organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N′-(2-hy­dr­oxy-3,5-di­iodo­benzyl­­idene)benzohydrazide

aSchool of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Huanghuai University, Henan 463000, People's Republic of China
*Correspondence e-mail: dyp78@sina.com, sywangfei@yeah.net

(Received 27 February 2011; accepted 1 March 2011; online 9 March 2011)

In the title compound, C14H9ClI2N2O2, the dihedral angle between the benzene rings is 65.9 (2)° and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. The mol­ecule has an E conformation about the C=N bond. In the crystal, mol­ecules are linked into C(4) chains propagating in [001] by N—H⋯O hydrogen bonds.

Related literature

For background to hydrazone compounds and their biological properties, see: Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]); Khattab (2005[Khattab, S. N. (2005). Molecules 10, 1218-1228.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). For reference bond-length values, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Shan et al. (2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.]); Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Yang (2008[Yang, D.-S. (2008). Acta Cryst. E64, o1759.]); Ma et al. (2008[Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.]); Diao et al. (2008a[Diao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008a). Acta Cryst. E64, o470.],b[Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008b). Acta Cryst. E64, o101.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9ClI2N2O2

  • Mr = 526.48

  • Monoclinic, P 21 /c

  • a = 14.311 (3) Å

  • b = 11.469 (2) Å

  • c = 9.736 (2) Å

  • β = 90.032 (2)°

  • V = 1598.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.11 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.525, Tmax = 0.542

  • 7381 measured reflections

  • 3383 independent reflections

  • 1747 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.112

  • S = 0.95

  • 3383 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.83 2.556 (8) 146
N2—H2⋯O2i 0.91 (4) 1.88 (2) 2.768 (8) 168 (8)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones have been attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel et al., 2006; Khattab et al., 2005; Karthikeyan et al., 2006; Okabe et al., 1993). Recently, a large number of hydrazone derivatives have been prepared and structurally characterized (Shan et al., 2008; Fun et al., 2008; Yang, 2008; Ma et al., 2008; Diao et al., 2008a,b; Ejsmont et al., 2008). In this paper, the title new hydrazone compound is reported.

The molecular structure of the title compound is shown in Fig. 1. The bond distances and angles are normal (Allen et al., 1987). The dihedral angle between the two benzene rings is 65.9 (2)°. The molecule of the compound displays an E geometry about the CN bond. The molecules are linked into chains along the c axis by intermolecular N—H···O hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For background to hydrazone compounds and their biological properties, see: Kucukguzel et al. (2006); Khattab et al. (2005); Karthikeyan et al. (2006); Okabe et al. (1993). For reference bond-length values, see: Allen et al. (1987). For related structures, see: Shan et al. (2008); Fun et al. (2008); Yang (2008); Ma et al. (2008); Diao et al. (2008a,b); Ejsmont et al. (2008).

Experimental top

2-Hydroxy-3,5-diiodobenzaldehyde (1.0 mmol, 373.9 mg) was dissolved in methanol (50 ml), then 2-chlorobenzohydrazide (1.0 mmol, 170.6 mg) was added slowly into the solution, and the mixture was kept at reflux with continuous stirring for 2 h. After the solution had cooled to room temperature colourless powder crystals appeared. The powder crystals were filtered and washed with methanol for three times. Recrystallization from absolute methanol yielded colourless block-shaped single crystals of the title compound.

Refinement top

H2 was located in a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions with O—H = 0.82 Å, C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms. Intramolecular O—H···N hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. Molecular packing as viewed along the b axis. Hydrogen bonds are shown as dashed lines.
2-Chloro-N'-(2-hydroxy-3,5-diiodobenzylidene)benzohydrazide top
Crystal data top
C14H9ClI2N2O2F(000) = 984
Mr = 526.48Dx = 2.188 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 989 reflections
a = 14.311 (3) Åθ = 2.5–24.5°
b = 11.469 (2) ŵ = 4.11 mm1
c = 9.736 (2) ÅT = 298 K
β = 90.032 (2)°Block, colourless
V = 1598.0 (5) Å30.18 × 0.17 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3383 independent reflections
Radiation source: fine-focus sealed tube1747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1813
Tmin = 0.525, Tmax = 0.542k = 149
7381 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0353P)2]
where P = (Fo2 + 2Fc2)/3
3383 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.93 e Å3
1 restraintΔρmin = 0.80 e Å3
Crystal data top
C14H9ClI2N2O2V = 1598.0 (5) Å3
Mr = 526.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.311 (3) ŵ = 4.11 mm1
b = 11.469 (2) ÅT = 298 K
c = 9.736 (2) Å0.18 × 0.17 × 0.17 mm
β = 90.032 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3383 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1747 reflections with I > 2σ(I)
Tmin = 0.525, Tmax = 0.542Rint = 0.069
7381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.93 e Å3
3383 reflectionsΔρmin = 0.80 e Å3
194 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.22657 (4)0.87447 (6)0.18612 (7)0.0664 (2)
I20.12679 (4)0.97420 (6)0.39763 (7)0.0689 (2)
Cl10.39839 (19)0.5079 (3)0.3068 (3)0.0908 (9)
N10.1820 (4)0.8044 (6)0.1129 (6)0.0385 (16)
N20.2702 (4)0.7650 (6)0.0825 (6)0.0402 (17)
O10.0634 (3)0.8886 (5)0.2821 (5)0.0482 (14)
H10.11480.86710.25510.072*
O20.3053 (4)0.7548 (6)0.3039 (6)0.077 (2)
C10.0291 (5)0.8487 (6)0.0472 (8)0.0343 (19)
C20.0025 (5)0.8833 (6)0.1793 (8)0.0367 (19)
C30.0897 (5)0.9172 (7)0.2027 (8)0.043 (2)
C40.1538 (5)0.9133 (7)0.0998 (10)0.050 (2)
H40.21530.93500.11680.060*
C50.1283 (5)0.8778 (8)0.0279 (9)0.051 (2)
C60.0383 (5)0.8446 (6)0.0562 (8)0.044 (2)
H60.02220.81960.14390.053*
C70.1229 (5)0.8119 (7)0.0171 (8)0.0378 (19)
H70.14000.79370.07250.045*
C80.3274 (5)0.7392 (8)0.1856 (8)0.046 (2)
C90.4215 (5)0.6948 (8)0.1424 (8)0.044 (2)
C100.4584 (6)0.5931 (8)0.1939 (9)0.055 (2)
C110.5447 (7)0.5530 (10)0.1535 (11)0.074 (3)
H110.56990.48430.18820.088*
C120.5921 (7)0.6211 (15)0.0577 (14)0.102 (6)
H120.65100.59680.02930.122*
C130.5576 (8)0.7187 (12)0.0048 (12)0.090 (4)
H130.59150.76070.05990.108*
C140.4710 (6)0.7572 (9)0.0471 (9)0.068 (3)
H140.44620.82550.01090.082*
H20.290 (5)0.755 (8)0.005 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0465 (4)0.0791 (5)0.0737 (5)0.0086 (3)0.0190 (3)0.0115 (4)
I20.0617 (4)0.0786 (5)0.0663 (5)0.0136 (3)0.0127 (3)0.0186 (4)
Cl10.0839 (19)0.089 (2)0.099 (2)0.0011 (15)0.0081 (16)0.0317 (18)
N10.028 (4)0.052 (5)0.036 (4)0.004 (3)0.002 (3)0.002 (3)
N20.034 (4)0.063 (5)0.024 (4)0.008 (3)0.004 (3)0.005 (4)
O10.051 (3)0.058 (4)0.036 (3)0.008 (3)0.000 (3)0.002 (3)
O20.068 (4)0.143 (7)0.020 (3)0.042 (4)0.003 (3)0.003 (4)
C10.041 (5)0.031 (5)0.031 (5)0.001 (3)0.002 (3)0.008 (4)
C20.035 (4)0.035 (5)0.040 (5)0.011 (4)0.004 (3)0.008 (4)
C30.051 (5)0.034 (5)0.044 (6)0.007 (4)0.010 (4)0.002 (4)
C40.034 (5)0.048 (6)0.067 (7)0.000 (4)0.004 (4)0.006 (5)
C50.037 (5)0.061 (6)0.055 (6)0.000 (4)0.011 (4)0.014 (5)
C60.049 (5)0.038 (5)0.045 (5)0.003 (4)0.006 (4)0.008 (4)
C70.051 (5)0.038 (5)0.025 (5)0.002 (4)0.003 (4)0.009 (4)
C80.047 (5)0.070 (7)0.020 (5)0.007 (4)0.002 (4)0.000 (4)
C90.030 (4)0.072 (7)0.029 (5)0.000 (4)0.002 (3)0.008 (5)
C100.048 (6)0.066 (7)0.052 (6)0.001 (5)0.007 (4)0.003 (5)
C110.054 (7)0.100 (10)0.067 (8)0.026 (6)0.018 (5)0.025 (7)
C120.039 (6)0.182 (16)0.083 (10)0.015 (8)0.013 (6)0.079 (11)
C130.066 (8)0.141 (13)0.063 (8)0.034 (8)0.029 (6)0.016 (8)
C140.050 (6)0.112 (9)0.043 (6)0.006 (6)0.010 (4)0.007 (6)
Geometric parameters (Å, º) top
I1—C52.086 (7)C4—H40.9300
I2—C32.076 (8)C5—C61.372 (10)
Cl1—C101.703 (9)C6—H60.9300
N1—C71.261 (8)C7—H70.9300
N1—N21.373 (7)C8—C91.501 (10)
N2—C81.328 (9)C9—C141.369 (11)
N2—H20.91 (4)C9—C101.374 (12)
O1—C21.328 (8)C10—C111.376 (11)
O1—H10.8200C11—C121.393 (16)
O2—C81.208 (9)C11—H110.9300
C1—C61.395 (10)C12—C131.328 (16)
C1—C21.398 (10)C12—H120.9300
C1—C71.438 (9)C13—C141.379 (13)
C2—C31.396 (10)C13—H130.9300
C3—C41.358 (10)C14—H140.9300
C4—C51.358 (11)
C7—N1—N2118.6 (6)N1—C7—H7120.2
C8—N2—N1118.5 (6)C1—C7—H7120.2
C8—N2—H2119 (5)O2—C8—N2121.8 (7)
N1—N2—H2122 (5)O2—C8—C9123.5 (7)
C2—O1—H1109.5N2—C8—C9114.6 (7)
C6—C1—C2119.0 (7)C14—C9—C10119.5 (8)
C6—C1—C7119.2 (7)C14—C9—C8118.5 (8)
C2—C1—C7121.7 (6)C10—C9—C8122.0 (8)
O1—C2—C3118.9 (7)C9—C10—C11121.6 (9)
O1—C2—C1121.8 (7)C9—C10—Cl1121.9 (7)
C3—C2—C1119.2 (7)C11—C10—Cl1116.5 (8)
C4—C3—C2120.5 (8)C10—C11—C12116.2 (10)
C4—C3—I2120.8 (6)C10—C11—H11121.9
C2—C3—I2118.6 (6)C12—C11—H11121.9
C5—C4—C3120.3 (8)C13—C12—C11123.5 (12)
C5—C4—H4119.9C13—C12—H12118.3
C3—C4—H4119.9C11—C12—H12118.3
C4—C5—C6121.3 (7)C12—C13—C14119.2 (12)
C4—C5—I1120.0 (6)C12—C13—H13120.4
C6—C5—I1118.7 (7)C14—C13—H13120.4
C5—C6—C1119.7 (8)C9—C14—C13120.0 (10)
C5—C6—H6120.2C9—C14—H14120.0
C1—C6—H6120.2C13—C14—H14120.0
N1—C7—C1119.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.556 (8)146
N2—H2···O2i0.91 (4)1.88 (2)2.768 (8)168 (8)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H9ClI2N2O2
Mr526.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.311 (3), 11.469 (2), 9.736 (2)
β (°) 90.032 (2)
V3)1598.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.11
Crystal size (mm)0.18 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.525, 0.542
No. of measured, independent and
observed [I > 2σ(I)] reflections
7381, 3383, 1747
Rint0.069
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.112, 0.95
No. of reflections3383
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.93, 0.80

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.556 (8)146
N2—H2···O2i0.91 (4)1.88 (2)2.768 (8)168 (8)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported in part by a grant from the Department of Education of Liaoning, China (L2010357).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008a). Acta Cryst. E64, o470.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008b). Acta Cryst. E64, o101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhattab, S. N. (2005). Molecules 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationMa, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2008). Acta Cryst. E64, o1759.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds