organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o937-o938

3α-Hy­dr­oxy­tirucalla-8,24-dien-21-oic acid

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi 75270, Pakistan, bDepartment of Chemistry, Higher Teachers Training College, University of Yaounde I, PO Box 48 Yaounde, Cameroon, cDepartment of Organic Chemistry, University of Yaounde I, PO Box 812 Yaounde, Cameroon, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 7 March 2011; accepted 9 March 2011; online 23 March 2011)

The title compound, C30H48O3, a triterpene isolated from the resin of canarium schweinfurthiiand, is an isomer of the previously reported triterpene 3α-hy­droxy­tirucalla-7,24-dien-21-oic acid [Mora et al. (2001[Mora, A. J., Delgado, G., Díaz de Delgado, G., Usubillaga, A., Khouri, N. & Bahsas, A. (2001). Acta Cryst. C57, 638-640.]). Acta Cryst. C57, 638–640], which crystallizes in the same trigonal space group. The title mol­ecule consists of four fused rings having chair, half-chair, half-chair and envelope conformations for rings A, B, C and D, respectively (steroid labelling). An intra­molecular C—H⋯O hydrogen bond generates an S(7) ring. In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O inter­actions, forming (001) sheets.

Related literature

For the crystal structure of 3α-hy­droxy­tirucalla-7,24-diene-21-oic acid, see: Mora et al. (2001[Mora, A. J., Delgado, G., Díaz de Delgado, G., Usubillaga, A., Khouri, N. & Bahsas, A. (2001). Acta Cryst. C57, 638-640.]). For the biological activity of canarium schweinfurthiiand, see: Atawodi (2010[Atawodi, S. E. (2010). Adv. Biol. Res. 4, 314-322.]); Dongmo et al. (2010[Dongmo, P. M., Tchoumbougnang, F., Ndongson, B., Agwannande, W., Sandjon, B., Zollo, P. H. A. & Menut, C. (2010). Agric. Biol. J. N. Am. 1 606-6011.]) and for its botany, see: Tchiégang et al. (2001[Tchiégang, C., Kapchié, N. V., Kapseu, C. & Parmentier, M. (2001). J. Food Eng. 47, 63-68.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C30H48O3

  • Mr = 456.68

  • Trigonal, P 31 21

  • a = 11.2794 (2) Å

  • c = 36.6986 (6) Å

  • V = 4043.45 (12) Å3

  • Z = 6

  • Cu Kα radiation

  • μ = 0.54 mm−1

  • T = 100 K

  • 0.29 × 0.24 × 0.13 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.859, Tmax = 0.935

  • 29022 measured reflections

  • 5154 independent reflections

  • 5062 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 0.97

  • 5154 reflections

  • 305 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2099 Friedel pairs

  • Flack parameter: −0.35 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.96 1.74 2.6762 (14) 162
O3—H1O3⋯O2ii 0.83 2.00 2.828 (2) 172
C12—H12A⋯O1 0.99 2.55 3.367 (2) 139
C22—H22A⋯O3iii 0.99 2.36 3.276 (2) 153
Symmetry codes: (i) [-x, -x+y, -z+{\script{1\over 3}}]; (ii) x+1, y+1, z; (iii) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

3α-Hydroxytirucalla-8,24-dien-21-oic acid (or epielemadienolic acid) is a known triterpene derivative that was isolated from the resin of canarium schweinfurthii, a tree growing in equatorial forest regions from Cameroon, Central African Republic, Gabon to Congo (Tchiégang et al., 2001). The plant is used for a variety of ailments including malaria, fever and diarrhea (Atawodi, 2010; Dongmo et al. (2010). As a part of our going research on the medicinaly important plants, the title compound was isolated from the dichloromethane soluble part and the structure was established on the basis of X-ray diffraction studies. The space group (P3121) and cell parameters were found to be similar to the prevoiusly reported 3α-hydroxy-tirucalla-7,24-dien-21-oic acid (Mora et al.. 2001). However the bond lengths of C7-C8 [1.499 (2) Å] and C8-C9 [1.353 (2) Å] were found to be different from those reported for the previously reported triterpene [C7-C8 = 1.353 (2) Å and C8-C9 = 1.49 Å]. The difference in the bond lengths clearly indicates that the title compound is an isomer of previously reported 3α-hydroxy-tirucalla-7,24-dien-21-oic acid, having C8-C9 double-bond/olefin instead C7-C8 double-bond/olefin. The molecular structure showed that the trans fused rings A/B/C and D adopt chair [Q= 0.549 (2) Å, θ = 4.5 (2)° and ϕ = 51 (2)°], half-chair [Q = 0.545 (2) Å, θ = 50.0 (2)° and ϕ = 8.3 (3)°], half-chair [Q = 0.524 (19) Å, θ = 129.7 (2)° and ϕ = 63.6 (2)°] and envelope [Q = 0.487 (2) Å and ϕ = 13.5 (2)°] conformations respectively. The half-chair and envelope conformations of rings C & D are stabilized by C12—H12A···O1 intramolecular hydrogen bond. In the crystal structure, the molecules are linked to form infinite chains via O3—H1O3···O2, O1—H1O1···O2 and C24—H22A···O3 hydrogen bonds (symmetry codes as in Table 1) to form (001) sheets. (Fig. 2).

Related literature top

For the crystal structure of 3α-hydroxytirucalla-7,24-diene-21-oic acid, see: Mora et al. (2001). For the biological activity of canarium schweinfurthiiand, see: Atawodi (2010); Dongmo et al. (2010) and for its botany, see: Tchiégang et al. (2001). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The resin (100 g) of Canarium schweinfurthii Engl. was collected in Yaounde, Cameroon in May 2010 and identified by Prof. Noumi, a botanist at the Department of Biology, University of Yaounde-1. A voucher specimen (HNC 25918.) was deposited at the National Herbarium of Cameroon in Yaounde. The resin (100 g) of C. schweinfurthii was allowed to dry under shade and extracted with dichloromethane. The extract (70 g) was subjected to column chromatography (CC) over silica gel (300 g, 60 × 5 cm) eluting with hexane follow by a mixture of n-hexane-EtOAc in order of increasing polarities. The fractions eluted were monitored by thin layer chromatography and similar fraction were combined to give seven fraction FrA-FrG. Fraction FrE was further subjected to purification on silica gel CC and eluted with mixture of hexane-acetone in a gradient to yield the title compound. Recrystallization from n-hexane gave colorless blocks (75 mg).

Refinement top

H atoms on the C of methyl, methylene, methine and oxygen were positioned geomatrically with C–H=0.98–1.00 Å and O–H= 0.96 Å, respectively and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(CH2, CH) and 1.5Ueq(CH3, OH). A rotating group model was applied to the methyl groups. The absolute configuration (C3 R, C5 R, C10 S, C13 S, C14 R, C17 S, C20 S) was obtained by refining the Flack (1983) parameter to -0.35 (19).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The intramolecular hydrogen bond is shown by a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing (001) sheets.
3α-Hydroxytirucalla-8,24-dien-21-oic acid top
Crystal data top
C30H48O3Dx = 1.125 Mg m3
Mr = 456.68Cu Kα radiation, λ = 1.54178 Å
Trigonal, P3121Cell parameters from 16991 reflections
a = 11.2794 (2) Åθ = 3.6–71.8°
c = 36.6986 (6) ŵ = 0.54 mm1
V = 4043.45 (12) Å3T = 100 K
Z = 6Block, colorless
F(000) = 15120.29 × 0.24 × 0.13 mm
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
5154 independent reflections
Radiation source: fine-focus sealed tube5062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 71.8°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1210
Tmin = 0.859, Tmax = 0.935k = 1313
29022 measured reflectionsl = 4543
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0607P)2 + 1.1875P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
5154 reflectionsΔρmax = 0.34 e Å3
305 parametersΔρmin = 0.15 e Å3
0 restraintsAbsolute structure: Flack (1983), 2099 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.35 (19)
Crystal data top
C30H48O3Z = 6
Mr = 456.68Cu Kα radiation
Trigonal, P3121µ = 0.54 mm1
a = 11.2794 (2) ÅT = 100 K
c = 36.6986 (6) Å0.29 × 0.24 × 0.13 mm
V = 4043.45 (12) Å3
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
5154 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5062 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.935Rint = 0.040
29022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.34 e Å3
S = 0.97Δρmin = 0.15 e Å3
5154 reflectionsAbsolute structure: Flack (1983), 2099 Friedel pairs
305 parametersAbsolute structure parameter: 0.35 (19)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12186 (11)0.02017 (12)0.12824 (3)0.0298 (2)
H1O10.11650.01040.15430.045*
O20.10300 (11)0.06580 (12)0.13280 (3)0.0294 (2)
O30.65407 (12)0.90621 (15)0.10227 (3)0.0431 (3)
H1O30.72070.90890.11290.065*
C10.41649 (17)0.72932 (17)0.14749 (4)0.0300 (3)
H1A0.37760.68040.17070.036*
H1B0.46530.68700.13570.036*
C20.51897 (18)0.87967 (18)0.15572 (4)0.0330 (3)
H2A0.47190.92070.16910.040*
H2B0.59260.88520.17160.040*
C30.58166 (15)0.96055 (17)0.12096 (4)0.0300 (3)
H3A0.64661.05830.12740.036*
C40.47387 (16)0.95453 (17)0.09408 (4)0.0314 (3)
C50.36344 (15)0.80196 (16)0.08805 (4)0.0276 (3)
H5A0.41180.76040.07510.033*
C60.24806 (18)0.78286 (18)0.06230 (5)0.0368 (4)
H6A0.18390.80380.07530.044*
H6B0.28690.84650.04140.044*
C70.17160 (16)0.63491 (17)0.04855 (4)0.0305 (3)
H7A0.08030.61410.03960.037*
H7B0.22240.62690.02760.037*
C80.15280 (15)0.52984 (16)0.07647 (4)0.0273 (3)
C90.21172 (16)0.56210 (16)0.10983 (4)0.0293 (3)
C100.29897 (15)0.71123 (16)0.12250 (4)0.0266 (3)
C110.18977 (18)0.45252 (16)0.13711 (4)0.0305 (3)
H11A0.15570.47170.16000.037*
H11B0.28010.46220.14260.037*
C120.09172 (17)0.30243 (16)0.12677 (4)0.0289 (3)
H12A0.12000.24280.13930.035*
H12B0.00220.27550.13480.035*
C130.09242 (15)0.28248 (15)0.08549 (4)0.0248 (3)
C140.05170 (15)0.38169 (16)0.06713 (4)0.0261 (3)
C150.03784 (19)0.33660 (18)0.02702 (4)0.0343 (4)
H15A0.12840.37960.01490.041*
H15B0.02270.36130.01350.041*
C160.02608 (18)0.17853 (17)0.02912 (4)0.0328 (3)
H16A0.02540.14860.01340.039*
H16B0.12260.13220.02090.039*
C170.01783 (15)0.14260 (16)0.06977 (4)0.0256 (3)
H17A0.10700.11870.08150.031*
C180.23593 (16)0.31412 (18)0.07350 (4)0.0328 (3)
H18A0.26550.26210.08860.049*
H18B0.30050.41230.07630.049*
H18C0.23320.28820.04790.049*
C190.20263 (18)0.7441 (2)0.14522 (5)0.0401 (4)
H19A0.15930.67570.16460.060*
H19B0.13190.74220.12930.060*
H19C0.25600.83530.15610.060*
C200.00323 (16)0.01791 (16)0.07414 (4)0.0263 (3)
H20A0.09430.04140.06370.032*
C210.00184 (15)0.01382 (16)0.11427 (4)0.0253 (3)
C220.10897 (16)0.10907 (16)0.05432 (4)0.0273 (3)
H22A0.19850.13610.06570.033*
H22B0.11330.08480.02860.033*
C230.08548 (18)0.23138 (18)0.05517 (5)0.0339 (3)
H23A0.00570.20340.04470.041*
H23B0.08520.25830.08080.041*
C240.19244 (19)0.35336 (18)0.03441 (4)0.0331 (3)
H24A0.17930.35240.00880.040*
C250.30231 (19)0.46146 (18)0.04752 (4)0.0353 (4)
C260.3398 (2)0.4808 (3)0.08726 (5)0.0611 (6)
H26A0.26940.40350.10120.092*
H26B0.34610.56600.09590.092*
H26C0.42830.48560.09060.092*
C270.4008 (2)0.5768 (2)0.02355 (6)0.0502 (5)
H27A0.37060.55630.00190.075*
H27B0.49230.58770.02590.075*
H27C0.40390.66180.03100.075*
C280.54466 (19)1.0165 (2)0.05767 (5)0.0461 (5)
H28A0.62841.10390.06210.069*
H28B0.48281.03160.04210.069*
H28C0.56800.95340.04550.069*
C290.4192 (2)1.04643 (19)0.10886 (6)0.0443 (4)
H29A0.49311.14210.10880.066*
H29B0.38581.01870.13380.066*
H29C0.34411.03670.09330.066*
C300.08957 (17)0.35873 (17)0.07938 (5)0.0346 (4)
H30A0.10930.42320.06660.052*
H30B0.08840.37370.10570.052*
H30C0.16050.26480.07360.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0283 (5)0.0419 (6)0.0230 (5)0.0203 (5)0.0021 (4)0.0007 (4)
O20.0250 (5)0.0409 (6)0.0199 (4)0.0146 (5)0.0005 (4)0.0017 (4)
O30.0251 (6)0.0665 (9)0.0380 (6)0.0232 (6)0.0050 (5)0.0111 (6)
C10.0328 (8)0.0353 (8)0.0182 (6)0.0144 (7)0.0059 (6)0.0014 (6)
C20.0327 (8)0.0378 (9)0.0218 (7)0.0127 (7)0.0062 (6)0.0057 (6)
C30.0222 (7)0.0365 (8)0.0251 (7)0.0099 (6)0.0041 (6)0.0042 (6)
C40.0229 (7)0.0325 (8)0.0305 (7)0.0076 (7)0.0057 (6)0.0028 (6)
C50.0218 (7)0.0295 (8)0.0242 (6)0.0072 (6)0.0042 (5)0.0037 (6)
C60.0283 (8)0.0328 (9)0.0374 (8)0.0064 (7)0.0098 (7)0.0096 (7)
C70.0249 (7)0.0347 (8)0.0230 (6)0.0084 (6)0.0053 (6)0.0061 (6)
C80.0209 (7)0.0302 (8)0.0254 (7)0.0087 (6)0.0014 (5)0.0055 (6)
C90.0287 (8)0.0312 (8)0.0220 (6)0.0105 (6)0.0021 (6)0.0042 (6)
C100.0225 (7)0.0302 (8)0.0239 (6)0.0109 (6)0.0013 (6)0.0032 (6)
C110.0377 (9)0.0310 (8)0.0190 (6)0.0143 (7)0.0015 (6)0.0013 (6)
C120.0347 (8)0.0301 (8)0.0183 (7)0.0134 (7)0.0020 (6)0.0029 (5)
C130.0220 (7)0.0303 (7)0.0195 (6)0.0111 (6)0.0004 (5)0.0038 (5)
C140.0235 (7)0.0306 (8)0.0192 (6)0.0099 (6)0.0025 (5)0.0038 (6)
C150.0419 (9)0.0345 (9)0.0199 (7)0.0141 (7)0.0068 (6)0.0016 (6)
C160.0407 (9)0.0358 (9)0.0194 (7)0.0172 (7)0.0057 (6)0.0002 (6)
C170.0243 (7)0.0324 (8)0.0184 (6)0.0129 (6)0.0006 (5)0.0004 (5)
C180.0236 (7)0.0394 (9)0.0321 (8)0.0133 (7)0.0016 (6)0.0028 (7)
C190.0320 (8)0.0386 (9)0.0454 (9)0.0143 (7)0.0094 (7)0.0034 (8)
C200.0256 (7)0.0335 (8)0.0195 (6)0.0145 (6)0.0005 (5)0.0003 (6)
C210.0256 (7)0.0292 (8)0.0224 (6)0.0148 (6)0.0021 (5)0.0018 (6)
C220.0313 (8)0.0343 (8)0.0179 (6)0.0177 (7)0.0018 (5)0.0019 (6)
C230.0355 (8)0.0376 (9)0.0331 (8)0.0216 (7)0.0006 (7)0.0003 (7)
C240.0449 (9)0.0356 (8)0.0255 (7)0.0251 (8)0.0015 (7)0.0013 (6)
C250.0400 (9)0.0388 (9)0.0309 (8)0.0224 (8)0.0010 (7)0.0012 (7)
C260.0495 (12)0.0782 (16)0.0365 (10)0.0176 (12)0.0085 (9)0.0057 (10)
C270.0547 (12)0.0410 (10)0.0492 (10)0.0196 (10)0.0079 (9)0.0037 (8)
C280.0343 (9)0.0401 (10)0.0347 (8)0.0033 (8)0.0102 (7)0.0079 (7)
C290.0350 (9)0.0337 (9)0.0607 (11)0.0145 (7)0.0089 (8)0.0001 (8)
C300.0245 (7)0.0285 (8)0.0465 (9)0.0101 (6)0.0018 (7)0.0053 (7)
Geometric parameters (Å, º) top
O1—C211.3128 (18)C15—C161.555 (2)
O1—H1O10.9626C15—H15A0.9900
O2—C211.2293 (18)C15—H15B0.9900
O3—C31.419 (2)C16—C171.5606 (19)
O3—H1O30.8340C16—H16A0.9900
C1—C21.531 (2)C16—H16B0.9900
C1—C101.539 (2)C17—C201.547 (2)
C1—H1A0.9900C17—H17A1.0000
C1—H1B0.9900C18—H18A0.9800
C2—C31.521 (2)C18—H18B0.9800
C2—H2A0.9900C18—H18C0.9800
C2—H2B0.9900C19—H19A0.9800
C3—C41.541 (2)C19—H19B0.9800
C3—H3A1.0000C19—H19C0.9800
C4—C281.534 (2)C20—C211.5139 (18)
C4—C291.545 (3)C20—C221.539 (2)
C4—C51.555 (2)C20—H20A1.0000
C5—C61.534 (2)C22—C231.530 (2)
C5—C101.5591 (19)C22—H22A0.9900
C5—H5A1.0000C22—H22B0.9900
C6—C71.531 (2)C23—C241.506 (2)
C6—H6A0.9900C23—H23A0.9900
C6—H6B0.9900C23—H23B0.9900
C7—C81.499 (2)C24—C251.320 (3)
C7—H7A0.9900C24—H24A0.9500
C7—H7B0.9900C25—C271.502 (3)
C8—C91.353 (2)C25—C261.504 (2)
C8—C141.518 (2)C26—H26A0.9800
C9—C111.512 (2)C26—H26B0.9800
C9—C101.536 (2)C26—H26C0.9800
C10—C191.555 (2)C27—H27A0.9800
C11—C121.537 (2)C27—H27B0.9800
C11—H11A0.9900C27—H27C0.9800
C11—H11B0.9900C28—H28A0.9800
C12—C131.5319 (18)C28—H28B0.9800
C12—H12A0.9900C28—H28C0.9800
C12—H12B0.9900C29—H29A0.9800
C13—C181.537 (2)C29—H29B0.9800
C13—C171.551 (2)C29—H29C0.9800
C13—C141.559 (2)C30—H30A0.9800
C14—C151.539 (2)C30—H30B0.9800
C14—C301.548 (2)C30—H30C0.9800
C21—O1—H1O1111.0C16—C15—H15B110.9
C3—O3—H1O3117.4H15A—C15—H15B109.0
C2—C1—C10112.80 (14)C15—C16—C17106.94 (12)
C2—C1—H1A109.0C15—C16—H16A110.3
C10—C1—H1A109.0C17—C16—H16A110.3
C2—C1—H1B109.0C15—C16—H16B110.3
C10—C1—H1B109.0C17—C16—H16B110.3
H1A—C1—H1B107.8H16A—C16—H16B108.6
C3—C2—C1111.47 (12)C20—C17—C13118.46 (12)
C3—C2—H2A109.3C20—C17—C16113.03 (12)
C1—C2—H2A109.3C13—C17—C16102.30 (12)
C3—C2—H2B109.3C20—C17—H17A107.5
C1—C2—H2B109.3C13—C17—H17A107.5
H2A—C2—H2B108.0C16—C17—H17A107.5
O3—C3—C2109.98 (14)C13—C18—H18A109.5
O3—C3—C4106.45 (12)C13—C18—H18B109.5
C2—C3—C4112.99 (13)H18A—C18—H18B109.5
O3—C3—H3A109.1C13—C18—H18C109.5
C2—C3—H3A109.1H18A—C18—H18C109.5
C4—C3—H3A109.1H18B—C18—H18C109.5
C28—C4—C3108.55 (13)C10—C19—H19A109.5
C28—C4—C29106.96 (16)C10—C19—H19B109.5
C3—C4—C29108.45 (14)H19A—C19—H19B109.5
C28—C4—C5109.05 (13)C10—C19—H19C109.5
C3—C4—C5108.52 (13)H19A—C19—H19C109.5
C29—C4—C5115.14 (14)H19B—C19—H19C109.5
C6—C5—C4113.39 (13)C21—C20—C22109.46 (12)
C6—C5—C10108.84 (12)C21—C20—C17109.12 (12)
C4—C5—C10117.61 (12)C22—C20—C17111.61 (12)
C6—C5—H5A105.3C21—C20—H20A108.9
C4—C5—H5A105.3C22—C20—H20A108.9
C10—C5—H5A105.3C17—C20—H20A108.9
C7—C6—C5109.39 (14)O2—C21—O1121.94 (12)
C7—C6—H6A109.8O2—C21—C20122.99 (13)
C5—C6—H6A109.8O1—C21—C20115.06 (12)
C7—C6—H6B109.8C23—C22—C20113.39 (13)
C5—C6—H6B109.8C23—C22—H22A108.9
H6A—C6—H6B108.2C20—C22—H22A108.9
C8—C7—C6114.61 (13)C23—C22—H22B108.9
C8—C7—H7A108.6C20—C22—H22B108.9
C6—C7—H7A108.6H22A—C22—H22B107.7
C8—C7—H7B108.6C24—C23—C22113.12 (14)
C6—C7—H7B108.6C24—C23—H23A109.0
H7A—C7—H7B107.6C22—C23—H23A109.0
C9—C8—C7123.32 (14)C24—C23—H23B109.0
C9—C8—C14119.87 (13)C22—C23—H23B109.0
C7—C8—C14116.57 (12)H23A—C23—H23B107.8
C8—C9—C11121.45 (14)C25—C24—C23127.76 (14)
C8—C9—C10121.88 (13)C25—C24—H24A116.1
C11—C9—C10116.62 (12)C23—C24—H24A116.1
C9—C10—C1111.30 (13)C24—C25—C27122.20 (16)
C9—C10—C19106.40 (13)C24—C25—C26123.61 (17)
C1—C10—C19107.89 (13)C27—C25—C26114.19 (17)
C9—C10—C5107.84 (12)C25—C26—H26A109.5
C1—C10—C5107.95 (12)C25—C26—H26B109.5
C19—C10—C5115.50 (13)H26A—C26—H26B109.5
C9—C11—C12118.07 (12)C25—C26—H26C109.5
C9—C11—H11A107.8H26A—C26—H26C109.5
C12—C11—H11A107.8H26B—C26—H26C109.5
C9—C11—H11B107.8C25—C27—H27A109.5
C12—C11—H11B107.8C25—C27—H27B109.5
H11A—C11—H11B107.1H27A—C27—H27B109.5
C13—C12—C11110.63 (12)C25—C27—H27C109.5
C13—C12—H12A109.5H27A—C27—H27C109.5
C11—C12—H12A109.5H27B—C27—H27C109.5
C13—C12—H12B109.5C4—C28—H28A109.5
C11—C12—H12B109.5C4—C28—H28B109.5
H12A—C12—H12B108.1H28A—C28—H28B109.5
C12—C13—C18109.33 (12)C4—C28—H28C109.5
C12—C13—C17117.18 (11)H28A—C28—H28C109.5
C18—C13—C17110.19 (13)H28B—C28—H28C109.5
C12—C13—C14107.28 (12)C4—C29—H29A109.5
C18—C13—C14111.32 (12)C4—C29—H29B109.5
C17—C13—C14101.25 (11)H29A—C29—H29B109.5
C8—C14—C15118.41 (13)C4—C29—H29C109.5
C8—C14—C30105.21 (13)H29A—C29—H29C109.5
C15—C14—C30107.25 (13)H29B—C29—H29C109.5
C8—C14—C13111.32 (12)C14—C30—H30A109.5
C15—C14—C13101.18 (12)C14—C30—H30B109.5
C30—C14—C13113.73 (12)H30A—C30—H30B109.5
C14—C15—C16104.10 (12)C14—C30—H30C109.5
C14—C15—H15A110.9H30A—C30—H30C109.5
C16—C15—H15A110.9H30B—C30—H30C109.5
C14—C15—H15B110.9
C10—C1—C2—C358.31 (18)C11—C12—C13—C17170.39 (13)
C1—C2—C3—O361.29 (17)C11—C12—C13—C1457.48 (16)
C1—C2—C3—C457.51 (19)C9—C8—C14—C15151.76 (16)
O3—C3—C4—C2849.08 (18)C7—C8—C14—C1533.7 (2)
C2—C3—C4—C28169.90 (15)C9—C8—C14—C3088.46 (17)
O3—C3—C4—C29164.95 (14)C7—C8—C14—C3086.04 (16)
C2—C3—C4—C2974.23 (17)C9—C8—C14—C1335.2 (2)
O3—C3—C4—C569.31 (16)C7—C8—C14—C13150.34 (13)
C2—C3—C4—C551.51 (18)C12—C13—C14—C860.59 (15)
C28—C4—C5—C663.26 (19)C18—C13—C14—C858.98 (16)
C3—C4—C5—C6178.67 (14)C17—C13—C14—C8176.07 (11)
C29—C4—C5—C656.93 (19)C12—C13—C14—C15172.69 (12)
C28—C4—C5—C10168.18 (15)C18—C13—C14—C1567.73 (15)
C3—C4—C5—C1050.10 (18)C17—C13—C14—C1549.35 (14)
C29—C4—C5—C1071.63 (18)C12—C13—C14—C3058.04 (16)
C4—C5—C6—C7162.20 (13)C18—C13—C14—C30177.61 (13)
C10—C5—C6—C764.86 (17)C17—C13—C14—C3065.30 (15)
C5—C6—C7—C838.2 (2)C8—C14—C15—C16159.15 (14)
C6—C7—C8—C97.5 (2)C30—C14—C15—C1682.13 (15)
C6—C7—C8—C14166.80 (14)C13—C14—C15—C1637.27 (15)
C7—C8—C9—C11179.99 (15)C14—C15—C16—C1711.73 (17)
C14—C8—C9—C115.9 (2)C12—C13—C17—C2077.28 (17)
C7—C8—C9—C102.6 (2)C18—C13—C17—C2048.55 (16)
C14—C8—C9—C10171.46 (14)C14—C13—C17—C20166.46 (12)
C8—C9—C10—C1146.20 (15)C12—C13—C17—C16157.72 (13)
C11—C9—C10—C136.34 (18)C18—C13—C17—C1676.45 (14)
C8—C9—C10—C1996.51 (18)C14—C13—C17—C1641.45 (14)
C11—C9—C10—C1980.96 (17)C15—C16—C17—C20147.10 (14)
C8—C9—C10—C528.0 (2)C15—C16—C17—C1318.60 (16)
C11—C9—C10—C5154.56 (14)C13—C17—C20—C2163.61 (16)
C2—C1—C10—C9170.77 (12)C16—C17—C20—C21176.81 (13)
C2—C1—C10—C1972.85 (16)C13—C17—C20—C22175.29 (11)
C2—C1—C10—C552.61 (17)C16—C17—C20—C2255.71 (17)
C6—C5—C10—C958.30 (17)C22—C20—C21—O249.73 (19)
C4—C5—C10—C9171.02 (13)C17—C20—C21—O272.68 (18)
C6—C5—C10—C1178.66 (14)C22—C20—C21—O1131.25 (14)
C4—C5—C10—C150.65 (18)C17—C20—C21—O1106.34 (15)
C6—C5—C10—C1960.53 (18)C21—C20—C22—C2364.01 (16)
C4—C5—C10—C1970.16 (18)C17—C20—C22—C23175.09 (13)
C8—C9—C11—C123.3 (2)C20—C22—C23—C24177.61 (12)
C10—C9—C11—C12174.14 (14)C22—C23—C24—C2597.4 (2)
C9—C11—C12—C1330.5 (2)C23—C24—C25—C27179.74 (18)
C11—C12—C13—C1863.36 (17)C23—C24—C25—C260.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.961.742.6762 (14)162
O3—H1O3···O2ii0.832.002.828 (2)172
C12—H12A···O10.992.553.367 (2)139
C22—H22A···O3iii0.992.363.276 (2)153
Symmetry codes: (i) x, x+y, z+1/3; (ii) x+1, y+1, z; (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC30H48O3
Mr456.68
Crystal system, space groupTrigonal, P3121
Temperature (K)100
a, c (Å)11.2794 (2), 36.6986 (6)
V3)4043.45 (12)
Z6
Radiation typeCu Kα
µ (mm1)0.54
Crystal size (mm)0.29 × 0.24 × 0.13
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.859, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
29022, 5154, 5062
Rint0.040
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 0.97
No. of reflections5154
No. of parameters305
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.15
Absolute structureFlack (1983), 2099 Friedel pairs
Absolute structure parameter0.35 (19)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.961.742.6762 (14)162
O3—H1O3···O2ii0.832.002.828 (2)172
C12—H12A···O10.992.553.367 (2)139
C22—H22A···O3iii0.992.363.276 (2)153
Symmetry codes: (i) x, x+y, z+1/3; (ii) x+1, y+1, z; (iii) x1, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RSTK thanks the H.E.J. Research Institute of Chemistry, Inter­national Center for Chemical and Biological Sciences, University of Karachi, for providing research facilities. SY thanks Universiti Sains Malaysia (USM) for providing X-ray diffraction research facilities at the School of Physics. HKF thanks the Malaysian Government and USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAtawodi, S. E. (2010). Adv. Biol. Res. 4, 314–322.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDongmo, P. M., Tchoumbougnang, F., Ndongson, B., Agwannande, W., Sandjon, B., Zollo, P. H. A. & Menut, C. (2010). Agric. Biol. J. N. Am. 1 606–6011.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMora, A. J., Delgado, G., Díaz de Delgado, G., Usubillaga, A., Khouri, N. & Bahsas, A. (2001). Acta Cryst. C57, 638–640.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTchiégang, C., Kapchié, N. V., Kapseu, C. & Parmentier, M. (2001). J. Food Eng. 47, 63–68.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o937-o938
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds