organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis[(2-pyridyl­eth­yl)imino­meth­yl]benzene

aDepartment of Chemistry, University of Cape Town, Private Bag, Rondebosch 7707, South Africa, bDivision of Medical Biochemistry, Faculty of Health Sciences, Private Bag X3, Observatory 7935, South Africa, and cDepartment of Chemistry University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa.
*Correspondence e-mail: harrychiririwa@yahoo.com

(Received 23 February 2011; accepted 15 March 2011; online 19 March 2011)

In the title compound, C22H22N4, the centroid of the benzene ring is located on an inversion centre. The dihedral angle between the benzene and pyridine rings is 10.94 (5)°. The crystal structure displays weak inter­molecular C—H⋯N hydrogen bonding and C—H⋯π inter­actions.

Related literature

For related compounds, see: Chakraborty et al. (1999[Chakraborty, S., Munshi, P. & Lahiri, G. K. (1999). Polyhedron, 18, 1437-1444.]); Haga et al. (1985[Haga, M. & Koizumi, K. (1985). Inorg. Chim. Acta, 104, 47-50.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22N4

  • Mr = 342.44

  • Monoclinic, P 21 /n

  • a = 6.0078 (6) Å

  • b = 26.023 (3) Å

  • c = 6.1319 (7) Å

  • β = 106.009 (2)°

  • V = 921.47 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.26 × 0.24 × 0.17 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • 11941 measured reflections

  • 2288 independent reflections

  • 1945 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.06

  • 2288 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C5/N1 and C9–C11/C9′–C11′ rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.95 2.74 3.544 (3) 143 (3)
C4—H4⋯N2i 0.95 2.69 3.593 (2) 159 (4)
C7—H7A⋯N1ii 0.99 2.87 3.847 (2) 171 (5)
C2—H2⋯Cg1iii 0.95 2.88 3.826 (4) 172 (5)
C6—H6ACg2iv 0.99 2.90 3.508 (3) 120 (2)
Symmetry codes: (i) x, y, z+1; (ii) x-1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

This work originates from our interest in developing a new class of tetradentate ligands. To the best of our knowledge, this work demonstrates the first example of neutral pyridinyldimine-based bridging ligand. The title compound might be expected to behave as a tetradentate chelating agent, in which both of the N atoms from the imine might coordinate, along with the two pyridinyl N atoms. Chakraborty et al. (1999) reported coordination of similar ligands to ruthenium whilst Haga and Koizumi (1985) reported their coordination to molybdenum. The structure of the title compound crystallized in space group P21/n with Z = 2. The molecule, shown in Fig. 1, has a center of inversion at the centroid of the benzene ring and was located in special positions at Wyckoff positon a. The conformation of the molecule is best described by the dihedral angle of the central ring and pyridyl ring of 10.94 (5)°. The structure is stabilized by weak hydrogen bonds of the type C—H···N and C—H···π, the metrics of which are given in Table 1. The C—H···N intermolecular interactions, as well as C6—H6A···Ring 1 (of C10—C9—C11—C10'-C9'-C11'), connect the parallel neighbouring molecules into 2-dimentional layers. And these layers are then linked along the b axis into 3-dimentional herringbone packing via C2—H2···Ring 2 (of C1—C2—C3—C4—C5—N1) interactions, as shown in Fig.2.

Related literature top

For related ligands, see: Chakraborty et al. (1999); Haga et al. (1985).

Experimental top

The title compound was synthesized as follows: a solution of benzene 1,4-dicarboxaldehyde (0.50 g, 3.73 mmol) in methanol (10 ml) was added dropwise to a stirred solution of 2-(pyridin-2-yl)ethanamine(0.91 g, 7.42 mmol) in methanol (10 ml). The mixture was stirred at room temperature for ca 16 h. The precipitate was filtered off and washed with diethylether and dried under vacuum for 4 h affording a fine shiny white powder in 85% yield. M.p.: does not melt below 260 °C. Recrystallization by slow diffusion of Et2O into a concentrated CH2Cl2 of the solution gave colorless crystals suitable for X-ray structure analysis.

Refinement top

All non-hydrogen atoms were refined anisotropically and all hydrogen atoms were placed in idealized positions and refined with a riding model with Uiso set at 1.2 or 1.5 times Ueq of their parent atoms and fixed C—H bond lengths.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of titled compound showing the atomic numbering scheme. All non-hydrogen atoms were presented with ellipsoidal model with probability level 40%. Half of the molecule without atomic labels was generated via centre of symmetry (symmetry code: -x, -y, -z).
[Figure 2] Fig. 2. Projection viewed along [100] showing 3-D herringbone packing. Only the hydrogen atoms that invloved in C—H···N and C—H···π intermolecular interactions (see the list in Table 1) are shown and labelled. The red dotted lines represent the weak interactions.
1,4-Bis[(2-pyridylethyl)iminomethyl]benzene top
Crystal data top
C22H22N4F(000) = 364
Mr = 342.44Dx = 1.234 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11941 reflections
a = 6.0078 (6) Åθ = 3.1–28.3°
b = 26.023 (3) ŵ = 0.08 mm1
c = 6.1319 (7) ÅT = 173 K
β = 106.009 (2)°Plate, colourless
V = 921.47 (17) Å30.26 × 0.24 × 0.17 mm
Z = 2
Data collection top
Bruker Kappa DUO APEXII
diffractometer
1945 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 28.3°, θmin = 3.1°
0.5° ϕ scans and ωh = 88
11941 measured reflectionsk = 3433
2288 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.2363P]
where P = (Fo2 + 2Fc2)/3
2288 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C22H22N4V = 921.47 (17) Å3
Mr = 342.44Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.0078 (6) ŵ = 0.08 mm1
b = 26.023 (3) ÅT = 173 K
c = 6.1319 (7) Å0.26 × 0.24 × 0.17 mm
β = 106.009 (2)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
1945 reflections with I > 2σ(I)
11941 measured reflectionsRint = 0.024
2288 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
2288 reflectionsΔρmin = 0.20 e Å3
118 parameters
Special details top

Experimental. Data for (I):

IR (KBr): 1610 cm-1 (C=N, imine) 1HNMR:(CDCl3) δH 8.55(ddd, 2H, J =0.8 Hz, J = 1.7 Hz, J = 4.8 Hz) 8.21 (t, 2H, J = 1.3 Hz) 7.69 (s, 2H) 7.55 (dt, 2H, J = 1.9 Hz, J = 7.7 Hz) 7.11 (m, 2H) 4.03 (dt, 8H, J = 1.2 Hz, J = 7.2 Hz) 3.19(t, 4H, J = 7.2 Hz); 13CNMR: (400 MHz, CDCl3) δ 161.05, 159.45, 149.37, 138.88, 136.13, 128.21, 123.67, 121.24, 61.18, 39.61; Analysis calculated for C22H22N4:C, 77.16%; H, 6.48%; N, 16.36%; Found: C, 77.19%; H, 6.22%; N, 16.52%; EI—MS: m/z 249.90[M – C7H6N]+.

Half sphere of data collected using SAINT strategy (Bruker, 2006). Crystal to detector distance = 50 mm; combination of ϕ and ω scans of 0.5°, 40 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.01974 (18)0.16910 (4)0.82099 (17)0.0365 (3)
C11.1434 (2)0.20288 (5)0.9711 (2)0.0431 (3)
H11.26750.22010.93390.052*
N20.40565 (16)0.09448 (4)0.35620 (15)0.0282 (2)
C21.1022 (2)0.21422 (5)1.1750 (2)0.0406 (3)
H21.19360.23891.27480.049*
C30.9248 (2)0.18885 (5)1.2306 (2)0.0381 (3)
H30.89280.19521.37150.046*
C40.7937 (2)0.15394 (4)1.07884 (19)0.0312 (3)
H40.66890.13631.11300.037*
C50.84667 (18)0.14496 (4)0.87569 (18)0.0252 (2)
C60.7121 (2)0.10708 (4)0.7047 (2)0.0327 (3)
H6A0.66620.07780.78600.039*
H6B0.81340.09360.61520.039*
C70.49617 (19)0.13015 (4)0.54368 (19)0.0283 (2)
H7A0.37780.13650.62540.034*
H7B0.53460.16340.48440.034*
C80.21489 (18)0.07288 (4)0.34628 (17)0.0251 (2)
H80.13840.08100.45840.030*
C90.10603 (17)0.03556 (4)0.16772 (17)0.0231 (2)
C100.10072 (18)0.01157 (4)0.17194 (18)0.0259 (2)
H100.17020.01960.28940.031*
C110.20546 (18)0.02380 (4)0.00674 (18)0.0254 (2)
H110.34530.04010.01220.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0364 (6)0.0409 (6)0.0340 (5)0.0050 (4)0.0129 (4)0.0008 (4)
C10.0345 (6)0.0402 (7)0.0532 (8)0.0114 (5)0.0095 (6)0.0025 (6)
N20.0260 (5)0.0295 (5)0.0272 (5)0.0033 (4)0.0044 (4)0.0064 (4)
C20.0428 (7)0.0273 (6)0.0400 (7)0.0030 (5)0.0081 (5)0.0037 (5)
C30.0552 (8)0.0312 (6)0.0266 (6)0.0043 (5)0.0089 (5)0.0037 (5)
C40.0354 (6)0.0288 (5)0.0317 (6)0.0010 (5)0.0131 (5)0.0008 (4)
C50.0249 (5)0.0240 (5)0.0242 (5)0.0031 (4)0.0025 (4)0.0002 (4)
C60.0342 (6)0.0275 (6)0.0311 (6)0.0025 (5)0.0000 (5)0.0061 (4)
C70.0257 (5)0.0278 (5)0.0296 (5)0.0019 (4)0.0045 (4)0.0074 (4)
C80.0244 (5)0.0252 (5)0.0250 (5)0.0007 (4)0.0056 (4)0.0027 (4)
C90.0219 (5)0.0217 (5)0.0239 (5)0.0004 (4)0.0034 (4)0.0009 (4)
C100.0252 (5)0.0284 (5)0.0252 (5)0.0010 (4)0.0088 (4)0.0026 (4)
C110.0214 (5)0.0262 (5)0.0289 (5)0.0030 (4)0.0073 (4)0.0014 (4)
Geometric parameters (Å, º) top
N1—C51.3344 (15)C6—C71.5204 (16)
N1—C11.3395 (17)C6—H6A0.9900
C1—C21.372 (2)C6—H6B0.9900
C1—H10.9500C7—H7A0.9900
N2—C81.2628 (14)C7—H7B0.9900
N2—C71.4609 (13)C8—C91.4748 (14)
C2—C31.3739 (19)C8—H80.9500
C2—H20.9500C9—C111.3954 (14)
C3—C41.3811 (17)C9—C101.3968 (14)
C3—H30.9500C10—C11i1.3848 (14)
C4—C51.3880 (15)C10—H100.9500
C4—H40.9500C11—C10i1.3848 (14)
C5—C61.5023 (15)C11—H110.9500
C5—N1—C1117.33 (10)C7—C6—H6B109.0
N1—C1—C2124.19 (12)H6A—C6—H6B107.8
N1—C1—H1117.9N2—C7—C6109.03 (9)
C2—C1—H1117.9N2—C7—H7A109.9
C8—N2—C7117.17 (9)C6—C7—H7A109.9
C1—C2—C3118.02 (11)N2—C7—H7B109.9
C1—C2—H2121.0C6—C7—H7B109.9
C3—C2—H2121.0H7A—C7—H7B108.3
C2—C3—C4119.10 (11)N2—C8—C9122.66 (9)
C2—C3—H3120.4N2—C8—H8118.7
C4—C3—H3120.4C9—C8—H8118.7
C3—C4—C5119.07 (11)C11—C9—C10119.15 (9)
C3—C4—H4120.5C11—C9—C8121.17 (9)
C5—C4—H4120.5C10—C9—C8119.68 (9)
N1—C5—C4122.27 (10)C11i—C10—C9120.70 (9)
N1—C5—C6116.12 (10)C11i—C10—H10119.6
C4—C5—C6121.60 (10)C9—C10—H10119.6
C5—C6—C7113.13 (9)C10i—C11—C9120.15 (9)
C5—C6—H6A109.0C10i—C11—H11119.9
C7—C6—H6A109.0C9—C11—H11119.9
C5—C6—H6B109.0
C5—N1—C1—C20.4 (2)C8—N2—C7—C6111.41 (11)
N1—C1—C2—C30.9 (2)C5—C6—C7—N2167.84 (9)
C1—C2—C3—C41.10 (19)C7—N2—C8—C9179.14 (9)
C2—C3—C4—C50.83 (18)N2—C8—C9—C112.76 (16)
C1—N1—C5—C40.06 (17)N2—C8—C9—C10177.48 (10)
C1—N1—C5—C6179.64 (10)C11—C9—C10—C11i0.57 (17)
C3—C4—C5—N10.30 (17)C8—C9—C10—C11i179.67 (9)
C3—C4—C5—C6179.39 (10)C10—C9—C11—C10i0.57 (17)
N1—C5—C6—C794.33 (12)C8—C9—C11—C10i179.68 (9)
C4—C5—C6—C785.97 (13)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C5/N1 and C9–C11/C9'–C11' rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···N1ii0.952.743.544 (3)143 (3)
C4—H4···N2ii0.952.693.593 (2)159 (4)
C7—H7A···N1iii0.992.873.847 (2)171 (5)
C2—H2···Cg1iv0.952.883.826 (4)172 (5)
C6—H6A···Cg2v0.992.903.508 (3)120 (2)
Symmetry codes: (ii) x, y, z+1; (iii) x1, y, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC22H22N4
Mr342.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)6.0078 (6), 26.023 (3), 6.1319 (7)
β (°) 106.009 (2)
V3)921.47 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.24 × 0.17
Data collection
DiffractometerBruker Kappa DUO APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11941, 2288, 1945
Rint0.024
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.06
No. of reflections2288
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.20

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C5/N1 and C9–C11/C9'–C11' rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.952.743.544 (3)143 (3)
C4—H4···N2i0.952.693.593 (2)159 (4)
C7—H7A···N1ii0.992.873.847 (2)171 (5)
C2—H2···Cg1iii0.952.883.826 (4)172 (5)
C6—H6A···Cg2iv0.992.903.508 (3)120 (2)
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z+1.
 

Acknowledgements

We gratefully acknowledge Mintek and Project AuTEK for funding this project.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, S., Munshi, P. & Lahiri, G. K. (1999). Polyhedron, 18, 1437–1444.  Web of Science CrossRef CAS Google Scholar
First citationHaga, M. & Koizumi, K. (1985). Inorg. Chim. Acta, 104, 47–50.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds