organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Di­cyclo­hexyl­amino-3-phenyl-5,6-di­hydro-8H-thio­pyrano[4′,3′:4,5]thieno[2,3-d]pyrimidin-4(3H)-one

aFaculty of Biology, Chemistry and Material Science, East China Institute of Technology, Nanchang 330013, Jiangxi, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China
*Correspondence e-mail: lxzhen11@gmail.com

(Received 18 February 2011; accepted 10 March 2011; online 15 March 2011)

In the title compound, C27H33N3OS2, the dihedral angle between the two fused rings of the thieno[3,2-d]pyrimidine system is 3.73 (9)°. The phenyl ring is twisted with respect to the pyrimidine ring [dihedral angle = 71.60 (10)°] and the thio­pyran ring shows an envelope conformation with the S atom as the flap. An intra­molecular C—H⋯O inter­action occurs. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds occur.

Related literature

For the properties of compounds containing the thieno­pyrimidine system, see: Santagati et al. (2002[Santagati, N. A., Prezzavento, O., Bousquet, E., Ronsisvalle, G. & Spampinato, S. (2002). J. Pharm. Pharmacol. 54, 717-728.]); Kikuchi et al. (2006[Kikuchi, H., Yamamoto, K., Horoiwa, S., Hirai, S., Kasahara, R., Hariguchi, N., Matsumoto, M. & Oshima, Y. (2006). J. Med. Chem. 49, 4698-4706.]). For related crystal structures, see: Hu et al. (2007[Hu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836-o1838.]); Xie et al. (2008[Xie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434.]).

[Scheme 1]

Experimental

Crystal data
  • C27H33N3OS2

  • Mr = 479.70

  • Monoclinic, P 21 /c

  • a = 10.7118 (10) Å

  • b = 22.601 (2) Å

  • c = 10.924 (1) Å

  • β = 109.939 (1)°

  • V = 2486.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.802, Tmax = 0.874

  • 12466 measured reflections

  • 4365 independent reflections

  • 3391 reflections with I > 2σ(I)

  • Rint = 0.027

  • Standard reflections: ?

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.00

  • 4365 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.97 2.54 3.359 (3) 142
C11—H11⋯O1ii 0.93 2.57 3.199 (3) 126
Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The derivatives of heterocycles containing thienopyrimidine system are of great importance because of their remarkable biological activity for use as potential drugs. They proved to show significant antifungal, antibacterial,antimicrobial, anticonvulsant and angiotensin antagonistic activities.Also some of these compounds show good antimalarial or potent multitargeted receptor tyrosine kinase inhibitive activities(Santagati et al.,2002; Kikuchi et al.,2006).In addition,the title compound have exhibited a high potential as efficient luminophores for liquid and fluorescent properties and markers in biological or supramolecular systems.some X-ray crystal structures of pyrimidinone derivatives have been reported(Hu et al.,2007; Xie et al.,2008). The bond lengths and angles are unexceptional. The thieno (A), the pyrimidinone (B) and the C9—C14 benzene(C), rings are, of course, planar and the dihedral angles between them are A/B = 3.73 (9) °, B/C = 71.60 (10) °. The thiopyrano ring in (I)(Fig1) shows a distored chairconformation [ϕ = 164.0 (3) ° and θ = 128.83 (18) °, Puckering Amplitude =0.6360 (18)%A].The weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules inti centrosymmetric dimmers (Fig 2).

Related literature top

For the properties of compounds containing the thienopyrimidine system, see: Santagati et al. (2002); Kikuchi et al.(2006). For related crystal structures, see: Hu et al. (2007); Xie et al. (2008).

Experimental top

To a solution of iminophosphorane (1.01 g, 2 mmol) in anhyd. CH2Cl2 (15 ml) aromatic isocyanate (2.2 mmol) was added under nitrogen atmosphere at room temperature. After the reaction mixture was left unstirred for 6–12 h at 0–5°C, the iminophosphorane had disappeared (TLC monitored). The solvent was removed off under reduced pressure and Et2O / petroleum ether (1:2, 20 ml)was added to precipitate triphenylphosphine oxide. Removal of the solvent gave carbodiimides, which were used directly without further purification. To the solution of in dichloromethane (15 ml) was added dialkylamine (2.2 mmol). After the reaction mixture was left unstirred for 4–6 h, the solvent was removed and anhyd. EtOH (15 mL) with several drops of EtONa in EtOH was added. The mixture was stirred for 6–12 h at room temperature. The solution was condensed and residue was recrystallized from EtOH to give yellow blocks of the title compound.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular sturcture of (I) showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram for (I) with C—H···O links shown as dashed lines.
2-Dicyclohexylamino-3-phenyl-5,6-dihydro-8H- thiopyrano[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one top
Crystal data top
C27H33N3OS2F(000) = 1024
Mr = 479.70Dx = 1.282 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4365 reflections
a = 10.7118 (10) Åθ = 2.0–25.0°
b = 22.601 (2) ŵ = 0.24 mm1
c = 10.924 (1) ÅT = 293 K
β = 109.939 (1)°Block, yellow
V = 2486.1 (4) Å30.30 × 0.25 × 0.18 mm
Z = 4
Data collection top
Bruker DIFFRACTOMETER TYPE????
diffractometer
3391 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1211
Tmin = 0.802, Tmax = 0.874k = 1726
12466 measured reflectionsl = 1212
4365 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0373P)2 + 1.0362P]
where P = (Fo2 + 2Fc2)/3
4365 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C27H33N3OS2V = 2486.1 (4) Å3
Mr = 479.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7118 (10) ŵ = 0.24 mm1
b = 22.601 (2) ÅT = 293 K
c = 10.924 (1) Å0.30 × 0.25 × 0.18 mm
β = 109.939 (1)°
Data collection top
Bruker DIFFRACTOMETER TYPE????
diffractometer
4365 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3391 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.874Rint = 0.027
12466 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.00Δρmax = 0.25 e Å3
4365 reflectionsΔρmin = 0.26 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.52363 (5)0.09045 (3)0.58192 (5)0.05635 (17)
S20.36688 (6)0.00416 (3)0.84325 (5)0.06459 (19)
N20.39389 (15)0.14368 (7)0.35103 (15)0.0446 (4)
N10.17515 (14)0.11220 (7)0.23197 (14)0.0381 (4)
O10.06017 (13)0.04696 (6)0.31444 (12)0.0520 (4)
C60.28078 (18)0.07129 (8)0.44376 (17)0.0392 (4)
C70.38904 (18)0.10337 (8)0.44241 (18)0.0414 (4)
C40.30430 (18)0.03617 (8)0.55936 (17)0.0408 (4)
C80.28574 (17)0.14842 (8)0.24936 (17)0.0382 (4)
C50.43038 (19)0.04268 (9)0.64211 (18)0.0456 (5)
C30.2018 (2)0.00226 (10)0.5853 (2)0.0532 (5)
H3A0.15930.02650.50910.064*
H3B0.13420.02280.59900.064*
C10.4921 (2)0.01507 (10)0.7740 (2)0.0568 (6)
H1A0.55470.04260.83120.068*
H1B0.54050.02020.76640.068*
C20.2587 (2)0.04225 (10)0.7023 (2)0.0587 (6)
H2A0.30780.07400.67980.070*
H2B0.18620.05990.72380.070*
N30.27679 (15)0.18922 (7)0.15363 (15)0.0417 (4)
C90.08042 (18)0.10101 (8)0.10264 (17)0.0392 (4)
C220.39403 (19)0.20341 (9)0.11691 (19)0.0455 (5)
H220.35990.22800.03860.055*
C200.16227 (19)0.23014 (9)0.11292 (18)0.0455 (5)
H200.09660.21390.14810.055*
C100.12331 (19)0.07079 (9)0.01470 (18)0.0447 (5)
H100.21150.05890.03790.054*
C140.05072 (19)0.11717 (9)0.07028 (19)0.0485 (5)
H140.08030.13620.13070.058*
C270.5036 (2)0.23963 (10)0.2115 (2)0.0563 (5)
H27A0.54260.21760.29180.068*
H27B0.46690.27600.23190.068*
C230.4467 (2)0.14866 (10)0.0736 (2)0.0576 (6)
H23A0.37500.12900.00650.069*
H23B0.47990.12170.14660.069*
C130.1378 (2)0.10476 (11)0.0530 (2)0.0595 (6)
H130.22630.11620.07620.071*
C120.0948 (2)0.07562 (11)0.1418 (2)0.0597 (6)
H120.15380.06770.22490.072*
C150.0939 (2)0.23351 (11)0.0339 (2)0.0597 (6)
H15A0.07360.19390.06920.072*
H15B0.15290.25190.07310.072*
C260.6108 (2)0.25425 (11)0.1533 (3)0.0683 (7)
H26A0.57350.27980.07830.082*
H26B0.68220.27560.21720.082*
C190.1943 (2)0.29232 (9)0.1691 (2)0.0593 (6)
H19A0.23790.29010.26270.071*
H19B0.25420.31160.13220.071*
C110.0352 (2)0.05831 (10)0.1077 (2)0.0533 (5)
H110.06400.03810.16730.064*
C240.5580 (2)0.16290 (11)0.0206 (2)0.0696 (7)
H24A0.59610.12620.00350.083*
H24B0.52110.18390.06140.083*
C250.6657 (2)0.19973 (11)0.1127 (3)0.0735 (7)
H25A0.71260.17650.18920.088*
H25B0.72890.21100.07090.088*
C160.0336 (2)0.26934 (13)0.0668 (2)0.0789 (8)
H16A0.07340.27290.16060.095*
H16B0.09590.24860.03520.095*
C170.0084 (3)0.33031 (13)0.0069 (3)0.0926 (10)
H17A0.09270.35010.02220.111*
H17B0.04190.35320.04910.111*
C180.0670 (3)0.32814 (12)0.1378 (3)0.0844 (8)
H18A0.01100.31060.18160.101*
H18B0.08860.36810.17040.101*
C280.16231 (18)0.07445 (8)0.33148 (17)0.0387 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0443 (3)0.0596 (4)0.0528 (3)0.0111 (3)0.0006 (2)0.0144 (3)
S20.0742 (4)0.0727 (4)0.0432 (3)0.0018 (3)0.0152 (3)0.0092 (3)
N20.0419 (9)0.0445 (9)0.0433 (9)0.0061 (7)0.0092 (7)0.0063 (8)
N10.0373 (8)0.0404 (9)0.0349 (8)0.0025 (7)0.0104 (6)0.0018 (7)
O10.0453 (8)0.0625 (9)0.0443 (8)0.0166 (7)0.0101 (6)0.0039 (7)
C60.0411 (10)0.0366 (10)0.0386 (10)0.0021 (8)0.0117 (8)0.0009 (8)
C70.0404 (10)0.0397 (11)0.0413 (10)0.0016 (9)0.0103 (8)0.0024 (9)
C40.0457 (11)0.0351 (10)0.0383 (10)0.0020 (8)0.0100 (8)0.0004 (8)
C80.0394 (10)0.0370 (10)0.0388 (10)0.0004 (8)0.0141 (8)0.0005 (8)
C50.0487 (11)0.0398 (11)0.0426 (10)0.0043 (9)0.0079 (9)0.0034 (9)
C30.0517 (12)0.0558 (13)0.0463 (12)0.0094 (10)0.0093 (10)0.0103 (10)
C10.0571 (13)0.0532 (13)0.0480 (12)0.0049 (11)0.0022 (10)0.0092 (10)
C20.0591 (13)0.0567 (14)0.0568 (13)0.0099 (11)0.0152 (11)0.0150 (11)
N30.0416 (9)0.0401 (9)0.0445 (9)0.0000 (7)0.0162 (7)0.0072 (7)
C90.0384 (10)0.0393 (10)0.0369 (10)0.0018 (8)0.0091 (8)0.0029 (8)
C220.0475 (11)0.0442 (11)0.0483 (11)0.0031 (9)0.0208 (9)0.0034 (9)
C200.0482 (11)0.0447 (11)0.0460 (11)0.0075 (9)0.0193 (9)0.0099 (9)
C100.0422 (10)0.0426 (11)0.0487 (11)0.0026 (9)0.0147 (9)0.0026 (9)
C140.0404 (11)0.0585 (13)0.0469 (11)0.0016 (10)0.0151 (9)0.0003 (10)
C270.0519 (12)0.0535 (13)0.0639 (13)0.0087 (10)0.0202 (11)0.0068 (11)
C230.0582 (13)0.0525 (13)0.0680 (14)0.0024 (11)0.0292 (11)0.0060 (11)
C130.0364 (11)0.0755 (16)0.0592 (13)0.0009 (11)0.0066 (10)0.0043 (12)
C120.0542 (13)0.0705 (16)0.0438 (12)0.0097 (12)0.0032 (10)0.0024 (11)
C150.0596 (13)0.0700 (15)0.0468 (12)0.0126 (12)0.0146 (10)0.0122 (11)
C260.0562 (14)0.0533 (14)0.0955 (18)0.0121 (11)0.0261 (13)0.0016 (13)
C190.0732 (15)0.0461 (12)0.0663 (14)0.0049 (11)0.0339 (12)0.0014 (11)
C110.0595 (13)0.0543 (13)0.0468 (12)0.0083 (11)0.0190 (10)0.0084 (10)
C240.0741 (16)0.0686 (16)0.0815 (17)0.0040 (13)0.0466 (14)0.0009 (14)
C250.0535 (14)0.0666 (16)0.111 (2)0.0017 (13)0.0422 (14)0.0132 (15)
C160.0654 (16)0.100 (2)0.0686 (16)0.0253 (15)0.0187 (13)0.0350 (16)
C170.094 (2)0.078 (2)0.119 (3)0.0398 (17)0.0537 (19)0.0499 (19)
C180.104 (2)0.0562 (16)0.109 (2)0.0245 (15)0.0563 (19)0.0098 (16)
C280.0406 (10)0.0377 (10)0.0375 (10)0.0027 (9)0.0130 (8)0.0020 (8)
Geometric parameters (Å, º) top
S1—C71.7286 (19)C14—C131.381 (3)
S1—C51.745 (2)C14—H140.9300
S2—C21.799 (2)C27—C261.526 (3)
S2—C11.803 (2)C27—H27A0.9700
N2—C81.308 (2)C27—H27B0.9700
N2—C71.365 (2)C23—C241.527 (3)
N1—C81.399 (2)C23—H23A0.9700
N1—C281.425 (2)C23—H23B0.9700
N1—C91.453 (2)C13—C121.375 (3)
O1—C281.216 (2)C13—H130.9300
C6—C71.372 (3)C12—C111.370 (3)
C6—C281.435 (2)C12—H120.9300
C6—C41.439 (2)C15—C161.522 (3)
C4—C51.353 (3)C15—H15A0.9700
C4—C31.500 (3)C15—H15B0.9700
C8—N31.373 (2)C26—C251.497 (3)
C5—C11.501 (3)C26—H26A0.9700
C3—C21.514 (3)C26—H26B0.9700
C3—H3A0.9700C19—C181.521 (3)
C3—H3B0.9700C19—H19A0.9700
C1—H1A0.9700C19—H19B0.9700
C1—H1B0.9700C11—H110.9300
C2—H2A0.9700C24—C251.498 (3)
C2—H2B0.9700C24—H24A0.9700
N3—C221.478 (2)C24—H24B0.9700
N3—C201.478 (2)C25—H25A0.9700
C9—C141.376 (3)C25—H25B0.9700
C9—C101.379 (3)C16—C171.509 (4)
C22—C231.502 (3)C16—H16A0.9700
C22—C271.513 (3)C16—H16B0.9700
C22—H220.9800C17—C181.511 (4)
C20—C151.521 (3)C17—H17A0.9700
C20—C191.525 (3)C17—H17B0.9700
C20—H200.9800C18—H18A0.9700
C10—C111.377 (3)C18—H18B0.9700
C10—H100.9300
C7—S1—C591.39 (9)H27A—C27—H27B108.1
C2—S2—C196.33 (10)C22—C23—C24111.83 (19)
C8—N2—C7115.60 (16)C22—C23—H23A109.2
C8—N1—C28122.99 (14)C24—C23—H23A109.2
C8—N1—C9120.81 (14)C22—C23—H23B109.2
C28—N1—C9114.86 (14)C24—C23—H23B109.2
C7—C6—C28117.97 (17)H23A—C23—H23B107.9
C7—C6—C4113.91 (16)C12—C13—C14120.5 (2)
C28—C6—C4128.07 (17)C12—C13—H13119.8
N2—C7—C6127.12 (17)C14—C13—H13119.8
N2—C7—S1121.94 (14)C11—C12—C13119.9 (2)
C6—C7—S1110.80 (14)C11—C12—H12120.0
C5—C4—C6111.25 (17)C13—C12—H12120.0
C5—C4—C3124.39 (17)C20—C15—C16110.26 (18)
C6—C4—C3124.36 (16)C20—C15—H15A109.6
N2—C8—N3120.91 (16)C16—C15—H15A109.6
N2—C8—N1122.10 (16)C20—C15—H15B109.6
N3—C8—N1116.99 (15)C16—C15—H15B109.6
C4—C5—C1127.50 (18)H15A—C15—H15B108.1
C4—C5—S1112.64 (14)C25—C26—C27111.91 (19)
C1—C5—S1119.85 (14)C25—C26—H26A109.2
C4—C3—C2113.29 (17)C27—C26—H26A109.2
C4—C3—H3A108.9C25—C26—H26B109.2
C2—C3—H3A108.9C27—C26—H26B109.2
C4—C3—H3B108.9H26A—C26—H26B107.9
C2—C3—H3B108.9C18—C19—C20109.8 (2)
H3A—C3—H3B107.7C18—C19—H19A109.7
C5—C1—S2110.84 (15)C20—C19—H19A109.7
C5—C1—H1A109.5C18—C19—H19B109.7
S2—C1—H1A109.5C20—C19—H19B109.7
C5—C1—H1B109.5H19A—C19—H19B108.2
S2—C1—H1B109.5C12—C11—C10120.1 (2)
H1A—C1—H1B108.1C12—C11—H11119.9
C3—C2—S2113.16 (15)C10—C11—H11119.9
C3—C2—H2A108.9C25—C24—C23112.6 (2)
S2—C2—H2A108.9C25—C24—H24A109.1
C3—C2—H2B108.9C23—C24—H24A109.1
S2—C2—H2B108.9C25—C24—H24B109.1
H2A—C2—H2B107.8C23—C24—H24B109.1
C8—N3—C22120.49 (15)H24A—C24—H24B107.8
C8—N3—C20118.98 (14)C26—C25—C24111.5 (2)
C22—N3—C20118.51 (15)C26—C25—H25A109.3
C14—C9—C10120.40 (18)C24—C25—H25A109.3
C14—C9—N1121.13 (17)C26—C25—H25B109.3
C10—C9—N1118.38 (16)C24—C25—H25B109.3
N3—C22—C23110.62 (16)H25A—C25—H25B108.0
N3—C22—C27117.73 (16)C17—C16—C15111.7 (2)
C23—C22—C27111.94 (17)C17—C16—H16A109.3
N3—C22—H22105.1C15—C16—H16A109.3
C23—C22—H22105.1C17—C16—H16B109.3
C27—C22—H22105.1C15—C16—H16B109.3
N3—C20—C15113.60 (16)H16A—C16—H16B107.9
N3—C20—C19113.94 (17)C16—C17—C18112.1 (2)
C15—C20—C19109.83 (18)C16—C17—H17A109.2
N3—C20—H20106.3C18—C17—H17A109.2
C15—C20—H20106.3C16—C17—H17B109.2
C19—C20—H20106.3C18—C17—H17B109.2
C11—C10—C9119.78 (19)H17A—C17—H17B107.9
C11—C10—H10120.1C17—C18—C19111.8 (2)
C9—C10—H10120.1C17—C18—H18A109.3
C9—C14—C13119.21 (19)C19—C18—H18A109.3
C9—C14—H14120.4C17—C18—H18B109.3
C13—C14—H14120.4C19—C18—H18B109.3
C22—C27—C26110.57 (18)H18A—C18—H18B107.9
C22—C27—H27A109.5O1—C28—N1120.33 (16)
C26—C27—H27A109.5O1—C28—C6126.36 (17)
C22—C27—H27B109.5N1—C28—C6113.24 (16)
C26—C27—H27B109.5
C8—N2—C7—C65.7 (3)C20—N3—C22—C23138.37 (18)
C8—N2—C7—S1179.04 (14)C8—N3—C22—C2772.5 (2)
C28—C6—C7—N27.6 (3)C20—N3—C22—C2791.2 (2)
C4—C6—C7—N2174.80 (18)C8—N3—C20—C15131.05 (19)
C28—C6—C7—S1176.68 (14)C22—N3—C20—C1565.0 (2)
C4—C6—C7—S10.9 (2)C8—N3—C20—C19102.2 (2)
C5—S1—C7—N2174.90 (17)C22—N3—C20—C1961.8 (2)
C5—S1—C7—C61.09 (16)C14—C9—C10—C112.0 (3)
C7—C6—C4—C50.2 (2)N1—C9—C10—C11178.53 (17)
C28—C6—C4—C5177.14 (19)C10—C9—C14—C132.4 (3)
C7—C6—C4—C3179.31 (19)N1—C9—C14—C13178.87 (18)
C28—C6—C4—C33.4 (3)N3—C22—C27—C26175.41 (18)
C7—N2—C8—N3177.25 (16)C23—C22—C27—C2654.7 (2)
C7—N2—C8—N13.5 (3)N3—C22—C23—C24173.60 (18)
C28—N1—C8—N210.6 (3)C27—C22—C23—C2453.0 (2)
C9—N1—C8—N2155.50 (17)C9—C14—C13—C121.2 (3)
C28—N1—C8—N3170.12 (16)C14—C13—C12—C110.5 (4)
C9—N1—C8—N323.8 (2)N3—C20—C15—C16171.91 (19)
C6—C4—C5—C1178.0 (2)C19—C20—C15—C1659.2 (2)
C3—C4—C5—C11.4 (3)C22—C27—C26—C2555.9 (3)
C6—C4—C5—S10.7 (2)N3—C20—C19—C18171.88 (18)
C3—C4—C5—S1179.85 (16)C15—C20—C19—C1859.4 (2)
C7—S1—C5—C41.02 (17)C13—C12—C11—C101.0 (3)
C7—S1—C5—C1177.80 (18)C9—C10—C11—C120.3 (3)
C5—C4—C3—C210.5 (3)C22—C23—C24—C2552.1 (3)
C6—C4—C3—C2170.07 (19)C27—C26—C25—C2455.1 (3)
C4—C5—C1—S223.8 (3)C23—C24—C25—C2653.0 (3)
S1—C5—C1—S2154.80 (12)C20—C15—C16—C1755.8 (3)
C2—S2—C1—C549.27 (17)C15—C16—C17—C1852.8 (3)
C4—C3—C2—S247.5 (2)C16—C17—C18—C1953.3 (3)
C1—S2—C2—C364.11 (18)C20—C19—C18—C1756.4 (3)
N2—C8—N3—C2235.6 (3)C8—N1—C28—O1174.84 (17)
N1—C8—N3—C22143.67 (16)C9—N1—C28—O118.3 (2)
N2—C8—N3—C20127.97 (19)C8—N1—C28—C68.0 (2)
N1—C8—N3—C2052.7 (2)C9—N1—C28—C6158.83 (16)
C8—N1—C9—C14119.1 (2)C7—C6—C28—O1176.52 (19)
C28—N1—C9—C1473.7 (2)C4—C6—C28—O10.7 (3)
C8—N1—C9—C1064.4 (2)C7—C6—C28—N10.4 (2)
C28—N1—C9—C10102.80 (19)C4—C6—C28—N1177.64 (17)
C8—N3—C22—C2357.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.972.543.359 (3)142
C11—H11···O1ii0.932.573.199 (3)126
Symmetry codes: (i) x, y, z+1; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC27H33N3OS2
Mr479.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.7118 (10), 22.601 (2), 10.924 (1)
β (°) 109.939 (1)
V3)2486.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.25 × 0.18
Data collection
DiffractometerBruker DIFFRACTOMETER TYPE????
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.802, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
12466, 4365, 3391
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.00
No. of reflections4365
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.26

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.972.543.359 (3)142
C11—H11···O1ii0.932.573.199 (3)126
Symmetry codes: (i) x, y, z+1; (ii) x, y, z.
 

Acknowledgements

This work was supported financially by the Jiangxi Natural Science Foundation of China (grant No. 2009GZH0002).

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836–o1838.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKikuchi, H., Yamamoto, K., Horoiwa, S., Hirai, S., Kasahara, R., Hariguchi, N., Matsumoto, M. & Oshima, Y. (2006). J. Med. Chem. 49, 4698–4706.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSantagati, N. A., Prezzavento, O., Bousquet, E., Ronsisvalle, G. & Spampinato, S. (2002). J. Pharm. Pharmacol. 54, 717–728.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds