metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine-κ2N,N′)chlorido(2-hy­dr­oxy-2,2-di­phenyl­acetato-κ2O1,O1′)copper(II)

aDepartment of Chemistry, Rajshahi University, Bangladesh, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 February 2011; accepted 25 February 2011; online 9 March 2011)

The Cu(II) atom in the title complex, [Cu(C14H11O3)Cl(C10H8N2)], exists within a ClN2O2 donor set defined by a chloride ion, an asymmetrically chelating carboxyl­ate ligand, and a symmetrically chelating 2,2′-bipyridine mol­ecule. The coordination geometry is square pyramidal with the axial site occupied by the O atom forming the weaker Cu—O inter­action. The hy­droxy group forms an intra­molecular hydrogen bond with the axial O atom, as well as an inter­molecular O—H⋯Cl hydrogen bond. The latter leads to the formation of [100] supra­molecular chains in the crystal, with the Cu(II) atoms lying in a line.

Related literature

For recent structural studies on metal complexes of anions derived from benzilic acid, see: Yang et al. (2010[Yang, X.-X., Zhang, F.-Y. & Xu, S.-H. (2010). Acta Cryst. E66, m69.]); Reza et al. (2010[Reza, Md. Y., Hossain, Md. M., Karim, Md. R., Tarafder, Md. T. H. & Hughes, D. L. (2010). Acta Cryst. E66, m116-m117.]). For additional structural analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H11O3)Cl(C10H8N2)]

  • Mr = 482.40

  • Monoclinic, P 21 /c

  • a = 7.1537 (9) Å

  • b = 15.7277 (19) Å

  • c = 18.601 (4) Å

  • β = 97.806 (14)°

  • V = 2073.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.571, Tmax = 1.000

  • 8454 measured reflections

  • 3651 independent reflections

  • 2719 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.238

  • S = 1.03

  • 3651 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −1.42 e Å−3

Table 1
Selected bond lengths (Å)

Cu—Cl1 2.2301 (18)
Cu—O1 1.971 (4)
Cu—O2 2.476 (4)
Cu—N1 2.006 (5)
Cu—N2 1.976 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯O2 0.82 2.19 2.622 (6) 113
O3—H3o⋯Cl1i 0.82 2.62 3.328 (5) 146
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recent structural investigations of benzilate complexes have confirmed that anions derived from benzilic acid can function as multidentate ligands with versatile coordination modes (Reza et al., 2010; Yang et al., 2010). Herein, the crystal and molecular structure of a mononuclear CuII complex, (I), is described.

The Cu atom in (I) is coordinated by a Cl, an asymmetrically chelating carboxylate anion, and a symmetrically chelating 2,2'-bipyridine ligand, Table 1. The asymmetric mode of coordination of the carboxylate is reflected in the disparate C—O bond distances with the longer C1—O1 distance [1.285 (8) Å] being associated with the shorter Cu—O1 interaction, and the short C1—O2 distance [1.204 (7) Å] associated with the weaker Cu—O2 contact. The resultant ClN2O2 donor set defines a square pyramid. This assignment is based on the value calculated for τ of 0.07 for the Cu atom, which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bi-pyramidal geometries, respectively (Spek, 2009; Addison et al., 1984). In this description, the weakly coordinating O2 atom defines the axial site. While not participating in direct coordination to the Cu atom, the hydroxyl group forms an intramolecular hydrogen bond with the O2 atom as well as an intermolecular O—H···Cl hydrogen bond, Table 2. The latter leads to the generation of supramolecular chains along the a axis, Fig. 2, whereby the Cu atoms lie on a line.

Related literature top

For recent structural studies on metal complexes of anions derived from benzilic acid, see: Yang et al. (2010); Reza et al. (2010). For additional structural analysis, see: Addison et al. (1984); Spek (2009).

Experimental top

A mixture of copper chloride (0.134 g,1 mmol), benzilic acid (0.228 g, 1 mmol), 2,2'-bipyridine (0.196 g, 1 mmol) and Et3N (0.1 g, 1 mmol) was placed into methanol (40 ml) and the resultant solution was heated to 323 K for 0.5 h. Initial precipitates were filtered off and the filtrate was allowed to stand for several days. Blue blocks of the title compound were collected, washed with methanol and air-dried at room temperature. M. pt. 457 K.

Refinement top

The O– and C-bound H atoms were geometrically placed (O—H = 0.82 Å and C–H = 0.93 Å) and refined as riding with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for C. The maximum and minimum residual electron density peaks of 0.91 and 1.42 e Å-3, respectively, were located 0.93 Å and 0.78 Å from the N1 and Cu atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chain along the a axis in (I) mediated by O—H···Cl hydrogen bonds (shown as orange dashed lines).
(2,2'-Bipyridine-κ2N,N')chlorido(2-hydroxy-2,2- diphenylacetato-κ2O1,O1')copper(II) top
Crystal data top
[Cu(C14H11O3)Cl(C10H8N2)]F(000) = 988
Mr = 482.40Dx = 1.545 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3252 reflections
a = 7.1537 (9) Åθ = 2.6–29.4°
b = 15.7277 (19) ŵ = 1.21 mm1
c = 18.601 (4) ÅT = 293 K
β = 97.806 (14)°Block, blue
V = 2073.5 (5) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3651 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2719 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.053
Detector resolution: 10.4041 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1817
Tmin = 0.571, Tmax = 1.000l = 2122
8454 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.238H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1324P)2 + 7.2136P]
where P = (Fo2 + 2Fc2)/3
3651 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 1.42 e Å3
Crystal data top
[Cu(C14H11O3)Cl(C10H8N2)]V = 2073.5 (5) Å3
Mr = 482.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1537 (9) ŵ = 1.21 mm1
b = 15.7277 (19) ÅT = 293 K
c = 18.601 (4) Å0.20 × 0.15 × 0.10 mm
β = 97.806 (14)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3651 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2719 reflections with I > 2σ(I)
Tmin = 0.571, Tmax = 1.000Rint = 0.053
8454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.238H-atom parameters constrained
S = 1.03Δρmax = 0.91 e Å3
3651 reflectionsΔρmin = 1.42 e Å3
281 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.63293 (10)0.44986 (4)0.36367 (4)0.0351 (3)
Cl10.4262 (2)0.34756 (11)0.32669 (10)0.0475 (5)
N10.7215 (8)0.5629 (3)0.4053 (3)0.0390 (13)
N20.6723 (7)0.4182 (3)0.4674 (3)0.0337 (11)
O10.6859 (6)0.4804 (3)0.2657 (2)0.0401 (10)
O20.9191 (6)0.3986 (3)0.3158 (2)0.0415 (11)
O31.0661 (7)0.3757 (3)0.1956 (2)0.0438 (11)
H3o1.11350.36850.23780.066*
C10.8391 (9)0.4378 (4)0.2651 (3)0.0330 (14)
C20.9273 (9)0.4407 (4)0.1925 (3)0.0307 (13)
C30.7914 (9)0.4235 (4)0.1234 (3)0.0350 (13)
C40.6016 (10)0.4065 (4)0.1209 (4)0.0457 (16)
H40.54680.40540.16340.055*
C50.4940 (11)0.3911 (5)0.0554 (5)0.058 (2)
H50.36530.38110.05360.070*
C60.5752 (13)0.3905 (5)0.0080 (4)0.062 (2)
H60.50080.37940.05200.074*
C70.7616 (13)0.4058 (5)0.0067 (4)0.061 (2)
H70.81610.40440.04930.073*
C80.8696 (11)0.4236 (5)0.0586 (4)0.0490 (17)
H80.99710.43580.05960.059*
C91.0175 (8)0.5291 (4)0.1890 (3)0.0342 (13)
C100.9071 (10)0.6006 (4)0.1767 (4)0.0414 (15)
H100.77650.59520.16840.050*
C110.9891 (12)0.6816 (4)0.1764 (4)0.0550 (19)
H110.91290.72950.16910.066*
C121.1818 (12)0.6901 (5)0.1871 (4)0.057 (2)
H121.23690.74350.18610.068*
C131.2907 (10)0.6200 (5)0.1991 (3)0.0491 (18)
H131.42130.62590.20600.059*
C141.2124 (9)0.5387 (4)0.2013 (4)0.0413 (15)
H141.29000.49150.21080.050*
C150.7393 (9)0.6339 (4)0.3682 (4)0.0448 (16)
H150.70520.63310.31820.054*
C160.8060 (10)0.7086 (4)0.4006 (4)0.0466 (16)
H160.81750.75710.37300.056*
C170.8541 (10)0.7101 (4)0.4732 (4)0.0464 (16)
H170.89880.75990.49640.056*
C180.8367 (9)0.6366 (4)0.5133 (4)0.0410 (15)
H180.87000.63640.56340.049*
C190.7685 (8)0.5635 (4)0.4772 (4)0.0339 (14)
C200.7432 (8)0.4810 (4)0.5129 (3)0.0319 (13)
C210.7927 (9)0.4669 (4)0.5869 (3)0.0393 (15)
H210.84040.51070.61770.047*
C220.7690 (10)0.3860 (4)0.6135 (3)0.0431 (16)
H220.80110.37480.66270.052*
C230.6981 (10)0.3219 (4)0.5670 (4)0.0484 (17)
H230.68280.26720.58440.058*
C240.6505 (10)0.3403 (4)0.4949 (4)0.0432 (16)
H240.60120.29720.46370.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0404 (5)0.0315 (5)0.0357 (5)0.0002 (3)0.0137 (4)0.0010 (3)
Cl10.0425 (9)0.0453 (9)0.0547 (11)0.0055 (7)0.0066 (8)0.0046 (8)
N10.050 (3)0.027 (2)0.045 (3)0.001 (2)0.025 (3)0.001 (2)
N20.034 (3)0.032 (3)0.037 (3)0.003 (2)0.009 (2)0.003 (2)
O10.053 (3)0.042 (2)0.029 (2)0.005 (2)0.018 (2)0.0053 (19)
O20.050 (3)0.043 (2)0.032 (2)0.003 (2)0.009 (2)0.012 (2)
O30.058 (3)0.033 (2)0.042 (3)0.017 (2)0.012 (2)0.002 (2)
C10.045 (3)0.026 (3)0.029 (3)0.007 (3)0.011 (3)0.006 (2)
C20.040 (3)0.032 (3)0.019 (3)0.005 (2)0.002 (2)0.001 (2)
C30.045 (3)0.025 (3)0.035 (3)0.003 (3)0.005 (3)0.001 (3)
C40.046 (4)0.041 (4)0.052 (4)0.005 (3)0.010 (3)0.010 (3)
C50.050 (4)0.045 (4)0.075 (6)0.004 (3)0.009 (4)0.010 (4)
C60.086 (6)0.043 (4)0.046 (5)0.002 (4)0.025 (4)0.004 (3)
C70.090 (6)0.053 (4)0.041 (4)0.008 (4)0.014 (4)0.001 (3)
C80.063 (4)0.048 (4)0.037 (4)0.005 (4)0.012 (3)0.003 (3)
C90.038 (3)0.033 (3)0.034 (3)0.001 (3)0.014 (3)0.006 (3)
C100.043 (3)0.038 (3)0.045 (4)0.003 (3)0.011 (3)0.004 (3)
C110.070 (5)0.030 (3)0.067 (5)0.002 (3)0.019 (4)0.001 (3)
C120.075 (5)0.038 (4)0.063 (5)0.020 (4)0.030 (4)0.007 (3)
C130.052 (4)0.069 (5)0.028 (3)0.021 (4)0.012 (3)0.007 (3)
C140.044 (4)0.044 (4)0.038 (4)0.002 (3)0.013 (3)0.002 (3)
C150.040 (4)0.041 (4)0.053 (4)0.000 (3)0.005 (3)0.009 (3)
C160.050 (4)0.034 (3)0.058 (5)0.001 (3)0.016 (3)0.007 (3)
C170.058 (4)0.033 (3)0.049 (4)0.006 (3)0.011 (3)0.008 (3)
C180.040 (3)0.034 (3)0.051 (4)0.000 (3)0.012 (3)0.002 (3)
C190.028 (3)0.033 (3)0.044 (4)0.002 (2)0.016 (3)0.001 (3)
C200.028 (3)0.035 (3)0.034 (3)0.005 (2)0.010 (2)0.005 (3)
C210.043 (4)0.044 (3)0.033 (3)0.004 (3)0.011 (3)0.006 (3)
C220.052 (4)0.052 (4)0.026 (3)0.006 (3)0.008 (3)0.007 (3)
C230.051 (4)0.040 (4)0.058 (5)0.003 (3)0.021 (3)0.011 (3)
C240.050 (4)0.030 (3)0.053 (4)0.004 (3)0.022 (3)0.004 (3)
Geometric parameters (Å, º) top
Cu—Cl12.2301 (18)C9—C141.390 (9)
Cu—O11.971 (4)C10—C111.403 (9)
Cu—O22.476 (4)C10—H100.9300
Cu—N12.006 (5)C11—C121.372 (11)
Cu—N21.976 (5)C11—H110.9300
N1—C151.329 (8)C12—C131.351 (11)
N1—C191.333 (9)C12—H120.9300
N2—C241.345 (8)C13—C141.399 (10)
N2—C201.353 (8)C13—H130.9300
O1—C11.285 (8)C14—H140.9300
O2—C11.204 (7)C15—C161.376 (10)
O3—C21.421 (7)C15—H150.9300
O3—H3o0.8200C16—C171.348 (10)
C1—C21.567 (8)C16—H160.9300
C2—C31.527 (8)C17—C181.390 (9)
C2—C91.537 (8)C17—H170.9300
C3—C41.379 (9)C18—C191.387 (9)
C3—C81.395 (9)C18—H180.9300
C4—C51.371 (10)C19—C201.481 (8)
C4—H40.9300C20—C211.391 (9)
C5—C61.385 (12)C21—C221.384 (9)
C5—H50.9300C21—H210.9300
C6—C71.352 (12)C22—C231.379 (10)
C6—H60.9300C22—H220.9300
C7—C81.377 (11)C23—C241.370 (10)
C7—H70.9300C23—H230.9300
C8—H80.9300C24—H240.9300
C9—C101.375 (9)
O1—Cu—N2160.9 (2)C10—C9—C2120.8 (5)
O1—Cu—N192.9 (2)C14—C9—C2120.6 (5)
N2—Cu—N181.4 (2)C9—C10—C11120.8 (6)
O1—Cu—Cl195.35 (14)C9—C10—H10119.6
N2—Cu—Cl196.91 (15)C11—C10—H10119.6
N1—Cu—Cl1156.84 (16)C12—C11—C10120.0 (7)
O1—Cu—O258.31 (16)C12—C11—H11120.0
N2—Cu—O2104.72 (18)C10—C11—H11120.0
N1—Cu—O2101.21 (18)C13—C12—C11119.3 (6)
Cl1—Cu—O2101.55 (12)C13—C12—H12120.3
C15—N1—C19119.0 (6)C11—C12—H12120.3
C15—N1—Cu126.3 (5)C12—C13—C14121.7 (7)
C19—N1—Cu114.6 (4)C12—C13—H13119.1
C24—N2—C20118.7 (6)C14—C13—H13119.1
C24—N2—Cu126.3 (4)C9—C14—C13119.5 (6)
C20—N2—Cu114.8 (4)C9—C14—H14120.3
C1—O1—Cu98.7 (4)C13—C14—H14120.3
C1—O2—Cu77.7 (4)N1—C15—C16122.9 (7)
C2—O3—H3o109.5N1—C15—H15118.6
O2—C1—O1125.2 (6)C16—C15—H15118.6
O2—C1—C2119.0 (5)C17—C16—C15118.7 (6)
O1—C1—C2115.8 (5)C17—C16—H16120.7
O3—C2—C3105.5 (4)C15—C16—H16120.7
O3—C2—C9111.0 (5)C16—C17—C18119.6 (6)
C3—C2—C9110.4 (5)C16—C17—H17120.2
O3—C2—C1107.8 (5)C18—C17—H17120.2
C3—C2—C1115.8 (5)C19—C18—C17118.7 (6)
C9—C2—C1106.4 (4)C19—C18—H18120.7
C4—C3—C8118.6 (6)C17—C18—H18120.7
C4—C3—C2125.1 (6)N1—C19—C18121.1 (6)
C8—C3—C2116.3 (6)N1—C19—C20114.5 (5)
C3—C4—C5119.8 (7)C18—C19—C20124.4 (6)
C3—C4—H4120.1N2—C20—C21121.8 (6)
C5—C4—H4120.1N2—C20—C19114.6 (5)
C4—C5—C6120.5 (7)C21—C20—C19123.6 (6)
C4—C5—H5119.7C22—C21—C20118.2 (6)
C6—C5—H5119.7C22—C21—H21120.9
C7—C6—C5120.7 (7)C20—C21—H21120.9
C7—C6—H6119.7C23—C22—C21120.1 (6)
C5—C6—H6119.7C23—C22—H22119.9
C6—C7—C8119.1 (8)C21—C22—H22119.9
C6—C7—H7120.5C24—C23—C22118.7 (6)
C8—C7—H7120.5C24—C23—H23120.6
C7—C8—C3121.3 (7)C22—C23—H23120.6
C7—C8—H8119.4N2—C24—C23122.6 (6)
C3—C8—H8119.4N2—C24—H24118.7
C10—C9—C14118.6 (6)C23—C24—H24118.7
O1—Cu—N1—C1519.3 (6)C5—C6—C7—C81.1 (12)
N2—Cu—N1—C15179.0 (6)C6—C7—C8—C31.9 (12)
Cl1—Cu—N1—C1591.6 (6)C4—C3—C8—C71.0 (10)
O2—Cu—N1—C1577.6 (5)C2—C3—C8—C7177.7 (6)
O1—Cu—N1—C19159.5 (4)O3—C2—C9—C10171.8 (5)
N2—Cu—N1—C192.2 (4)C3—C2—C9—C1055.3 (7)
Cl1—Cu—N1—C1989.6 (6)C1—C2—C9—C1071.2 (7)
O2—Cu—N1—C19101.2 (4)O3—C2—C9—C1410.8 (8)
O1—Cu—N2—C24103.3 (7)C3—C2—C9—C14127.3 (6)
N1—Cu—N2—C24177.1 (5)C1—C2—C9—C14106.2 (6)
Cl1—Cu—N2—C2426.2 (5)C14—C9—C10—C110.1 (10)
O2—Cu—N2—C2477.7 (5)C2—C9—C10—C11177.4 (6)
O1—Cu—N2—C2070.8 (7)C9—C10—C11—C121.4 (11)
N1—Cu—N2—C203.0 (4)C10—C11—C12—C131.2 (12)
Cl1—Cu—N2—C20159.7 (4)C11—C12—C13—C140.3 (11)
O2—Cu—N2—C2096.4 (4)C10—C9—C14—C131.4 (9)
N2—Cu—O1—C131.7 (7)C2—C9—C14—C13178.9 (6)
N1—Cu—O1—C1103.6 (4)C12—C13—C14—C91.6 (10)
Cl1—Cu—O1—C198.1 (3)C19—N1—C15—C160.6 (10)
O2—Cu—O1—C12.2 (3)Cu—N1—C15—C16178.2 (5)
O1—Cu—O2—C12.4 (3)N1—C15—C16—C170.5 (10)
N2—Cu—O2—C1172.8 (4)C15—C16—C17—C180.4 (10)
N1—Cu—O2—C188.9 (4)C16—C17—C18—C190.4 (10)
Cl1—Cu—O2—C186.8 (3)C15—N1—C19—C180.6 (9)
Cu—O2—C1—O13.8 (5)Cu—N1—C19—C18178.4 (4)
Cu—O2—C1—C2177.9 (5)C15—N1—C19—C20179.9 (5)
Cu—O1—C1—O24.7 (7)Cu—N1—C19—C201.0 (6)
Cu—O1—C1—C2177.0 (4)C17—C18—C19—N10.5 (9)
O2—C1—C2—O315.2 (7)C17—C18—C19—C20179.8 (6)
O1—C1—C2—O3166.4 (5)C24—N2—C20—C210.3 (8)
O2—C1—C2—C3133.0 (6)Cu—N2—C20—C21174.9 (4)
O1—C1—C2—C348.6 (7)C24—N2—C20—C19177.8 (5)
O2—C1—C2—C9103.9 (6)Cu—N2—C20—C193.3 (6)
O1—C1—C2—C974.5 (6)N1—C19—C20—N21.4 (7)
O3—C2—C3—C4119.4 (6)C18—C19—C20—N2179.2 (5)
C9—C2—C3—C4120.7 (6)N1—C19—C20—C21176.7 (6)
C1—C2—C3—C40.3 (8)C18—C19—C20—C212.7 (9)
O3—C2—C3—C859.2 (7)N2—C20—C21—C220.5 (9)
C9—C2—C3—C860.8 (7)C19—C20—C21—C22177.5 (6)
C1—C2—C3—C8178.3 (5)C20—C21—C22—C230.0 (10)
C8—C3—C4—C50.8 (10)C21—C22—C23—C240.6 (10)
C2—C3—C4—C5179.3 (6)C20—N2—C24—C230.3 (9)
C3—C4—C5—C61.6 (11)Cu—N2—C24—C23173.6 (5)
C4—C5—C6—C70.7 (12)C22—C23—C24—N20.8 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O20.822.192.622 (6)113
O3—H3o···Cl1i0.822.623.328 (5)146
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C14H11O3)Cl(C10H8N2)]
Mr482.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.1537 (9), 15.7277 (19), 18.601 (4)
β (°) 97.806 (14)
V3)2073.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.571, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8454, 3651, 2719
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.238, 1.03
No. of reflections3651
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 1.42

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu—Cl12.2301 (18)Cu—N12.006 (5)
Cu—O11.971 (4)Cu—N21.976 (5)
Cu—O22.476 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O20.822.192.622 (6)113
O3—H3o···Cl1i0.822.623.328 (5)146
Symmetry code: (i) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: msjhantu@yahoo.com.

Acknowledgements

MYR, LAB and MSI thank Dr T. G. Roy for special assistance. The authors also thank Rajshahi University for the provision of their central laboratory facilities and the University of Malaya for support of the crystallographic facility.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationReza, Md. Y., Hossain, Md. M., Karim, Md. R., Tarafder, Md. T. H. & Hughes, D. L. (2010). Acta Cryst. E66, m116–m117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X.-X., Zhang, F.-Y. & Xu, S.-H. (2010). Acta Cryst. E66, m69.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds