metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­{N,N-di­methyl-N′-[1-(2-pyrid­yl)ethyl­­idene]ethane-1,2-di­amine-κ3N,N′,N′′}bis­­(thio­cyanato-κN)nickel(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 24 March 2011; accepted 28 March 2011; online 31 March 2011)

In the title compound, [Ni(NCS)2(C11H17N3)(H2O)], the NiII ion is six-coordinated by the N,N′,N"-tridentate Schiff base N atoms, two cis-positioned N-bound isothio­cyanate groups and one water mol­ecule. In the crystal, O—H⋯S hydrogen bonds link adjacent mol­ecules into infinite layers parallel to the ac plane. The layers are further connected into a three-dimensional network via C—H⋯π inter­actions. The –CH2–N(CH3)2 fragment is disordered over two sets of sites in a 0.556 (5):0.444 (5) ratio.

Related literature

For the structure of a similar mononuclear nickel(II) thio­cyanate complex, see: Suleiman Gwaram et al. (2011[Suleiman Gwaram, N., Ikmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m108.]). For dimeric nickel(II) thio­cyanate complexes with similar Schiff bases, see: Diao (2007[Diao, Y.-P. (2007). Acta Cryst. E63, m1453-m1454.]); Bhowmik et al. (2010[Bhowmik, P., Chattopadhyay, S., Drew, M. G. B., Diaz, D. & Ghosh, A. (2010). Polyhedron, 29, 2637-2642.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C11H17N3)(H2O)]

  • Mr = 384.16

  • Monoclinic, C c

  • a = 12.8404 (2) Å

  • b = 14.2623 (3) Å

  • c = 9.5868 (2) Å

  • β = 99.467 (1)°

  • V = 1731.75 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.37 mm−1

  • T = 100 K

  • 0.22 × 0.19 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.753, Tmax = 0.864

  • 7792 measured reflections

  • 3698 independent reflections

  • 3451 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.070

  • S = 1.02

  • 3698 reflections

  • 234 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1798 Friedel pairs

  • Flack parameter: 0.020 (11)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯S1i 0.82 (2) 2.38 (2) 3.181 (3) 164 (4)
O1—H1A⋯S2ii 0.84 (2) 2.35 (2) 3.190 (3) 178 (4)
C7—H7CCg1iii 0.98 2.88 3.531 (3) 125
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+2, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title mixed-ligand complex was obtained via the treatment of nickel(II) ion with the Schiff base N,N-dimethyl-N'-[methyl(2-pyridyl)methylene]ethane-1,2-diamine, prepared in situ, and the thiocyanate salt. The Schiff base acts as an N,N',N"-tridentate chelate and the two thiocyanate ions behave in an N-donor fashion towards the NiII ion. The geometry around the metal center is completed by one water O atom. This arrangement is similar to what was observed in the nickel(II) thiocyanate complex of a similar Schiff base (Suleiman Gwaram et al., 2011). In contrast, the metal ions in the nickel(II) thiocyanate complex of N,N-dimethyl-N'-(2-pyridylmethylene)ethane-1,2-diamine (Diao, 2007) and N,N-diethyl-N'-[methyl(2-pyridyl)methylene]ethane-1,2-diamine (Bhowmik et al., 2010) are doubly bridged into dimers by N:S-bridging thiocyanate ligands. In the present structure, the adjacent molecules are connected into 2-D arrays in ac plane via O—H···S interactions (Table 1, Fig. 2). A C—H···π interaction (Table 1) connects the layers into a three-dimensional structure.

Related literature top

For the structure of a similar mononuclear nickel(II) thiocyanate complex, see: Suleiman Gwaram et al. (2011). For dimeric nickel(II) thiocyanate complexes with similar Schiff bases, see: Diao (2007); Bhowmik et al. (2010).

Experimental top

A mixture of 2-acetylpyridine (0.2 g, 1.65 mmol) and N,N-dimethylethyldiamine (0.15 g, 1.65 mmol) in ethanol (20 ml) was refluxed for 2 h followed by addition of a solution of nickel(II) acetate tetrahydrate (0.41 g, 1.65 mmol) and sodium thiocyanate (0.27 g, 3.3 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then set aside at room temperature. Brown crystals of the title compound were obtained by slow evaporation of the resulting reaction mixture.

Refinement top

The C-bound H atoms were placed at calculated positions at distances C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene type H-atoms, respectively. The O-bound H atoms were placed in a difference Fourier map, and were refined with distance restraint of O—H 0.84 (2) Å. For all hydrogen atoms Uiso(H) were set to 1.2–1.5 times Ueq(carrier atom). C9, C10 and C11 were found to be disordered with two positions being resolved for each of the atoms. From anisotropic refinement, the major component of the disorder had a site occupancy factor of 0.556 (5). The N3—Cmethyl bond distances were restrained to be 1.470±0.001 Å. The N3—C9 and N3—C9' bond distances were refined with the distance restraint of 1.480±0.001 Å. The C8—C9 and C8—C9' bond distances were refined with the distance restraint of 1.52±0.001 Å. The corresponding bond distances involving the disordered atoms were restrained to be equal with the SADI command in SHELXL97 (Sheldrick, 2008). An absolute structure was established using anomalous dispersion effects; 1798 Friedel pairs were not merged.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Only the major disordered component is shown.
[Figure 2] Fig. 2. Unit-cell packing of the title compound, viewed down the b axis, showing the O—H···S hydrogen-bonded two-dimensional network. C-bound hydrogen atoms have been omitted for clarity.
Aqua{N,N-dimethyl-N'-[1-(2-pyridyl)ethylidene]ethane-1,2-diamine-κ3N,N',N''}bis(thiocyanato-κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C11H17N3)(H2O)]F(000) = 800
Mr = 384.16Dx = 1.473 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2239 reflections
a = 12.8404 (2) Åθ = 2.9–27.9°
b = 14.2623 (3) ŵ = 1.37 mm1
c = 9.5868 (2) ÅT = 100 K
β = 99.467 (1)°Block, brown
V = 1731.75 (6) Å30.22 × 0.19 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3698 independent reflections
Radiation source: fine-focus sealed tube3451 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.753, Tmax = 0.864k = 1818
7792 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0313P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3698 reflectionsΔρmax = 0.58 e Å3
234 parametersΔρmin = 0.52 e Å3
16 restraintsAbsolute structure: Flack (1983), 1798 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (11)
Crystal data top
[Ni(NCS)2(C11H17N3)(H2O)]V = 1731.75 (6) Å3
Mr = 384.16Z = 4
Monoclinic, CcMo Kα radiation
a = 12.8404 (2) ŵ = 1.37 mm1
b = 14.2623 (3) ÅT = 100 K
c = 9.5868 (2) Å0.22 × 0.19 × 0.11 mm
β = 99.467 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3698 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3451 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.864Rint = 0.026
7792 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070Δρmax = 0.58 e Å3
S = 1.02Δρmin = 0.52 e Å3
3698 reflectionsAbsolute structure: Flack (1983), 1798 Friedel pairs
234 parametersAbsolute structure parameter: 0.020 (11)
16 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.53275 (7)0.77376 (2)0.26546 (8)0.01875 (9)
S10.66956 (9)0.64265 (6)0.72084 (11)0.02834 (19)
S20.87020 (9)0.82690 (6)0.13658 (11)0.02889 (19)
O10.3999 (2)0.79724 (19)0.3691 (3)0.0272 (5)
H1A0.392 (3)0.763 (2)0.438 (3)0.041*
H1B0.3417 (19)0.804 (3)0.319 (3)0.041*
N10.55528 (19)0.91914 (17)0.2861 (3)0.0203 (6)
N20.4415 (2)0.82344 (18)0.0894 (2)0.0212 (5)
N30.47431 (16)0.64117 (17)0.1766 (2)0.0310 (6)
N40.6034 (2)0.72811 (19)0.4589 (3)0.0292 (6)
N50.6702 (3)0.7681 (2)0.1831 (3)0.0278 (7)
C10.6229 (3)0.9645 (2)0.3838 (3)0.0286 (7)
H10.66630.92950.45510.034*
C20.6315 (3)1.0619 (3)0.3840 (4)0.0433 (10)
H20.68051.09290.45400.052*
C30.5683 (3)1.1122 (3)0.2819 (4)0.0421 (10)
H30.57221.17880.28160.050*
C40.4990 (3)1.0663 (2)0.1793 (4)0.0360 (8)
H40.45521.10040.10700.043*
C50.4946 (2)0.9689 (2)0.1842 (3)0.0223 (6)
C60.4261 (2)0.9115 (2)0.0758 (3)0.0242 (6)
C70.3465 (3)0.9581 (3)0.0336 (3)0.0360 (8)
H7A0.28980.98450.01140.054*
H7B0.31680.91190.10490.054*
H7C0.38061.00840.07910.054*
C80.3855 (3)0.7537 (2)0.0046 (3)0.0297 (7)
H8A0.38240.77290.10440.036*
H8B0.31250.74620.01440.036*
C90.4462 (4)0.6625 (3)0.0238 (2)0.0265 (14)0.556 (5)
H9A0.40290.61060.02340.032*0.556 (5)
H9B0.51160.66630.01790.032*0.556 (5)
C100.5496 (4)0.5631 (3)0.2016 (7)0.0375 (17)0.556 (5)
H10A0.51660.50600.15780.056*0.556 (5)
H10B0.57000.55320.30350.056*0.556 (5)
H10C0.61240.57800.16000.056*0.556 (5)
C110.3747 (3)0.6125 (4)0.2213 (6)0.0306 (15)0.556 (5)
H11A0.35200.55210.17800.046*0.556 (5)
H11B0.32030.65990.19120.046*0.556 (5)
H11C0.38540.60650.32450.046*0.556 (5)
C9'0.3761 (3)0.6644 (4)0.0790 (7)0.045 (2)0.444 (5)
H9'A0.31790.67160.13420.053*0.444 (5)
H9'B0.35790.61170.01220.053*0.444 (5)
C10'0.5540 (5)0.5991 (6)0.1017 (9)0.045 (2)0.444 (5)
H10D0.52810.53880.06100.067*0.444 (5)
H10E0.61970.58930.16820.067*0.444 (5)
H10F0.56750.64120.02590.067*0.444 (5)
C11'0.4673 (8)0.5708 (4)0.2867 (6)0.039 (2)0.444 (5)
H11D0.44060.51170.24240.059*0.444 (5)
H11E0.41910.59320.34890.059*0.444 (5)
H11F0.53750.56060.34250.059*0.444 (5)
C120.6312 (3)0.6935 (2)0.5665 (3)0.0236 (6)
C130.7532 (3)0.7906 (2)0.1624 (3)0.0244 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02124 (18)0.01989 (18)0.01472 (16)0.00167 (17)0.00176 (13)0.00004 (16)
S10.0305 (5)0.0303 (4)0.0227 (4)0.0010 (3)0.0001 (3)0.0074 (3)
S20.0281 (4)0.0372 (5)0.0227 (4)0.0023 (3)0.0082 (3)0.0004 (3)
O10.0213 (13)0.0379 (14)0.0219 (12)0.0058 (10)0.0023 (10)0.0021 (10)
N10.0196 (15)0.0235 (13)0.0185 (13)0.0052 (10)0.0055 (11)0.0028 (10)
N20.0195 (13)0.0293 (15)0.0150 (12)0.0046 (11)0.0030 (10)0.0051 (10)
N30.0463 (18)0.0230 (15)0.0254 (13)0.0079 (12)0.0112 (13)0.0063 (11)
N40.0311 (16)0.0345 (17)0.0222 (14)0.0040 (12)0.0044 (12)0.0035 (12)
N50.0287 (17)0.0344 (17)0.0215 (14)0.0071 (13)0.0075 (13)0.0040 (11)
C10.0273 (18)0.037 (2)0.0227 (16)0.0095 (15)0.0072 (14)0.0096 (14)
C20.049 (2)0.046 (2)0.039 (2)0.0252 (19)0.0200 (19)0.0243 (18)
C30.063 (3)0.0250 (18)0.045 (2)0.0114 (16)0.027 (2)0.0077 (16)
C40.052 (2)0.0250 (19)0.0353 (18)0.0013 (16)0.0211 (18)0.0043 (14)
C50.0256 (17)0.0223 (16)0.0217 (14)0.0011 (13)0.0117 (13)0.0036 (12)
C60.0230 (16)0.0302 (18)0.0206 (15)0.0014 (13)0.0073 (12)0.0066 (13)
C70.0299 (18)0.051 (2)0.0275 (18)0.0088 (16)0.0050 (15)0.0158 (16)
C80.0271 (17)0.042 (2)0.0194 (15)0.0122 (15)0.0010 (13)0.0066 (13)
C90.023 (3)0.027 (3)0.029 (3)0.004 (2)0.001 (3)0.012 (2)
C100.050 (4)0.027 (4)0.037 (4)0.001 (3)0.013 (3)0.002 (3)
C110.035 (3)0.023 (3)0.034 (3)0.005 (2)0.007 (3)0.005 (2)
C9'0.035 (5)0.050 (6)0.050 (5)0.018 (4)0.012 (4)0.021 (4)
C10'0.039 (5)0.025 (5)0.065 (6)0.000 (4)0.008 (5)0.007 (4)
C11'0.063 (6)0.017 (4)0.039 (5)0.001 (4)0.013 (4)0.003 (3)
C120.0241 (16)0.0217 (16)0.0249 (16)0.0005 (13)0.0037 (13)0.0018 (13)
C130.0317 (18)0.0262 (17)0.0160 (14)0.0121 (14)0.0060 (13)0.0054 (12)
Geometric parameters (Å, º) top
Ni1—N22.018 (2)C4—C51.392 (4)
Ni1—N42.033 (3)C4—H40.9500
Ni1—N52.050 (3)C5—C61.491 (4)
Ni1—N12.098 (2)C6—C71.495 (4)
Ni1—O12.137 (2)C7—H7A0.9800
Ni1—N32.158 (2)C7—H7B0.9800
S1—C121.648 (3)C7—H7C0.9800
S2—C131.645 (4)C8—C91.5180 (10)
O1—H1A0.836 (18)C8—C9'1.5204 (10)
O1—H1B0.824 (19)C8—H8A0.9900
N1—C11.335 (4)C8—H8B0.9900
N1—C51.347 (4)C9—H9A0.9900
N2—C61.275 (4)C9—H9B0.9900
N2—C81.451 (4)C10—H10A0.9800
N3—C101.4683 (10)C10—H10B0.9800
N3—C11'1.4706 (10)C10—H10C0.9800
N3—C10'1.4716 (10)C11—H11A0.9800
N3—C111.4725 (10)C11—H11B0.9800
N3—C9'1.4783 (10)C11—H11C0.9800
N3—C91.4810 (10)C9'—H9'A0.9900
N4—C121.147 (4)C9'—H9'B0.9900
N5—C131.162 (4)C10'—H10D0.9800
C1—C21.394 (5)C10'—H10E0.9800
C1—H10.9500C10'—H10F0.9800
C2—C31.368 (5)C11'—H11D0.9800
C2—H20.9500C11'—H11E0.9800
C3—C41.378 (5)C11'—H11F0.9800
C3—H30.9500
N2—Ni1—N4170.38 (10)N1—C5—C6114.9 (3)
N2—Ni1—N596.32 (11)C4—C5—C6123.1 (3)
N4—Ni1—N593.17 (11)N2—C6—C5113.9 (3)
N2—Ni1—N177.53 (9)N2—C6—C7125.9 (3)
N4—Ni1—N1101.33 (10)C5—C6—C7120.2 (3)
N5—Ni1—N187.79 (10)C6—C7—H7A109.5
N2—Ni1—O186.32 (9)C6—C7—H7B109.5
N4—Ni1—O184.06 (10)H7A—C7—H7B109.5
N5—Ni1—O1171.42 (11)C6—C7—H7C109.5
N1—Ni1—O184.80 (10)H7A—C7—H7C109.5
N2—Ni1—N382.01 (10)H7B—C7—H7C109.5
N4—Ni1—N398.83 (10)N2—C8—C9106.8 (3)
N5—Ni1—N394.52 (11)N2—C8—C9'108.7 (3)
N1—Ni1—N3159.55 (9)N2—C8—H8A110.4
O1—Ni1—N393.93 (10)C9—C8—H8A110.4
Ni1—O1—H1A119 (3)C9'—C8—H8A138.3
Ni1—O1—H1B118 (3)N2—C8—H8B110.4
H1A—O1—H1B108 (4)C9—C8—H8B110.4
C1—N1—C5119.0 (3)C9'—C8—H8B69.7
C1—N1—Ni1127.5 (2)H8A—C8—H8B108.6
C5—N1—Ni1113.44 (19)N3—C9—C8112.8 (3)
C6—N2—C8124.0 (3)N3—C9—H9A109.0
C6—N2—Ni1119.4 (2)C8—C9—H9A109.0
C8—N2—Ni1116.04 (19)N3—C9—H9B109.0
C10—N3—C11'58.8 (4)C8—C9—H9B109.0
C11'—N3—C10'101.7 (5)H9A—C9—H9B107.8
C10—N3—C11108.8 (4)N3—C10—H10A109.5
C11'—N3—C1156.1 (4)N3—C10—H10B109.5
C10'—N3—C11137.4 (4)H10A—C10—H10B109.5
C10—N3—C9'138.0 (4)N3—C10—H10C109.5
C11'—N3—C9'117.4 (4)H10A—C10—H10C109.5
C10'—N3—C9'111.8 (5)H10B—C10—H10C109.5
C11—N3—C9'63.6 (3)N3—C11—H11A109.5
C10—N3—C9111.3 (3)N3—C11—H11B109.5
C11'—N3—C9144.7 (4)H11A—C11—H11B109.5
C10'—N3—C971.2 (4)N3—C11—H11C109.5
C11—N3—C9105.2 (4)H11A—C11—H11C109.5
C10—N3—Ni1115.1 (3)H11B—C11—H11C109.5
C11'—N3—Ni1111.9 (3)N3—C9'—C8112.8 (3)
C10'—N3—Ni1109.0 (3)N3—C9'—H9'A109.0
C11—N3—Ni1113.0 (3)C8—C9'—H9'A109.0
C9'—N3—Ni1105.0 (3)N3—C9'—H9'B109.0
C9—N3—Ni1102.9 (2)C8—C9'—H9'B109.0
C12—N4—Ni1170.1 (3)H9'A—C9'—H9'B107.8
C13—N5—Ni1158.1 (3)N3—C10'—H10D109.5
N1—C1—C2121.8 (3)N3—C10'—H10E109.5
N1—C1—H1119.1H10D—C10'—H10E109.5
C2—C1—H1119.1N3—C10'—H10F109.5
C3—C2—C1118.9 (3)H10D—C10'—H10F109.5
C3—C2—H2120.5H10E—C10'—H10F109.5
C1—C2—H2120.5N3—C11'—H11D109.5
C2—C3—C4119.9 (3)N3—C11'—H11E109.5
C2—C3—H3120.0H11D—C11'—H11E109.5
C4—C3—H3120.0N3—C11'—H11F109.5
C3—C4—C5118.3 (3)H11D—C11'—H11F109.5
C3—C4—H4120.8H11E—C11'—H11F109.5
C5—C4—H4120.8N4—C12—S1179.1 (3)
N1—C5—C4121.9 (3)N5—C13—S2177.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1B···S1i0.82 (2)2.38 (2)3.181 (3)164 (4)
O1—H1A···S2ii0.84 (2)2.35 (2)3.190 (3)178 (4)
C7—H7C···Cg1iii0.982.883.531 (3)125
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1/2, y+3/2, z+1/2; (iii) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C11H17N3)(H2O)]
Mr384.16
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)12.8404 (2), 14.2623 (3), 9.5868 (2)
β (°) 99.467 (1)
V3)1731.75 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.37
Crystal size (mm)0.22 × 0.19 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.753, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
7792, 3698, 3451
Rint0.026
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.070, 1.02
No. of reflections3698
No. of parameters234
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.52
Absolute structureFlack (1983), 1798 Friedel pairs
Absolute structure parameter0.020 (11)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1B···S1i0.824 (19)2.38 (2)3.181 (3)164 (4)
O1—H1A···S2ii0.836 (18)2.354 (19)3.190 (3)178 (4)
C7—H7C···Cg1iii0.982.883.531 (3)125
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1/2, y+3/2, z+1/2; (iii) x, y+2, z1/2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBhowmik, P., Chattopadhyay, S., Drew, M. G. B., Diaz, D. & Ghosh, A. (2010). Polyhedron, 29, 2637–2642.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P. (2007). Acta Cryst. E63, m1453–m1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Ikmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m108.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds