metal-organic compounds
(2,2′-Bipyridine-κ2N,N′)chlorido(2-hydroxy-2,2-diphenylacetato-κ2O1,O1′)copper(II)
aDepartment of Chemistry, Rajshahi University, Bangladesh, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
The Cu(II) atom in the title complex, [Cu(C14H11O3)Cl(C10H8N2)], exists within a ClN2O2 donor set defined by a chloride ion, an asymmetrically chelating carboxylate ligand, and a symmetrically chelating 2,2′-bipyridine molecule. The coordination geometry is square pyramidal with the axial site occupied by the O atom forming the weaker Cu—O interaction. The hydroxy group forms an intramolecular hydrogen bond with the axial O atom, as well as an intermolecular O—H⋯Cl hydrogen bond. The latter leads to the formation of [100] supramolecular chains in the crystal, with the Cu(II) atoms lying in a line.
Related literature
For recent structural studies on metal complexes of anions derived from benzilic acid, see: Yang et al. (2010); Reza et al. (2010). For additional structural analysis, see: Addison et al. (1984); Spek (2009).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S160053681100729X/hb5805sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681100729X/hb5805Isup2.hkl
A mixture of copper chloride (0.134 g,1 mmol), benzilic acid (0.228 g, 1 mmol), 2,2'-bipyridine (0.196 g, 1 mmol) and Et3N (0.1 g, 1 mmol) was placed into methanol (40 ml) and the resultant solution was heated to 323 K for 0.5 h. Initial precipitates were filtered off and the filtrate was allowed to stand for several days. Blue blocks of the title compound were collected, washed with methanol and air-dried at room temperature. M. pt. 457 K.
The O– and C-bound H atoms were geometrically placed (O—H = 0.82 Å and C–H = 0.93 Å) and refined as riding with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for C. The maximum and minimum residual electron density peaks of 0.91 and 1.42 e Å-3, respectively, were located 0.93 Å and 0.78 Å from the N1 and Cu atoms, respectively.
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C14H11O3)Cl(C10H8N2)] | F(000) = 988 |
Mr = 482.40 | Dx = 1.545 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3252 reflections |
a = 7.1537 (9) Å | θ = 2.6–29.4° |
b = 15.7277 (19) Å | µ = 1.21 mm−1 |
c = 18.601 (4) Å | T = 293 K |
β = 97.806 (14)° | Block, blue |
V = 2073.5 (5) Å3 | 0.20 × 0.15 × 0.10 mm |
Z = 4 |
Agilent SuperNova Dual diffractometer with an Atlas detector | 3651 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2719 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.053 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 25.0°, θmin = 2.6° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −18→17 |
Tmin = 0.571, Tmax = 1.000 | l = −21→22 |
8454 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.238 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.1324P)2 + 7.2136P] where P = (Fo2 + 2Fc2)/3 |
3651 reflections | (Δ/σ)max < 0.001 |
281 parameters | Δρmax = 0.91 e Å−3 |
0 restraints | Δρmin = −1.42 e Å−3 |
[Cu(C14H11O3)Cl(C10H8N2)] | V = 2073.5 (5) Å3 |
Mr = 482.40 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.1537 (9) Å | µ = 1.21 mm−1 |
b = 15.7277 (19) Å | T = 293 K |
c = 18.601 (4) Å | 0.20 × 0.15 × 0.10 mm |
β = 97.806 (14)° |
Agilent SuperNova Dual diffractometer with an Atlas detector | 3651 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 2719 reflections with I > 2σ(I) |
Tmin = 0.571, Tmax = 1.000 | Rint = 0.053 |
8454 measured reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.238 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.91 e Å−3 |
3651 reflections | Δρmin = −1.42 e Å−3 |
281 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.63293 (10) | 0.44986 (4) | 0.36367 (4) | 0.0351 (3) | |
Cl1 | 0.4262 (2) | 0.34756 (11) | 0.32669 (10) | 0.0475 (5) | |
N1 | 0.7215 (8) | 0.5629 (3) | 0.4053 (3) | 0.0390 (13) | |
N2 | 0.6723 (7) | 0.4182 (3) | 0.4674 (3) | 0.0337 (11) | |
O1 | 0.6859 (6) | 0.4804 (3) | 0.2657 (2) | 0.0401 (10) | |
O2 | 0.9191 (6) | 0.3986 (3) | 0.3158 (2) | 0.0415 (11) | |
O3 | 1.0661 (7) | 0.3757 (3) | 0.1956 (2) | 0.0438 (11) | |
H3o | 1.1135 | 0.3685 | 0.2378 | 0.066* | |
C1 | 0.8391 (9) | 0.4378 (4) | 0.2651 (3) | 0.0330 (14) | |
C2 | 0.9273 (9) | 0.4407 (4) | 0.1925 (3) | 0.0307 (13) | |
C3 | 0.7914 (9) | 0.4235 (4) | 0.1234 (3) | 0.0350 (13) | |
C4 | 0.6016 (10) | 0.4065 (4) | 0.1209 (4) | 0.0457 (16) | |
H4 | 0.5468 | 0.4054 | 0.1634 | 0.055* | |
C5 | 0.4940 (11) | 0.3911 (5) | 0.0554 (5) | 0.058 (2) | |
H5 | 0.3653 | 0.3811 | 0.0536 | 0.070* | |
C6 | 0.5752 (13) | 0.3905 (5) | −0.0080 (4) | 0.062 (2) | |
H6 | 0.5008 | 0.3794 | −0.0520 | 0.074* | |
C7 | 0.7616 (13) | 0.4058 (5) | −0.0067 (4) | 0.061 (2) | |
H7 | 0.8161 | 0.4044 | −0.0493 | 0.073* | |
C8 | 0.8696 (11) | 0.4236 (5) | 0.0586 (4) | 0.0490 (17) | |
H8 | 0.9971 | 0.4358 | 0.0596 | 0.059* | |
C9 | 1.0175 (8) | 0.5291 (4) | 0.1890 (3) | 0.0342 (13) | |
C10 | 0.9071 (10) | 0.6006 (4) | 0.1767 (4) | 0.0414 (15) | |
H10 | 0.7765 | 0.5952 | 0.1684 | 0.050* | |
C11 | 0.9891 (12) | 0.6816 (4) | 0.1764 (4) | 0.0550 (19) | |
H11 | 0.9129 | 0.7295 | 0.1691 | 0.066* | |
C12 | 1.1818 (12) | 0.6901 (5) | 0.1871 (4) | 0.057 (2) | |
H12 | 1.2369 | 0.7435 | 0.1861 | 0.068* | |
C13 | 1.2907 (10) | 0.6200 (5) | 0.1991 (3) | 0.0491 (18) | |
H13 | 1.4213 | 0.6259 | 0.2060 | 0.059* | |
C14 | 1.2124 (9) | 0.5387 (4) | 0.2013 (4) | 0.0413 (15) | |
H14 | 1.2900 | 0.4915 | 0.2108 | 0.050* | |
C15 | 0.7393 (9) | 0.6339 (4) | 0.3682 (4) | 0.0448 (16) | |
H15 | 0.7052 | 0.6331 | 0.3182 | 0.054* | |
C16 | 0.8060 (10) | 0.7086 (4) | 0.4006 (4) | 0.0466 (16) | |
H16 | 0.8175 | 0.7571 | 0.3730 | 0.056* | |
C17 | 0.8541 (10) | 0.7101 (4) | 0.4732 (4) | 0.0464 (16) | |
H17 | 0.8988 | 0.7599 | 0.4964 | 0.056* | |
C18 | 0.8367 (9) | 0.6366 (4) | 0.5133 (4) | 0.0410 (15) | |
H18 | 0.8700 | 0.6364 | 0.5634 | 0.049* | |
C19 | 0.7685 (8) | 0.5635 (4) | 0.4772 (4) | 0.0339 (14) | |
C20 | 0.7432 (8) | 0.4810 (4) | 0.5129 (3) | 0.0319 (13) | |
C21 | 0.7927 (9) | 0.4669 (4) | 0.5869 (3) | 0.0393 (15) | |
H21 | 0.8404 | 0.5107 | 0.6177 | 0.047* | |
C22 | 0.7690 (10) | 0.3860 (4) | 0.6135 (3) | 0.0431 (16) | |
H22 | 0.8011 | 0.3748 | 0.6627 | 0.052* | |
C23 | 0.6981 (10) | 0.3219 (4) | 0.5670 (4) | 0.0484 (17) | |
H23 | 0.6828 | 0.2672 | 0.5844 | 0.058* | |
C24 | 0.6505 (10) | 0.3403 (4) | 0.4949 (4) | 0.0432 (16) | |
H24 | 0.6012 | 0.2972 | 0.4637 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0404 (5) | 0.0315 (5) | 0.0357 (5) | 0.0002 (3) | 0.0137 (4) | −0.0010 (3) |
Cl1 | 0.0425 (9) | 0.0453 (9) | 0.0547 (11) | −0.0055 (7) | 0.0066 (8) | −0.0046 (8) |
N1 | 0.050 (3) | 0.027 (2) | 0.045 (3) | 0.001 (2) | 0.025 (3) | −0.001 (2) |
N2 | 0.034 (3) | 0.032 (3) | 0.037 (3) | −0.003 (2) | 0.009 (2) | −0.003 (2) |
O1 | 0.053 (3) | 0.042 (2) | 0.029 (2) | 0.005 (2) | 0.018 (2) | −0.0053 (19) |
O2 | 0.050 (3) | 0.043 (2) | 0.032 (2) | 0.003 (2) | 0.009 (2) | 0.012 (2) |
O3 | 0.058 (3) | 0.033 (2) | 0.042 (3) | 0.017 (2) | 0.012 (2) | −0.002 (2) |
C1 | 0.045 (3) | 0.026 (3) | 0.029 (3) | −0.007 (3) | 0.011 (3) | −0.006 (2) |
C2 | 0.040 (3) | 0.032 (3) | 0.019 (3) | 0.005 (2) | 0.002 (2) | −0.001 (2) |
C3 | 0.045 (3) | 0.025 (3) | 0.035 (3) | 0.003 (3) | 0.005 (3) | −0.001 (3) |
C4 | 0.046 (4) | 0.041 (4) | 0.052 (4) | −0.005 (3) | 0.010 (3) | −0.010 (3) |
C5 | 0.050 (4) | 0.045 (4) | 0.075 (6) | −0.004 (3) | −0.009 (4) | −0.010 (4) |
C6 | 0.086 (6) | 0.043 (4) | 0.046 (5) | −0.002 (4) | −0.025 (4) | −0.004 (3) |
C7 | 0.090 (6) | 0.053 (4) | 0.041 (4) | −0.008 (4) | 0.014 (4) | 0.001 (3) |
C8 | 0.063 (4) | 0.048 (4) | 0.037 (4) | −0.005 (4) | 0.012 (3) | −0.003 (3) |
C9 | 0.038 (3) | 0.033 (3) | 0.034 (3) | −0.001 (3) | 0.014 (3) | −0.006 (3) |
C10 | 0.043 (3) | 0.038 (3) | 0.045 (4) | 0.003 (3) | 0.011 (3) | 0.004 (3) |
C11 | 0.070 (5) | 0.030 (3) | 0.067 (5) | 0.002 (3) | 0.019 (4) | 0.001 (3) |
C12 | 0.075 (5) | 0.038 (4) | 0.063 (5) | −0.020 (4) | 0.030 (4) | −0.007 (3) |
C13 | 0.052 (4) | 0.069 (5) | 0.028 (3) | −0.021 (4) | 0.012 (3) | −0.007 (3) |
C14 | 0.044 (4) | 0.044 (4) | 0.038 (4) | 0.002 (3) | 0.013 (3) | −0.002 (3) |
C15 | 0.040 (4) | 0.041 (4) | 0.053 (4) | 0.000 (3) | 0.005 (3) | 0.009 (3) |
C16 | 0.050 (4) | 0.034 (3) | 0.058 (5) | −0.001 (3) | 0.016 (3) | 0.007 (3) |
C17 | 0.058 (4) | 0.033 (3) | 0.049 (4) | −0.006 (3) | 0.011 (3) | −0.008 (3) |
C18 | 0.040 (3) | 0.034 (3) | 0.051 (4) | 0.000 (3) | 0.012 (3) | −0.002 (3) |
C19 | 0.028 (3) | 0.033 (3) | 0.044 (4) | 0.002 (2) | 0.016 (3) | 0.001 (3) |
C20 | 0.028 (3) | 0.035 (3) | 0.034 (3) | 0.005 (2) | 0.010 (2) | 0.005 (3) |
C21 | 0.043 (4) | 0.044 (3) | 0.033 (3) | 0.004 (3) | 0.011 (3) | −0.006 (3) |
C22 | 0.052 (4) | 0.052 (4) | 0.026 (3) | 0.006 (3) | 0.008 (3) | 0.007 (3) |
C23 | 0.051 (4) | 0.040 (4) | 0.058 (5) | 0.003 (3) | 0.021 (3) | 0.011 (3) |
C24 | 0.050 (4) | 0.030 (3) | 0.053 (4) | −0.004 (3) | 0.022 (3) | 0.004 (3) |
Cu—Cl1 | 2.2301 (18) | C9—C14 | 1.390 (9) |
Cu—O1 | 1.971 (4) | C10—C11 | 1.403 (9) |
Cu—O2 | 2.476 (4) | C10—H10 | 0.9300 |
Cu—N1 | 2.006 (5) | C11—C12 | 1.372 (11) |
Cu—N2 | 1.976 (5) | C11—H11 | 0.9300 |
N1—C15 | 1.329 (8) | C12—C13 | 1.351 (11) |
N1—C19 | 1.333 (9) | C12—H12 | 0.9300 |
N2—C24 | 1.345 (8) | C13—C14 | 1.399 (10) |
N2—C20 | 1.353 (8) | C13—H13 | 0.9300 |
O1—C1 | 1.285 (8) | C14—H14 | 0.9300 |
O2—C1 | 1.204 (7) | C15—C16 | 1.376 (10) |
O3—C2 | 1.421 (7) | C15—H15 | 0.9300 |
O3—H3o | 0.8200 | C16—C17 | 1.348 (10) |
C1—C2 | 1.567 (8) | C16—H16 | 0.9300 |
C2—C3 | 1.527 (8) | C17—C18 | 1.390 (9) |
C2—C9 | 1.537 (8) | C17—H17 | 0.9300 |
C3—C4 | 1.379 (9) | C18—C19 | 1.387 (9) |
C3—C8 | 1.395 (9) | C18—H18 | 0.9300 |
C4—C5 | 1.371 (10) | C19—C20 | 1.481 (8) |
C4—H4 | 0.9300 | C20—C21 | 1.391 (9) |
C5—C6 | 1.385 (12) | C21—C22 | 1.384 (9) |
C5—H5 | 0.9300 | C21—H21 | 0.9300 |
C6—C7 | 1.352 (12) | C22—C23 | 1.379 (10) |
C6—H6 | 0.9300 | C22—H22 | 0.9300 |
C7—C8 | 1.377 (11) | C23—C24 | 1.370 (10) |
C7—H7 | 0.9300 | C23—H23 | 0.9300 |
C8—H8 | 0.9300 | C24—H24 | 0.9300 |
C9—C10 | 1.375 (9) | ||
O1—Cu—N2 | 160.9 (2) | C10—C9—C2 | 120.8 (5) |
O1—Cu—N1 | 92.9 (2) | C14—C9—C2 | 120.6 (5) |
N2—Cu—N1 | 81.4 (2) | C9—C10—C11 | 120.8 (6) |
O1—Cu—Cl1 | 95.35 (14) | C9—C10—H10 | 119.6 |
N2—Cu—Cl1 | 96.91 (15) | C11—C10—H10 | 119.6 |
N1—Cu—Cl1 | 156.84 (16) | C12—C11—C10 | 120.0 (7) |
O1—Cu—O2 | 58.31 (16) | C12—C11—H11 | 120.0 |
N2—Cu—O2 | 104.72 (18) | C10—C11—H11 | 120.0 |
N1—Cu—O2 | 101.21 (18) | C13—C12—C11 | 119.3 (6) |
Cl1—Cu—O2 | 101.55 (12) | C13—C12—H12 | 120.3 |
C15—N1—C19 | 119.0 (6) | C11—C12—H12 | 120.3 |
C15—N1—Cu | 126.3 (5) | C12—C13—C14 | 121.7 (7) |
C19—N1—Cu | 114.6 (4) | C12—C13—H13 | 119.1 |
C24—N2—C20 | 118.7 (6) | C14—C13—H13 | 119.1 |
C24—N2—Cu | 126.3 (4) | C9—C14—C13 | 119.5 (6) |
C20—N2—Cu | 114.8 (4) | C9—C14—H14 | 120.3 |
C1—O1—Cu | 98.7 (4) | C13—C14—H14 | 120.3 |
C1—O2—Cu | 77.7 (4) | N1—C15—C16 | 122.9 (7) |
C2—O3—H3o | 109.5 | N1—C15—H15 | 118.6 |
O2—C1—O1 | 125.2 (6) | C16—C15—H15 | 118.6 |
O2—C1—C2 | 119.0 (5) | C17—C16—C15 | 118.7 (6) |
O1—C1—C2 | 115.8 (5) | C17—C16—H16 | 120.7 |
O3—C2—C3 | 105.5 (4) | C15—C16—H16 | 120.7 |
O3—C2—C9 | 111.0 (5) | C16—C17—C18 | 119.6 (6) |
C3—C2—C9 | 110.4 (5) | C16—C17—H17 | 120.2 |
O3—C2—C1 | 107.8 (5) | C18—C17—H17 | 120.2 |
C3—C2—C1 | 115.8 (5) | C19—C18—C17 | 118.7 (6) |
C9—C2—C1 | 106.4 (4) | C19—C18—H18 | 120.7 |
C4—C3—C8 | 118.6 (6) | C17—C18—H18 | 120.7 |
C4—C3—C2 | 125.1 (6) | N1—C19—C18 | 121.1 (6) |
C8—C3—C2 | 116.3 (6) | N1—C19—C20 | 114.5 (5) |
C3—C4—C5 | 119.8 (7) | C18—C19—C20 | 124.4 (6) |
C3—C4—H4 | 120.1 | N2—C20—C21 | 121.8 (6) |
C5—C4—H4 | 120.1 | N2—C20—C19 | 114.6 (5) |
C4—C5—C6 | 120.5 (7) | C21—C20—C19 | 123.6 (6) |
C4—C5—H5 | 119.7 | C22—C21—C20 | 118.2 (6) |
C6—C5—H5 | 119.7 | C22—C21—H21 | 120.9 |
C7—C6—C5 | 120.7 (7) | C20—C21—H21 | 120.9 |
C7—C6—H6 | 119.7 | C23—C22—C21 | 120.1 (6) |
C5—C6—H6 | 119.7 | C23—C22—H22 | 119.9 |
C6—C7—C8 | 119.1 (8) | C21—C22—H22 | 119.9 |
C6—C7—H7 | 120.5 | C24—C23—C22 | 118.7 (6) |
C8—C7—H7 | 120.5 | C24—C23—H23 | 120.6 |
C7—C8—C3 | 121.3 (7) | C22—C23—H23 | 120.6 |
C7—C8—H8 | 119.4 | N2—C24—C23 | 122.6 (6) |
C3—C8—H8 | 119.4 | N2—C24—H24 | 118.7 |
C10—C9—C14 | 118.6 (6) | C23—C24—H24 | 118.7 |
O1—Cu—N1—C15 | 19.3 (6) | C5—C6—C7—C8 | −1.1 (12) |
N2—Cu—N1—C15 | −179.0 (6) | C6—C7—C8—C3 | 1.9 (12) |
Cl1—Cu—N1—C15 | −91.6 (6) | C4—C3—C8—C7 | −1.0 (10) |
O2—Cu—N1—C15 | 77.6 (5) | C2—C3—C8—C7 | 177.7 (6) |
O1—Cu—N1—C19 | −159.5 (4) | O3—C2—C9—C10 | 171.8 (5) |
N2—Cu—N1—C19 | 2.2 (4) | C3—C2—C9—C10 | 55.3 (7) |
Cl1—Cu—N1—C19 | 89.6 (6) | C1—C2—C9—C10 | −71.2 (7) |
O2—Cu—N1—C19 | −101.2 (4) | O3—C2—C9—C14 | −10.8 (8) |
O1—Cu—N2—C24 | −103.3 (7) | C3—C2—C9—C14 | −127.3 (6) |
N1—Cu—N2—C24 | −177.1 (5) | C1—C2—C9—C14 | 106.2 (6) |
Cl1—Cu—N2—C24 | 26.2 (5) | C14—C9—C10—C11 | −0.1 (10) |
O2—Cu—N2—C24 | −77.7 (5) | C2—C9—C10—C11 | 177.4 (6) |
O1—Cu—N2—C20 | 70.8 (7) | C9—C10—C11—C12 | 1.4 (11) |
N1—Cu—N2—C20 | −3.0 (4) | C10—C11—C12—C13 | −1.2 (12) |
Cl1—Cu—N2—C20 | −159.7 (4) | C11—C12—C13—C14 | −0.3 (11) |
O2—Cu—N2—C20 | 96.4 (4) | C10—C9—C14—C13 | −1.4 (9) |
N2—Cu—O1—C1 | 31.7 (7) | C2—C9—C14—C13 | −178.9 (6) |
N1—Cu—O1—C1 | 103.6 (4) | C12—C13—C14—C9 | 1.6 (10) |
Cl1—Cu—O1—C1 | −98.1 (3) | C19—N1—C15—C16 | 0.6 (10) |
O2—Cu—O1—C1 | 2.2 (3) | Cu—N1—C15—C16 | −178.2 (5) |
O1—Cu—O2—C1 | −2.4 (3) | N1—C15—C16—C17 | −0.5 (10) |
N2—Cu—O2—C1 | −172.8 (4) | C15—C16—C17—C18 | 0.4 (10) |
N1—Cu—O2—C1 | −88.9 (4) | C16—C17—C18—C19 | −0.4 (10) |
Cl1—Cu—O2—C1 | 86.8 (3) | C15—N1—C19—C18 | −0.6 (9) |
Cu—O2—C1—O1 | 3.8 (5) | Cu—N1—C19—C18 | 178.4 (4) |
Cu—O2—C1—C2 | −177.9 (5) | C15—N1—C19—C20 | −179.9 (5) |
Cu—O1—C1—O2 | −4.7 (7) | Cu—N1—C19—C20 | −1.0 (6) |
Cu—O1—C1—C2 | 177.0 (4) | C17—C18—C19—N1 | 0.5 (9) |
O2—C1—C2—O3 | 15.2 (7) | C17—C18—C19—C20 | 179.8 (6) |
O1—C1—C2—O3 | −166.4 (5) | C24—N2—C20—C21 | −0.3 (8) |
O2—C1—C2—C3 | 133.0 (6) | Cu—N2—C20—C21 | −174.9 (4) |
O1—C1—C2—C3 | −48.6 (7) | C24—N2—C20—C19 | 177.8 (5) |
O2—C1—C2—C9 | −103.9 (6) | Cu—N2—C20—C19 | 3.3 (6) |
O1—C1—C2—C9 | 74.5 (6) | N1—C19—C20—N2 | −1.4 (7) |
O3—C2—C3—C4 | 119.4 (6) | C18—C19—C20—N2 | 179.2 (5) |
C9—C2—C3—C4 | −120.7 (6) | N1—C19—C20—C21 | 176.7 (6) |
C1—C2—C3—C4 | 0.3 (8) | C18—C19—C20—C21 | −2.7 (9) |
O3—C2—C3—C8 | −59.2 (7) | N2—C20—C21—C22 | 0.5 (9) |
C9—C2—C3—C8 | 60.8 (7) | C19—C20—C21—C22 | −177.5 (6) |
C1—C2—C3—C8 | −178.3 (5) | C20—C21—C22—C23 | 0.0 (10) |
C8—C3—C4—C5 | −0.8 (10) | C21—C22—C23—C24 | −0.6 (10) |
C2—C3—C4—C5 | −179.3 (6) | C20—N2—C24—C23 | −0.3 (9) |
C3—C4—C5—C6 | 1.6 (11) | Cu—N2—C24—C23 | 173.6 (5) |
C4—C5—C6—C7 | −0.7 (12) | C22—C23—C24—N2 | 0.8 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3o···O2 | 0.82 | 2.19 | 2.622 (6) | 113 |
O3—H3o···Cl1i | 0.82 | 2.62 | 3.328 (5) | 146 |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C14H11O3)Cl(C10H8N2)] |
Mr | 482.40 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.1537 (9), 15.7277 (19), 18.601 (4) |
β (°) | 97.806 (14) |
V (Å3) | 2073.5 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.21 |
Crystal size (mm) | 0.20 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.571, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8454, 3651, 2719 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.238, 1.03 |
No. of reflections | 3651 |
No. of parameters | 281 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.91, −1.42 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Cu—Cl1 | 2.2301 (18) | Cu—N1 | 2.006 (5) |
Cu—O1 | 1.971 (4) | Cu—N2 | 1.976 (5) |
Cu—O2 | 2.476 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3o···O2 | 0.82 | 2.19 | 2.622 (6) | 113 |
O3—H3o···Cl1i | 0.82 | 2.62 | 3.328 (5) | 146 |
Symmetry code: (i) x+1, y, z. |
Footnotes
‡Additional correspondence author, e-mail: msjhantu@yahoo.com.
Acknowledgements
MYR, LAB and MSI thank Dr T. G. Roy for special assistance. The authors also thank Rajshahi University for the provision of their central laboratory facilities and the University of Malaya for support of the crystallographic facility.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Reza, Md. Y., Hossain, Md. M., Karim, Md. R., Tarafder, Md. T. H. & Hughes, D. L. (2010). Acta Cryst. E66, m116–m117. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, X.-X., Zhang, F.-Y. & Xu, S.-H. (2010). Acta Cryst. E66, m69. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recent structural investigations of benzilate complexes have confirmed that anions derived from benzilic acid can function as multidentate ligands with versatile coordination modes (Reza et al., 2010; Yang et al., 2010). Herein, the crystal and molecular structure of a mononuclear CuII complex, (I), is described.
The Cu atom in (I) is coordinated by a Cl, an asymmetrically chelating carboxylate anion, and a symmetrically chelating 2,2'-bipyridine ligand, Table 1. The asymmetric mode of coordination of the carboxylate is reflected in the disparate C—O bond distances with the longer C1—O1 distance [1.285 (8) Å] being associated with the shorter Cu—O1 interaction, and the short C1—O2 distance [1.204 (7) Å] associated with the weaker Cu—O2 contact. The resultant ClN2O2 donor set defines a square pyramid. This assignment is based on the value calculated for τ of 0.07 for the Cu atom, which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bi-pyramidal geometries, respectively (Spek, 2009; Addison et al., 1984). In this description, the weakly coordinating O2 atom defines the axial site. While not participating in direct coordination to the Cu atom, the hydroxyl group forms an intramolecular hydrogen bond with the O2 atom as well as an intermolecular O—H···Cl hydrogen bond, Table 2. The latter leads to the generation of supramolecular chains along the a axis, Fig. 2, whereby the Cu atoms lie on a line.