organic compounds
2-Chloro-N′-(2-hydroxy-3,5-diiodobenzylidene)benzohydrazide
aSchool of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Huanghuai University, Henan 463000, People's Republic of China
*Correspondence e-mail: dyp78@sina.com, sywangfei@yeah.net
In the title compound, C14H9ClI2N2O2, the dihedral angle between the benzene rings is 65.9 (2)° and an intramolecular O—H⋯N hydrogen bond generates an S(6) ring. The molecule has an E conformation about the C=N bond. In the crystal, molecules are linked into C(4) chains propagating in [001] by N—H⋯O hydrogen bonds.
Related literature
For background to hydrazone compounds and their biological properties, see: Kucukguzel et al. (2006); Khattab (2005); Karthikeyan et al. (2006); Okabe et al. (1993). For reference bond-length values, see: Allen et al. (1987). For related structures, see: Shan et al. (2008); Fun et al. (2008); Yang (2008); Ma et al. (2008); Diao et al. (2008a,b); Ejsmont et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811007653/hb5809sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811007653/hb5809Isup2.hkl
2-Hydroxy-3,5-diiodobenzaldehyde (1.0 mmol, 373.9 mg) was dissolved in methanol (50 ml), then 2-chlorobenzohydrazide (1.0 mmol, 170.6 mg) was added slowly into the solution, and the mixture was kept at reflux with continuous stirring for 2 h. After the solution had cooled to room temperature colourless powder crystals appeared. The powder crystals were filtered and washed with methanol for three times. Recrystallization from absolute methanol yielded colourless block-shaped single crystals of the title compound.
H2 was located in a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions with O—H = 0.82 Å, C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H9ClI2N2O2 | F(000) = 984 |
Mr = 526.48 | Dx = 2.188 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 989 reflections |
a = 14.311 (3) Å | θ = 2.5–24.5° |
b = 11.469 (2) Å | µ = 4.11 mm−1 |
c = 9.736 (2) Å | T = 298 K |
β = 90.032 (2)° | Block, colourless |
V = 1598.0 (5) Å3 | 0.18 × 0.17 × 0.17 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 3383 independent reflections |
Radiation source: fine-focus sealed tube | 1747 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.069 |
ω scans | θmax = 27.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −18→13 |
Tmin = 0.525, Tmax = 0.542 | k = −14→9 |
7381 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0353P)2] where P = (Fo2 + 2Fc2)/3 |
3383 reflections | (Δ/σ)max < 0.001 |
194 parameters | Δρmax = 0.93 e Å−3 |
1 restraint | Δρmin = −0.80 e Å−3 |
C14H9ClI2N2O2 | V = 1598.0 (5) Å3 |
Mr = 526.48 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.311 (3) Å | µ = 4.11 mm−1 |
b = 11.469 (2) Å | T = 298 K |
c = 9.736 (2) Å | 0.18 × 0.17 × 0.17 mm |
β = 90.032 (2)° |
Bruker SMART CCD diffractometer | 3383 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1747 reflections with I > 2σ(I) |
Tmin = 0.525, Tmax = 0.542 | Rint = 0.069 |
7381 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 1 restraint |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.95 | Δρmax = 0.93 e Å−3 |
3383 reflections | Δρmin = −0.80 e Å−3 |
194 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | −0.22657 (4) | 0.87447 (6) | −0.18612 (7) | 0.0664 (2) | |
I2 | −0.12679 (4) | 0.97420 (6) | 0.39763 (7) | 0.0689 (2) | |
Cl1 | 0.39839 (19) | 0.5079 (3) | 0.3068 (3) | 0.0908 (9) | |
N1 | 0.1820 (4) | 0.8044 (6) | 0.1129 (6) | 0.0385 (16) | |
N2 | 0.2702 (4) | 0.7650 (6) | 0.0825 (6) | 0.0402 (17) | |
O1 | 0.0634 (3) | 0.8886 (5) | 0.2821 (5) | 0.0482 (14) | |
H1 | 0.1148 | 0.8671 | 0.2551 | 0.072* | |
O2 | 0.3053 (4) | 0.7548 (6) | 0.3039 (6) | 0.077 (2) | |
C1 | 0.0291 (5) | 0.8487 (6) | 0.0472 (8) | 0.0343 (19) | |
C2 | 0.0025 (5) | 0.8833 (6) | 0.1793 (8) | 0.0367 (19) | |
C3 | −0.0897 (5) | 0.9172 (7) | 0.2027 (8) | 0.043 (2) | |
C4 | −0.1538 (5) | 0.9133 (7) | 0.0998 (10) | 0.050 (2) | |
H4 | −0.2153 | 0.9350 | 0.1168 | 0.060* | |
C5 | −0.1283 (5) | 0.8778 (8) | −0.0279 (9) | 0.051 (2) | |
C6 | −0.0383 (5) | 0.8446 (6) | −0.0562 (8) | 0.044 (2) | |
H6 | −0.0222 | 0.8196 | −0.1439 | 0.053* | |
C7 | 0.1229 (5) | 0.8119 (7) | 0.0171 (8) | 0.0378 (19) | |
H7 | 0.1400 | 0.7937 | −0.0725 | 0.045* | |
C8 | 0.3274 (5) | 0.7392 (8) | 0.1856 (8) | 0.046 (2) | |
C9 | 0.4215 (5) | 0.6948 (8) | 0.1424 (8) | 0.044 (2) | |
C10 | 0.4584 (6) | 0.5931 (8) | 0.1939 (9) | 0.055 (2) | |
C11 | 0.5447 (7) | 0.5530 (10) | 0.1535 (11) | 0.074 (3) | |
H11 | 0.5699 | 0.4843 | 0.1882 | 0.088* | |
C12 | 0.5921 (7) | 0.6211 (15) | 0.0577 (14) | 0.102 (6) | |
H12 | 0.6510 | 0.5968 | 0.0293 | 0.122* | |
C13 | 0.5576 (8) | 0.7187 (12) | 0.0048 (12) | 0.090 (4) | |
H13 | 0.5915 | 0.7607 | −0.0599 | 0.108* | |
C14 | 0.4710 (6) | 0.7572 (9) | 0.0471 (9) | 0.068 (3) | |
H14 | 0.4462 | 0.8255 | 0.0109 | 0.082* | |
H2 | 0.290 (5) | 0.755 (8) | −0.005 (3) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0465 (4) | 0.0791 (5) | 0.0737 (5) | −0.0086 (3) | −0.0190 (3) | 0.0115 (4) |
I2 | 0.0617 (4) | 0.0786 (5) | 0.0663 (5) | 0.0136 (3) | 0.0127 (3) | −0.0186 (4) |
Cl1 | 0.0839 (19) | 0.089 (2) | 0.099 (2) | −0.0011 (15) | −0.0081 (16) | 0.0317 (18) |
N1 | 0.028 (4) | 0.052 (5) | 0.036 (4) | 0.004 (3) | −0.002 (3) | −0.002 (3) |
N2 | 0.034 (4) | 0.063 (5) | 0.024 (4) | 0.008 (3) | 0.004 (3) | −0.005 (4) |
O1 | 0.051 (3) | 0.058 (4) | 0.036 (3) | 0.008 (3) | 0.000 (3) | −0.002 (3) |
O2 | 0.068 (4) | 0.143 (7) | 0.020 (3) | 0.042 (4) | 0.003 (3) | 0.003 (4) |
C1 | 0.041 (5) | 0.031 (5) | 0.031 (5) | −0.001 (3) | 0.002 (3) | 0.008 (4) |
C2 | 0.035 (4) | 0.035 (5) | 0.040 (5) | −0.011 (4) | 0.004 (3) | 0.008 (4) |
C3 | 0.051 (5) | 0.034 (5) | 0.044 (6) | −0.007 (4) | 0.010 (4) | 0.002 (4) |
C4 | 0.034 (5) | 0.048 (6) | 0.067 (7) | 0.000 (4) | 0.004 (4) | 0.006 (5) |
C5 | 0.037 (5) | 0.061 (6) | 0.055 (6) | 0.000 (4) | −0.011 (4) | 0.014 (5) |
C6 | 0.049 (5) | 0.038 (5) | 0.045 (5) | −0.003 (4) | −0.006 (4) | −0.008 (4) |
C7 | 0.051 (5) | 0.038 (5) | 0.025 (5) | 0.002 (4) | 0.003 (4) | 0.009 (4) |
C8 | 0.047 (5) | 0.070 (7) | 0.020 (5) | 0.007 (4) | 0.002 (4) | 0.000 (4) |
C9 | 0.030 (4) | 0.072 (7) | 0.029 (5) | 0.000 (4) | −0.002 (3) | −0.008 (5) |
C10 | 0.048 (6) | 0.066 (7) | 0.052 (6) | −0.001 (5) | −0.007 (4) | −0.003 (5) |
C11 | 0.054 (7) | 0.100 (10) | 0.067 (8) | 0.026 (6) | −0.018 (5) | −0.025 (7) |
C12 | 0.039 (6) | 0.182 (16) | 0.083 (10) | 0.015 (8) | −0.013 (6) | −0.079 (11) |
C13 | 0.066 (8) | 0.141 (13) | 0.063 (8) | −0.034 (8) | 0.029 (6) | −0.016 (8) |
C14 | 0.050 (6) | 0.112 (9) | 0.043 (6) | −0.006 (6) | 0.010 (4) | 0.007 (6) |
I1—C5 | 2.086 (7) | C4—H4 | 0.9300 |
I2—C3 | 2.076 (8) | C5—C6 | 1.372 (10) |
Cl1—C10 | 1.703 (9) | C6—H6 | 0.9300 |
N1—C7 | 1.261 (8) | C7—H7 | 0.9300 |
N1—N2 | 1.373 (7) | C8—C9 | 1.501 (10) |
N2—C8 | 1.328 (9) | C9—C14 | 1.369 (11) |
N2—H2 | 0.91 (4) | C9—C10 | 1.374 (12) |
O1—C2 | 1.328 (8) | C10—C11 | 1.376 (11) |
O1—H1 | 0.8200 | C11—C12 | 1.393 (16) |
O2—C8 | 1.208 (9) | C11—H11 | 0.9300 |
C1—C6 | 1.395 (10) | C12—C13 | 1.328 (16) |
C1—C2 | 1.398 (10) | C12—H12 | 0.9300 |
C1—C7 | 1.438 (9) | C13—C14 | 1.379 (13) |
C2—C3 | 1.396 (10) | C13—H13 | 0.9300 |
C3—C4 | 1.358 (10) | C14—H14 | 0.9300 |
C4—C5 | 1.358 (11) | ||
C7—N1—N2 | 118.6 (6) | N1—C7—H7 | 120.2 |
C8—N2—N1 | 118.5 (6) | C1—C7—H7 | 120.2 |
C8—N2—H2 | 119 (5) | O2—C8—N2 | 121.8 (7) |
N1—N2—H2 | 122 (5) | O2—C8—C9 | 123.5 (7) |
C2—O1—H1 | 109.5 | N2—C8—C9 | 114.6 (7) |
C6—C1—C2 | 119.0 (7) | C14—C9—C10 | 119.5 (8) |
C6—C1—C7 | 119.2 (7) | C14—C9—C8 | 118.5 (8) |
C2—C1—C7 | 121.7 (6) | C10—C9—C8 | 122.0 (8) |
O1—C2—C3 | 118.9 (7) | C9—C10—C11 | 121.6 (9) |
O1—C2—C1 | 121.8 (7) | C9—C10—Cl1 | 121.9 (7) |
C3—C2—C1 | 119.2 (7) | C11—C10—Cl1 | 116.5 (8) |
C4—C3—C2 | 120.5 (8) | C10—C11—C12 | 116.2 (10) |
C4—C3—I2 | 120.8 (6) | C10—C11—H11 | 121.9 |
C2—C3—I2 | 118.6 (6) | C12—C11—H11 | 121.9 |
C5—C4—C3 | 120.3 (8) | C13—C12—C11 | 123.5 (12) |
C5—C4—H4 | 119.9 | C13—C12—H12 | 118.3 |
C3—C4—H4 | 119.9 | C11—C12—H12 | 118.3 |
C4—C5—C6 | 121.3 (7) | C12—C13—C14 | 119.2 (12) |
C4—C5—I1 | 120.0 (6) | C12—C13—H13 | 120.4 |
C6—C5—I1 | 118.7 (7) | C14—C13—H13 | 120.4 |
C5—C6—C1 | 119.7 (8) | C9—C14—C13 | 120.0 (10) |
C5—C6—H6 | 120.2 | C9—C14—H14 | 120.0 |
C1—C6—H6 | 120.2 | C13—C14—H14 | 120.0 |
N1—C7—C1 | 119.7 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.83 | 2.556 (8) | 146 |
N2—H2···O2i | 0.91 (4) | 1.88 (2) | 2.768 (8) | 168 (8) |
Symmetry code: (i) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H9ClI2N2O2 |
Mr | 526.48 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 14.311 (3), 11.469 (2), 9.736 (2) |
β (°) | 90.032 (2) |
V (Å3) | 1598.0 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.11 |
Crystal size (mm) | 0.18 × 0.17 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.525, 0.542 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7381, 3383, 1747 |
Rint | 0.069 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.112, 0.95 |
No. of reflections | 3383 |
No. of parameters | 194 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.93, −0.80 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.83 | 2.556 (8) | 146 |
N2—H2···O2i | 0.91 (4) | 1.88 (2) | 2.768 (8) | 168 (8) |
Symmetry code: (i) x, −y+3/2, z−1/2. |
Acknowledgements
This work was supported in part by a grant from the Department of Education of Liaoning, China (L2010357).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Diao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008a). Acta Cryst. E64, o470. Web of Science CSD CrossRef IUCr Journals Google Scholar
Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008b). Acta Cryst. E64, o101. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489. Web of Science CrossRef PubMed CAS Google Scholar
Khattab, S. N. (2005). Molecules 10, 1218–1228. Web of Science CrossRef PubMed CAS Google Scholar
Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359. Web of Science CrossRef PubMed Google Scholar
Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, D.-S. (2008). Acta Cryst. E64, o1759. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazones have been attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel et al., 2006; Khattab et al., 2005; Karthikeyan et al., 2006; Okabe et al., 1993). Recently, a large number of hydrazone derivatives have been prepared and structurally characterized (Shan et al., 2008; Fun et al., 2008; Yang, 2008; Ma et al., 2008; Diao et al., 2008a,b; Ejsmont et al., 2008). In this paper, the title new hydrazone compound is reported.
The molecular structure of the title compound is shown in Fig. 1. The bond distances and angles are normal (Allen et al., 1987). The dihedral angle between the two benzene rings is 65.9 (2)°. The molecule of the compound displays an E geometry about the C═N bond. The molecules are linked into chains along the c axis by intermolecular N—H···O hydrogen bonds (Fig. 2 and Table 1).