)0.039 (2)0.048 (3)0.002 (2)0.008 (2)0.002 (2)
C140.056 (3)0.045 (3)0.059 (3)0.001 (2)0.002 (3)0.004 (2)
C150.071 (3)0.056 (3)0.071 (3)0.005 (2)0.001 (3)0.015 (3)
C160.121 (5)0.075 (5)0.117 (6)0.010 (4)0.041 (5)0.012 (4)
C170.108 (5)0.097 (5)0.079 (5)0.003 (4)0.017 (4)0.008 (4)
C180.105 (4)0.057 (3)0.098 (5)0.006 (3)0.044 (4)0.006 (3)
Geometric parameters (Å, º) top
Cl1—C41.732 (5)Cl2—C131.730 (5)
N1—C41.299 (5)N5—C131.306 (5)
N1—N21.357 (5)N5—N61.342 (5)
N2—C11.333 (5)N6—C101.317 (5)
N3—C11.351 (5)N7—C101.362 (5)
N3—N41.370 (5)N7—N81.377 (5)
N3—H3A0.8600N7—H70.8600
N4—C51.285 (6)N8—C141.268 (5)
C1—C21.413 (5)C10—C111.416 (5)
C2—C31.341 (6)C11—C121.322 (6)
C2—H20.9300C11—H110.9300
C3—C41.402 (6)C12—C131.397 (6)
C3—H30.9300C12—H120.9300
C5—C91.470 (6)C14—C151.492 (6)
C5—C61.489 (6)C14—C181.504 (7)
C6—C71.485 (8)C15—C161.511 (7)
C6—H6A0.9700C15—H15A0.9700
C6—H6B0.9700C15—H15B0.9700
C7—C81.445 (7)C16—C171.466 (9)
C7—H7A0.9700C16—H16A0.9700
C7—H7B0.9700C16—H16B0.9700
C8—C91.522 (8)C17—C181.452 (8)
C8—H8A0.9700C17—H17A0.9700
C8—H8B0.9700C17—H17B0.9700
C9—H9A0.9700C18—H18A0.9700
C9—H9B0.9700C18—H18B0.9700
C4—N1—N2120.7 (4)C13—N5—N6119.6 (3)
C1—N2—N1117.7 (3)C10—N6—N5119.4 (3)
C1—N3—N4120.1 (3)C10—N7—N8119.1 (3)
C1—N3—H3A119.9C10—N7—H7120.5
N4—N3—H3A119.9N8—N7—H7120.5
C5—N4—N3116.3 (4)C14—N8—N7117.7 (4)
N2—C1—N3118.4 (3)N6—C10—N7115.9 (4)
N2—C1—C2122.4 (4)N6—C10—C11121.7 (4)
N3—C1—C2119.2 (4)N7—C10—C11122.3 (4)
C3—C2—C1119.1 (4)C12—C11—C10118.6 (4)
C3—C2—H2120.5C12—C11—H11120.7
C1—C2—H2120.5C10—C11—H11120.7
C2—C3—C4115.9 (4)C11—C12—C13117.1 (4)
C2—C3—H3122.0C11—C12—H12121.5
C4—C3—H3122.0C13—C12—H12121.5
N1—C4—C3124.2 (4)N5—C13—C12123.5 (4)
N1—C4—Cl1116.7 (3)N5—C13—Cl2116.5 (3)
C3—C4—Cl1119.1 (4)C12—C13—Cl2120.0 (3)
N4—C5—C9129.5 (4)N8—C14—C15130.1 (4)
N4—C5—C6119.9 (4)N8—C14—C18120.6 (4)
C9—C5—C6110.6 (4)C15—C14—C18109.3 (4)
C7—C6—C5105.4 (4)C14—C15—C16105.2 (4)
C7—C6—H6A110.7C14—C15—H15A110.7
C5—C6—H6A110.7C16—C15—H15A110.7
C7—C6—H6B110.7C14—C15—H15B110.7
C5—C6—H6B110.7C16—C15—H15B110.7
H6A—C6—H6B108.8H15A—C15—H15B108.8
C8—C7—C6109.9 (5)C17—C16—C15108.9 (5)
C8—C7—H7A109.7C17—C16—H16A109.9
C6—C7—H7A109.7C15—C16—H16A109.9
C8—C7—H7B109.7C17—C16—H16B109.9
C6—C7—H7B109.7C15—C16—H16B109.9
H7A—C7—H7B108.2H16A—C16—H16B108.3
C7—C8—C9108.2 (5)C18—C17—C16109.7 (5)
C7—C8—H8A110.1C18—C17—H17A109.7
C9—C8—H8A110.1C16—C17—H17A109.7
C7—C8—H8B110.1C18—C17—H17B109.7
C9—C8—H8B110.1C16—C17—H17B109.7
H8A—C8—H8B108.4H17A—C17—H17B108.2
C5—C9—C8105.1 (4)C17—C18—C14107.0 (5)
C5—C9—H9A110.7C17—C18—H18A110.3
C8—C9—H9A110.7C14—C18—H18A110.3
C5—C9—H9B110.7C17—C18—H18B110.3
C8—C9—H9B110.7C14—C18—H18B110.3
H9A—C9—H9B108.8H18A—C18—H18B108.6
C4—N1—N2—C11.3 (6)C13—N5—N6—C101.8 (6)
C1—N3—N4—C5175.2 (4)C10—N7—N8—C14174.9 (4)
N1—N2—C1—N3178.8 (4)N5—N6—C10—N7179.1 (3)
N1—N2—C1—C22.2 (6)N5—N6—C10—C112.2 (6)
N4—N3—C1—N20.8 (6)N8—N7—C10—N6177.4 (4)
N4—N3—C1—C2178.2 (4)N8—N7—C10—C111.4 (6)
N2—C1—C2—C32.1 (6)N6—C10—C11—C121.0 (6)
N3—C1—C2—C3178.9 (4)N7—C10—C11—C12179.7 (4)
C1—C2—C3—C40.9 (6)C10—C11—C12—C130.4 (6)
N2—N1—C4—C30.1 (6)N6—N5—C13—C120.2 (6)
N2—N1—C4—Cl1180.0 (3)N6—N5—C13—Cl2179.1 (3)
C2—C3—C4—N10.0 (6)C11—C12—C13—N50.9 (6)
C2—C3—C4—Cl1179.8 (3)C11—C12—C13—Cl2179.8 (3)
N3—N4—C5—C90.2 (7)N7—N8—C14—C150.4 (7)
N3—N4—C5—C6179.5 (4)N7—N8—C14—C18178.5 (4)
N4—C5—C6—C7175.6 (6)N8—C14—C15—C16179.9 (5)
C9—C5—C6—C73.9 (7)C18—C14—C15—C161.1 (6)
C5—C6—C7—C81.7 (8)C14—C15—C16—C170.7 (6)
C6—C7—C8—C96.3 (9)C15—C16—C17—C180.0 (8)
N4—C5—C9—C8171.9 (6)C16—C17—C18—C140.6 (7)
C6—C5—C9—C87.5 (6)N8—C14—C18—C17179.8 (5)
C7—C8—C9—C58.4 (7)C15—C14—C18—C171.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N5i0.932.733.500 (6)141
N3—H3A···N5i0.862.523.295 (5)150
N3—H3A···N6i0.862.273.088 (5)159
N7—H7···N1ii0.862.193.041 (5)170
C12—H12···N4iii0.932.553.323 (5)140
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1, y, z1/2.

Experimental details

Crystal data
Chemical formulaC9H11ClN4
Mr210.67
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)10.180 (5), 9.870 (5), 20.049 (3)
V3)2014.5 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.30 × 0.15 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.942, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
7740, 3355, 2130
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.120, 1.00
No. of reflections3355
No. of parameters254
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17
Absolute structureFlack (1983), 1307 Friedel pairs
Absolute structure parameter0.73 (9)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N5i0.862.523.295 (5)150
N3—H3A···N6i0.862.273.088 (5)159
N7—H7···N1ii0.862.193.041 (5)170
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1/2, y+1, z1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

References

First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010a). Acta Cryst. E66, o2107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66, o2441.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010c). Acta Cryst. E66, o2499.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds