metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4-Bromo-2-[(2-sulfido­phen­yl)imino­meth­yl]phenolato-κ3S,N,O}(tri­phenyl­phosphane-κP)nickel(II)

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, bSophisticated Analytical Instruments Facility, Indian Institute of Technology-Madras, Chennai 600 036, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 March 2011; accepted 9 March 2011; online 12 March 2011)

The NiII atom in the title complex, [Ni(C13H8BrNOS)(C18H15P)], is coordinated by the N, O and S atoms of the dianionic tridentate ligand, and its square-planar geometry is completed by a phosphane P atom. The dihedral angle between the aromatic rings in the 4-bromo-2-[(2-sulfido­phen­yl)imino­meth­yl]phenolate ligand is 2.01 (14)°. The most prominent feature of the packing is the presence of supra­molecular chains aligned along the a axis, mediated by C—H⋯S inter­actions.

Related literature

For chemical background and related structures, see: Muthu Tamizh et al. (2009[Muthu Tamizh, M., Mereiter, K., Kirchner, K., Ramachandra Bhat, B. & Karvembu, R. (2009). Polyhedron, 28, 2157-2164.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C13H8BrNOS)(C18H15P)]

  • Mr = 627.15

  • Orthorhombic, P b c a

  • a = 9.7197 (2) Å

  • b = 18.7729 (6) Å

  • c = 29.8372 (7) Å

  • V = 5444.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.592, Tmax = 0.720

  • 31370 measured reflections

  • 6260 independent reflections

  • 4184 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.03

  • 6260 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Ni—S1 2.1219 (7)
Ni—P1 2.1975 (7)
Ni—O1 1.8494 (18)
Ni—N1 1.900 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯S1i 0.93 2.84 3.620 (3) 142
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title complex, (I), was investigated as part of a wider investigation of complexes of interest owing to their relationship to Ni/Fe hydrogenases (Muthu Tamizh et al., 2009). The NiII atom exists within a square planar donor set defined by the N,O,S atoms of the dinegative tridentate ligand, and a P atom derived from the phosphane ligand. The S1, P1, O1 and N1 atoms deviate -0.0535 (7), 0.0556 (8), -0.0609 (8) and 0.0588 (8) Å, from their least-squares plane, respectively (r.m.s. deviation = 0.0573 Å), and the Ni atom lies 0.0548 (9) Å out of the plane. The geometric parameters about the NiII atom, Table 1, match closely those in the parent complex (Muthu Tamizh et al., 2009).

The most prominent interactions in the crystal structure are of the type C—H···S, Table 2. These connect molecules into linear supramolecular chains along the a axis, Fig. 2.

Related literature top

For chemical background and related structures, see: Muthu Tamizh et al. (2009).

Experimental top

Complex (I) was prepared from the reaction between [NiCl2(PPh3)2] and N-(2-mercaptophenyl)-4-bromosalicylideneimine in ethanol solution following the literature procedure (Muthu Tamizh et al., 2009). Brown prisms of (I) were obtained by the diffusion of diethyl ether vapour into its dichloromethane solution. Characterization data are as given in Muthu Tamizh et al. (2009).

Refinement top

The H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Uequiv(C). A reflection, i.e. (2 0 0), was omitted from the final refinement owing to poor agreement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Supramolecular chain aligned along the a axis in (I) mediated by C—H···S contacts shown as orange dashed lines.
{4-Bromo-2-[(2-sulfidophenyl)iminomethyl]phenolato- κ3S,N,O}(triphenylphosphane-κP)nickel(II) top
Crystal data top
[Ni(C13H8BrNOS)(C18H15P)]F(000) = 2544
Mr = 627.15Dx = 1.530 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5504 reflections
a = 9.7197 (2) Åθ = 2.2–25.0°
b = 18.7729 (6) ŵ = 2.34 mm1
c = 29.8372 (7) ÅT = 293 K
V = 5444.3 (2) Å3Prism, brown
Z = 80.25 × 0.20 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6260 independent reflections
Radiation source: fine-focus sealed tube4184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω and ϕ scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.592, Tmax = 0.720k = 1324
31370 measured reflectionsl = 3138
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.9841P]
where P = (Fo2 + 2Fc2)/3
6260 reflections(Δ/σ)max = 0.002
334 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni(C13H8BrNOS)(C18H15P)]V = 5444.3 (2) Å3
Mr = 627.15Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.7197 (2) ŵ = 2.34 mm1
b = 18.7729 (6) ÅT = 293 K
c = 29.8372 (7) Å0.25 × 0.20 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6260 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4184 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 0.720Rint = 0.050
31370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Δρmax = 0.42 e Å3
6260 reflectionsΔρmin = 0.43 e Å3
334 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.70528 (3)0.093546 (17)0.666881 (10)0.02872 (9)
Br10.89896 (5)0.08458 (2)0.874812 (12)0.07450 (14)
P10.79107 (6)0.06542 (4)0.60108 (2)0.02893 (15)
S10.57705 (7)0.17098 (4)0.63624 (2)0.04198 (18)
O10.83786 (18)0.03231 (10)0.68907 (6)0.0403 (5)
N10.6293 (2)0.11848 (11)0.72343 (7)0.0298 (5)
C10.8475 (3)0.00804 (14)0.73001 (8)0.0337 (6)
C20.7685 (3)0.03472 (14)0.76579 (8)0.0344 (6)
C30.7875 (3)0.00663 (16)0.80893 (9)0.0463 (7)
H30.73630.02440.83270.056*
C40.8795 (3)0.04598 (16)0.81620 (9)0.0465 (7)
C50.9575 (3)0.07331 (16)0.78142 (10)0.0466 (7)
H51.02040.10960.78680.056*
C60.9417 (3)0.04669 (16)0.73927 (9)0.0441 (7)
H60.99450.06520.71610.053*
C70.6686 (3)0.08912 (15)0.76043 (9)0.0393 (7)
H70.62660.10550.78650.047*
C80.5279 (2)0.17371 (13)0.72504 (8)0.0309 (6)
C90.4973 (3)0.20480 (14)0.68419 (9)0.0357 (6)
C100.4033 (3)0.26043 (16)0.68227 (11)0.0488 (8)
H100.38480.28250.65500.059*
C110.3372 (3)0.28300 (17)0.72053 (12)0.0523 (8)
H110.27380.32000.71910.063*
C120.3653 (3)0.25079 (16)0.76073 (11)0.0491 (8)
H120.31950.26560.78650.059*
C130.4604 (3)0.19692 (15)0.76332 (10)0.0435 (7)
H130.47960.17590.79080.052*
C140.7096 (3)0.10195 (14)0.55127 (8)0.0320 (6)
C150.5778 (3)0.07925 (18)0.54121 (10)0.0488 (8)
H150.53580.04480.55890.059*
C160.5086 (4)0.1074 (2)0.50515 (11)0.0619 (10)
H160.42020.09150.49860.074*
C170.5675 (4)0.1582 (2)0.47883 (10)0.0582 (9)
H170.51870.17780.45500.070*
C180.6985 (4)0.18015 (19)0.48761 (10)0.0607 (9)
H180.74020.21390.46930.073*
C190.7700 (3)0.15220 (16)0.52392 (9)0.0456 (7)
H190.85920.16750.52980.055*
C200.9652 (3)0.10013 (14)0.59933 (8)0.0329 (6)
C210.9851 (3)0.17007 (17)0.61177 (9)0.0460 (7)
H210.91060.19740.62120.055*
C221.1149 (3)0.1999 (2)0.61037 (11)0.0600 (9)
H221.12730.24740.61840.072*
C231.2250 (3)0.1599 (2)0.59722 (11)0.0605 (10)
H231.31230.18010.59620.073*
C241.2070 (3)0.0902 (2)0.58564 (11)0.0566 (9)
H241.28240.06300.57680.068*
C251.0773 (3)0.05948 (17)0.58688 (9)0.0429 (7)
H251.06590.01180.57940.052*
C260.8064 (2)0.02845 (14)0.58757 (9)0.0333 (6)
C270.8427 (3)0.04952 (16)0.54450 (9)0.0444 (7)
H270.85290.01550.52210.053*
C280.8637 (3)0.12050 (18)0.53468 (11)0.0544 (8)
H280.88930.13420.50590.065*
C290.8465 (4)0.17076 (19)0.56755 (12)0.0638 (9)
H290.86220.21860.56120.077*
C300.8064 (4)0.15059 (18)0.60965 (12)0.0675 (10)
H300.79320.18510.63160.081*
C310.7852 (3)0.07989 (16)0.61992 (10)0.0500 (8)
H310.75670.06690.64850.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.03059 (18)0.03009 (19)0.02548 (16)0.00211 (14)0.00219 (13)0.00157 (13)
Br10.1097 (3)0.0692 (3)0.0446 (2)0.0162 (2)0.01411 (19)0.02072 (17)
P10.0301 (3)0.0312 (4)0.0255 (3)0.0001 (3)0.0013 (3)0.0021 (3)
S10.0511 (4)0.0426 (4)0.0323 (3)0.0150 (3)0.0035 (3)0.0012 (3)
O10.0441 (11)0.0478 (12)0.0289 (10)0.0149 (9)0.0042 (8)0.0023 (9)
N10.0296 (11)0.0289 (12)0.0309 (11)0.0015 (9)0.0043 (9)0.0000 (9)
C10.0369 (15)0.0320 (15)0.0323 (14)0.0011 (12)0.0036 (11)0.0001 (11)
C20.0415 (15)0.0318 (15)0.0300 (13)0.0036 (12)0.0003 (11)0.0014 (11)
C30.0606 (19)0.0489 (19)0.0295 (14)0.0086 (16)0.0009 (13)0.0012 (13)
C40.0621 (19)0.0423 (18)0.0351 (15)0.0011 (15)0.0110 (14)0.0101 (13)
C50.0507 (18)0.0383 (18)0.0508 (18)0.0080 (14)0.0128 (14)0.0050 (14)
C60.0450 (17)0.0453 (18)0.0421 (16)0.0120 (14)0.0007 (13)0.0014 (13)
C70.0464 (17)0.0430 (17)0.0285 (14)0.0029 (13)0.0079 (12)0.0016 (12)
C80.0274 (13)0.0264 (14)0.0389 (14)0.0000 (11)0.0035 (11)0.0038 (11)
C90.0341 (14)0.0324 (15)0.0407 (15)0.0030 (12)0.0017 (12)0.0062 (12)
C100.0487 (18)0.0434 (19)0.0544 (18)0.0142 (15)0.0116 (14)0.0030 (15)
C110.0397 (17)0.0408 (19)0.076 (2)0.0116 (14)0.0040 (16)0.0111 (17)
C120.0431 (17)0.0450 (19)0.059 (2)0.0051 (15)0.0163 (14)0.0118 (16)
C130.0432 (17)0.0424 (18)0.0448 (16)0.0031 (14)0.0110 (13)0.0004 (13)
C140.0357 (14)0.0366 (15)0.0235 (12)0.0051 (12)0.0001 (10)0.0026 (10)
C150.0418 (17)0.063 (2)0.0418 (16)0.0044 (15)0.0043 (13)0.0031 (15)
C160.0436 (18)0.096 (3)0.0466 (19)0.0106 (18)0.0128 (15)0.0068 (19)
C170.072 (2)0.075 (3)0.0278 (15)0.028 (2)0.0132 (15)0.0050 (16)
C180.084 (3)0.061 (2)0.0368 (17)0.006 (2)0.0048 (16)0.0128 (15)
C190.0537 (18)0.049 (2)0.0337 (15)0.0011 (15)0.0042 (13)0.0062 (13)
C200.0323 (14)0.0420 (17)0.0244 (12)0.0034 (12)0.0006 (10)0.0085 (11)
C210.0437 (17)0.0475 (19)0.0469 (17)0.0077 (15)0.0032 (13)0.0015 (14)
C220.059 (2)0.059 (2)0.062 (2)0.0223 (18)0.0125 (17)0.0061 (17)
C230.0377 (19)0.087 (3)0.057 (2)0.0201 (19)0.0117 (15)0.0171 (19)
C240.0297 (16)0.087 (3)0.0533 (19)0.0026 (17)0.0003 (13)0.0175 (18)
C250.0379 (16)0.0512 (19)0.0397 (16)0.0019 (14)0.0009 (12)0.0086 (14)
C260.0319 (14)0.0318 (15)0.0363 (14)0.0014 (11)0.0003 (11)0.0012 (11)
C270.0550 (18)0.0418 (19)0.0363 (15)0.0096 (14)0.0010 (13)0.0039 (13)
C280.070 (2)0.053 (2)0.0401 (16)0.0139 (17)0.0052 (15)0.0130 (16)
C290.091 (3)0.0376 (19)0.063 (2)0.0076 (19)0.013 (2)0.0117 (17)
C300.109 (3)0.0338 (19)0.060 (2)0.0059 (19)0.001 (2)0.0049 (16)
C310.070 (2)0.0369 (18)0.0434 (17)0.0061 (16)0.0073 (15)0.0029 (13)
Geometric parameters (Å, º) top
Ni—S12.1219 (7)C14—C191.378 (4)
Ni—P12.1975 (7)C14—C151.383 (4)
Ni—O11.8494 (18)C15—C161.374 (4)
Ni—N11.900 (2)C15—H150.9300
Br1—C41.902 (3)C16—C171.362 (5)
P1—C261.814 (3)C16—H160.9300
P1—C201.815 (3)C17—C181.364 (4)
P1—C141.818 (2)C17—H170.9300
S1—C91.747 (3)C18—C191.390 (4)
O1—C11.307 (3)C18—H180.9300
N1—C71.292 (3)C19—H190.9300
N1—C81.431 (3)C20—C211.378 (4)
C1—C61.404 (4)C20—C251.381 (4)
C1—C21.407 (3)C21—C221.381 (4)
C2—C31.403 (4)C21—H210.9300
C2—C71.418 (4)C22—C231.365 (5)
C3—C41.350 (4)C22—H220.9300
C3—H30.9300C23—C241.365 (5)
C4—C51.384 (4)C23—H230.9300
C5—C61.362 (4)C24—C251.387 (4)
C5—H50.9300C24—H240.9300
C6—H60.9300C25—H250.9300
C7—H70.9300C26—C311.381 (4)
C8—C91.384 (4)C26—C271.390 (4)
C8—C131.388 (3)C27—C281.379 (4)
C9—C101.389 (4)C27—H270.9300
C10—C111.376 (4)C28—C291.371 (5)
C10—H100.9300C28—H280.9300
C11—C121.371 (4)C29—C301.369 (5)
C11—H110.9300C29—H290.9300
C12—C131.372 (4)C30—C311.377 (4)
C12—H120.9300C30—H300.9300
C13—H130.9300C31—H310.9300
O1—Ni—N196.09 (8)C8—C13—H13119.9
O1—Ni—S1171.63 (6)C19—C14—C15118.5 (3)
N1—Ni—S189.17 (7)C19—C14—P1123.8 (2)
O1—Ni—P184.61 (6)C15—C14—P1117.7 (2)
N1—Ni—P1179.29 (7)C16—C15—C14120.3 (3)
S1—Ni—P190.14 (3)C16—C15—H15119.8
C26—P1—C20105.42 (12)C14—C15—H15119.8
C26—P1—C14102.74 (12)C17—C16—C15121.0 (3)
C20—P1—C14104.33 (12)C17—C16—H16119.5
C26—P1—Ni117.59 (9)C15—C16—H16119.5
C20—P1—Ni107.06 (9)C16—C17—C18119.6 (3)
C14—P1—Ni118.32 (8)C16—C17—H17120.2
C9—S1—Ni99.01 (9)C18—C17—H17120.2
C1—O1—Ni126.94 (16)C17—C18—C19120.1 (3)
C7—N1—C8118.9 (2)C17—C18—H18119.9
C7—N1—Ni122.61 (18)C19—C18—H18119.9
C8—N1—Ni118.41 (16)C14—C19—C18120.5 (3)
O1—C1—C6119.1 (2)C14—C19—H19119.8
O1—C1—C2123.1 (2)C18—C19—H19119.8
C6—C1—C2117.8 (2)C21—C20—C25119.2 (3)
C3—C2—C1119.4 (2)C21—C20—P1117.7 (2)
C3—C2—C7117.7 (2)C25—C20—P1123.0 (2)
C1—C2—C7123.0 (2)C20—C21—C22120.4 (3)
C4—C3—C2120.7 (3)C20—C21—H21119.8
C4—C3—H3119.7C22—C21—H21119.8
C2—C3—H3119.7C23—C22—C21120.1 (3)
C3—C4—C5120.9 (3)C23—C22—H22120.0
C3—C4—Br1119.5 (2)C21—C22—H22120.0
C5—C4—Br1119.6 (2)C22—C23—C24120.0 (3)
C6—C5—C4119.6 (3)C22—C23—H23120.0
C6—C5—H5120.2C24—C23—H23120.0
C4—C5—H5120.2C23—C24—C25120.5 (3)
C5—C6—C1121.6 (3)C23—C24—H24119.7
C5—C6—H6119.2C25—C24—H24119.7
C1—C6—H6119.2C20—C25—C24119.7 (3)
N1—C7—C2127.3 (2)C20—C25—H25120.2
N1—C7—H7116.4C24—C25—H25120.2
C2—C7—H7116.4C31—C26—C27119.0 (3)
C9—C8—C13119.4 (2)C31—C26—P1120.8 (2)
C9—C8—N1115.1 (2)C27—C26—P1120.2 (2)
C13—C8—N1125.5 (2)C28—C27—C26120.6 (3)
C8—C9—C10119.7 (2)C28—C27—H27119.7
C8—C9—S1118.2 (2)C26—C27—H27119.7
C10—C9—S1122.1 (2)C29—C28—C27119.7 (3)
C11—C10—C9120.3 (3)C29—C28—H28120.2
C11—C10—H10119.9C27—C28—H28120.2
C9—C10—H10119.9C30—C29—C28120.0 (3)
C12—C11—C10119.8 (3)C30—C29—H29120.0
C12—C11—H11120.1C28—C29—H29120.0
C10—C11—H11120.1C29—C30—C31120.9 (3)
C11—C12—C13120.6 (3)C29—C30—H30119.6
C11—C12—H12119.7C31—C30—H30119.6
C13—C12—H12119.7C30—C31—C26119.7 (3)
C12—C13—C8120.3 (3)C30—C31—H31120.1
C12—C13—H13119.9C26—C31—H31120.1
O1—Ni—P1—C2652.43 (11)C8—C9—C10—C112.2 (4)
N1—Ni—P1—C26120 (6)S1—C9—C10—C11176.5 (2)
S1—Ni—P1—C26134.10 (9)C9—C10—C11—C120.5 (5)
O1—Ni—P1—C2065.88 (11)C10—C11—C12—C131.1 (5)
N1—Ni—P1—C20122 (6)C11—C12—C13—C80.9 (5)
S1—Ni—P1—C20107.59 (9)C9—C8—C13—C120.8 (4)
O1—Ni—P1—C14176.78 (12)N1—C8—C13—C12179.7 (3)
N1—Ni—P1—C145 (6)C26—P1—C14—C19117.6 (2)
S1—Ni—P1—C149.76 (10)C20—P1—C14—C197.8 (3)
O1—Ni—S1—C9127.2 (4)Ni—P1—C14—C19111.0 (2)
N1—Ni—S1—C91.92 (11)C26—P1—C14—C1564.3 (2)
P1—Ni—S1—C9178.25 (9)C20—P1—C14—C15174.2 (2)
N1—Ni—O1—C111.1 (2)Ni—P1—C14—C1567.1 (2)
S1—Ni—O1—C1139.8 (4)C19—C14—C15—C161.1 (4)
P1—Ni—O1—C1168.8 (2)P1—C14—C15—C16177.0 (3)
O1—Ni—N1—C75.1 (2)C14—C15—C16—C170.4 (5)
S1—Ni—N1—C7178.6 (2)C15—C16—C17—C181.8 (5)
P1—Ni—N1—C7167 (25)C16—C17—C18—C191.7 (5)
O1—Ni—N1—C8172.73 (18)C15—C14—C19—C181.2 (4)
S1—Ni—N1—C80.74 (17)P1—C14—C19—C18176.9 (2)
P1—Ni—N1—C815 (6)C17—C18—C19—C140.3 (5)
Ni—O1—C1—C6170.00 (19)C26—P1—C20—C21175.2 (2)
Ni—O1—C1—C210.7 (4)C14—P1—C20—C2177.0 (2)
O1—C1—C2—C3178.6 (3)Ni—P1—C20—C2149.2 (2)
C6—C1—C2—C30.7 (4)C26—P1—C20—C253.8 (2)
O1—C1—C2—C71.7 (4)C14—P1—C20—C25104.0 (2)
C6—C1—C2—C7179.0 (3)Ni—P1—C20—C25129.8 (2)
C1—C2—C3—C40.7 (4)C25—C20—C21—C222.2 (4)
C7—C2—C3—C4179.0 (3)P1—C20—C21—C22178.8 (2)
C2—C3—C4—C50.2 (5)C20—C21—C22—C230.9 (5)
C2—C3—C4—Br1178.3 (2)C21—C22—C23—C240.3 (5)
C3—C4—C5—C60.2 (5)C22—C23—C24—C250.3 (5)
Br1—C4—C5—C6178.7 (2)C21—C20—C25—C242.1 (4)
C4—C5—C6—C10.1 (5)P1—C20—C25—C24178.9 (2)
O1—C1—C6—C5179.0 (3)C23—C24—C25—C200.9 (4)
C2—C1—C6—C50.3 (4)C20—P1—C26—C31109.3 (2)
C8—N1—C7—C2179.0 (3)C14—P1—C26—C31141.7 (2)
Ni—N1—C7—C21.2 (4)Ni—P1—C26—C319.8 (3)
C3—C2—C7—N1175.1 (3)C20—P1—C26—C2769.3 (2)
C1—C2—C7—N14.5 (5)C14—P1—C26—C2739.7 (2)
C7—N1—C8—C9176.7 (2)Ni—P1—C26—C27171.56 (19)
Ni—N1—C8—C91.2 (3)C31—C26—C27—C283.0 (4)
C7—N1—C8—C133.7 (4)P1—C26—C27—C28175.6 (2)
Ni—N1—C8—C13178.4 (2)C26—C27—C28—C291.0 (5)
C13—C8—C9—C102.3 (4)C27—C28—C29—C301.2 (5)
N1—C8—C9—C10178.1 (2)C28—C29—C30—C311.2 (6)
C13—C8—C9—S1176.5 (2)C29—C30—C31—C260.9 (5)
N1—C8—C9—S13.2 (3)C27—C26—C31—C303.0 (5)
Ni—S1—C9—C83.3 (2)P1—C26—C31—C30175.6 (3)
Ni—S1—C9—C10178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···S1i0.932.843.620 (3)142
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C13H8BrNOS)(C18H15P)]
Mr627.15
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)9.7197 (2), 18.7729 (6), 29.8372 (7)
V3)5444.3 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.592, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
31370, 6260, 4184
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.03
No. of reflections6260
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.43

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni—S12.1219 (7)Ni—O11.8494 (18)
Ni—P12.1975 (7)Ni—N11.900 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···S1i0.932.843.620 (3)142
Symmetry code: (i) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: kar@nitt.edu.

Acknowledgements

RK and MMT gratefully acknowledge the CSIR [01 (2137)/07/EMR-II] for financial support. We also thank the SAIF, IIT-Madras, for the crystallographic data.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMuthu Tamizh, M., Mereiter, K., Kirchner, K., Ramachandra Bhat, B. & Karvembu, R. (2009). Polyhedron, 28, 2157–2164.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds