organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(4-acetamido­benzene­sulfon­amido)­benzoate

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, bDepartment of Physics, Government College University, Lahore 54000, Pakistan, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 March 2011; accepted 12 March 2011; online 19 March 2011)

The mol­ecule of the title compound, C16H16N2O5S, has the shape of the letter V but with a small twist; the dihedral angle formed between the benzene rings is 79.66 (9)°. The presence of an intra­molecular N—H⋯O hydrogen bond, leading to an S(6) ring, correlates with the near coplanarity of the carboxyl­ate ester group with the benzene ring to which it is connected. The acetamide residue is slightly twisted out of the plane of its benzene ring [C—C—N—C = 13.1 (3)°]. In the crystal, supra­molecular chains along the a axis are mediated by N—H⋯O hydrogen bonds. These are connected into layers via C—H⋯O inter­actions.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.]). For related structures, see: Sharif et al. (2010[Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.]); Khan et al. (2010[Khan, I. U., Ahmad, W., Sharif, S., Ali, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1218.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O5S

  • Mr = 348.37

  • Triclinic, [P \overline 1]

  • a = 8.2835 (2) Å

  • b = 9.3722 (3) Å

  • c = 10.8299 (3) Å

  • α = 85.537 (1)°

  • β = 88.614 (1)°

  • γ = 72.203 (1)°

  • V = 798.11 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 13593 measured reflections

  • 3604 independent reflections

  • 3122 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.07

  • 3604 reflections

  • 225 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O3 0.86 (1) 1.90 (2) 2.6266 (18) 141 (2)
N2—H2n⋯O2i 0.86 (2) 2.31 (2) 3.0888 (19) 151 (2)
C10—H10⋯O1ii 0.93 2.57 3.330 (2) 140
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As part of on-going structural studies of sulfonamides (Sharif et al., 2010; Khan et al., 2010), the crystal structure of the title compound, (I), is described. Interest in these derivatives relate to their wide use in the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms, some fungi, and certain protozoa (Korolkovas, 1988; Mandell & Sande, 1992).

The molecule of (I), Fig. 1, has an approximate V-shape with the dihedral angle formed between the benzene rings being 79.66 (9) °. The carboxylate ester substituent is co-planar with the benzene ring to which it is connected [the C1—C2—C7—O3 and torsion angle is 2.9 (2) °] but the acetamide residue is slightly twisted out of the plane [C11—C12—N2—C15 = 13.1 (3) °]. The planarity observed for the carboxylate ester group is readily rationalized in terms of an intramolecular N—H···O hydrogen bond, Table 1, which seals a six-membered ring. The most prominent intermolecular contact in the crystal structure is also of the type N—H···O, Table 1, and this serves to link molecules into a linear supramolecular chain along the a axis, Fig. 3. Chains are linked into layers in the ab plane via C—H···O contacts, Table 1, and these stack along the c axis via inter-digitation of the benzoate ester groups; there is no evidence for significant π-interactions between these, however.

Related literature top

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Sharif et al. (2010); Khan et al. (2010).

Experimental top

To methyl anthranilate (260 µl, 2 mmol) in water (10 ml) was added p-toluene sulfonyl chloride (380 mg, 2 mmol). With stirring at room temperature, the pH of the solution was maintained with 3% Na2CO3. The progress of the reaction was monitored by TLC. On completion of the reaction, the pH was adjusted to 3 with 3 N HCl. The white precipitates that formed were filtered, washed with distilled water and crystallized from methanol to yield colourless blocks of the title compound.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atoms were refined with the distance restraint N–H = 0.86±0.01 Å, and with Uiso(H) = 1.2Ueq(N). Several low-angle reflections, i.e. (1 0 1), (0 1 0), (0 0 1) and (1 1 0), evidently effected by the beam-stop, were omitted from the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain along the a axis in (I), sustained by N—H···O interactions. These and the intramolecular N—H···O hydrogen bonds which close six-membered rings are shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents for (I). The N—H···O hydrogen bonds and C—H···O contacts are shown as orange and green dashed lines, respectively.
Methyl 2-(4-acetamidobenzenesulfonamido)benzoate top
Crystal data top
C16H16N2O5SZ = 2
Mr = 348.37F(000) = 364
Triclinic, P1Dx = 1.450 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2835 (2) ÅCell parameters from 7451 reflections
b = 9.3722 (3) Åθ = 2.3–28.2°
c = 10.8299 (3) ŵ = 0.23 mm1
α = 85.537 (1)°T = 293 K
β = 88.614 (1)°Block, colourless
γ = 72.203 (1)°0.20 × 0.18 × 0.09 mm
V = 798.11 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3122 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
ϕ and ω scansh = 1010
13593 measured reflectionsk = 1212
3604 independent reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.1747P]
where P = (Fo2 + 2Fc2)/3
3604 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.26 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H16N2O5Sγ = 72.203 (1)°
Mr = 348.37V = 798.11 (4) Å3
Triclinic, P1Z = 2
a = 8.2835 (2) ÅMo Kα radiation
b = 9.3722 (3) ŵ = 0.23 mm1
c = 10.8299 (3) ÅT = 293 K
α = 85.537 (1)°0.20 × 0.18 × 0.09 mm
β = 88.614 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3122 reflections with I > 2σ(I)
13593 measured reflectionsRint = 0.024
3604 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.26 e Å3
3604 reflectionsΔρmin = 0.27 e Å3
225 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42614 (5)0.28976 (4)0.83592 (3)0.04378 (14)
O10.54431 (14)0.14234 (13)0.83938 (11)0.0562 (3)
O20.47186 (15)0.40243 (13)0.89646 (11)0.0544 (3)
O30.30254 (19)0.61672 (14)0.55728 (12)0.0659 (4)
O40.17057 (17)0.62717 (14)0.37946 (11)0.0620 (3)
O50.13574 (18)0.09502 (17)1.23293 (14)0.0808 (5)
N10.38913 (18)0.36108 (15)0.69410 (12)0.0477 (3)
H1N0.378 (2)0.4554 (11)0.6809 (18)0.057*
N20.21841 (17)0.26393 (16)1.06806 (13)0.0534 (3)
H2N0.3050 (18)0.3309 (17)1.0351 (17)0.064*
C10.32524 (18)0.30069 (16)0.59818 (13)0.0423 (3)
C20.25586 (17)0.39431 (17)0.49240 (13)0.0414 (3)
C30.1942 (2)0.3327 (2)0.39815 (15)0.0544 (4)
H30.14870.39340.32760.065*
C40.1987 (3)0.1845 (2)0.40639 (18)0.0653 (5)
H40.15690.14530.34240.078*
C50.2660 (3)0.0955 (2)0.51059 (19)0.0678 (5)
H50.26900.00480.51720.081*
C60.3289 (3)0.15192 (19)0.60507 (17)0.0608 (5)
H60.37460.08930.67470.073*
C70.24751 (19)0.55468 (18)0.48195 (14)0.0456 (3)
C80.1511 (3)0.7859 (2)0.3623 (2)0.0703 (5)
H8A0.09540.83480.43320.105*
H8B0.08430.82810.28960.105*
H8C0.26070.80030.35260.105*
C90.23368 (18)0.27393 (16)0.89638 (13)0.0423 (3)
C100.2359 (2)0.15891 (17)0.98514 (15)0.0482 (4)
H100.33790.08561.00560.058*
C110.0888 (2)0.15200 (17)1.04354 (15)0.0497 (4)
H110.09150.07501.10380.060*
C120.06421 (19)0.26073 (17)1.01202 (14)0.0445 (3)
C130.0658 (2)0.37314 (19)0.91947 (16)0.0552 (4)
H130.16820.44380.89580.066*
C140.0813 (2)0.38105 (19)0.86290 (15)0.0531 (4)
H140.07900.45780.80240.064*
C150.2473 (2)0.18603 (18)1.17324 (16)0.0511 (4)
C160.4303 (2)0.2227 (2)1.20973 (19)0.0614 (4)
H16A0.47550.14701.18370.092*
H16B0.49250.31881.17080.092*
H16C0.44010.22581.29810.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0411 (2)0.0446 (2)0.0414 (2)0.00745 (15)0.01326 (14)0.00368 (15)
O10.0458 (6)0.0516 (6)0.0599 (7)0.0004 (5)0.0059 (5)0.0083 (5)
O20.0539 (6)0.0594 (7)0.0508 (6)0.0184 (5)0.0218 (5)0.0008 (5)
O30.0896 (9)0.0515 (7)0.0588 (7)0.0249 (7)0.0269 (7)0.0045 (6)
O40.0771 (8)0.0539 (7)0.0532 (7)0.0195 (6)0.0222 (6)0.0127 (5)
O50.0625 (8)0.0858 (10)0.0740 (9)0.0021 (7)0.0046 (7)0.0327 (8)
N10.0589 (8)0.0433 (7)0.0412 (6)0.0166 (6)0.0140 (6)0.0035 (5)
N20.0406 (7)0.0577 (8)0.0547 (8)0.0074 (6)0.0118 (6)0.0118 (6)
C10.0414 (7)0.0455 (8)0.0390 (7)0.0120 (6)0.0037 (6)0.0021 (6)
C20.0358 (7)0.0489 (8)0.0385 (7)0.0118 (6)0.0021 (5)0.0012 (6)
C30.0578 (9)0.0642 (10)0.0419 (8)0.0195 (8)0.0102 (7)0.0015 (7)
C40.0777 (12)0.0718 (12)0.0552 (10)0.0325 (10)0.0098 (9)0.0160 (9)
C50.0925 (14)0.0533 (10)0.0649 (11)0.0313 (10)0.0081 (10)0.0085 (8)
C60.0831 (13)0.0480 (9)0.0519 (9)0.0214 (9)0.0140 (9)0.0021 (7)
C70.0423 (7)0.0508 (8)0.0412 (7)0.0114 (6)0.0055 (6)0.0025 (6)
C80.0795 (13)0.0520 (10)0.0739 (12)0.0156 (9)0.0132 (10)0.0151 (9)
C90.0414 (7)0.0416 (7)0.0395 (7)0.0060 (6)0.0121 (6)0.0003 (6)
C100.0416 (8)0.0423 (8)0.0523 (8)0.0018 (6)0.0128 (6)0.0067 (6)
C110.0490 (8)0.0429 (8)0.0513 (8)0.0075 (7)0.0112 (7)0.0086 (6)
C120.0421 (7)0.0464 (8)0.0421 (7)0.0091 (6)0.0121 (6)0.0007 (6)
C130.0422 (8)0.0577 (9)0.0530 (9)0.0001 (7)0.0135 (7)0.0145 (7)
C140.0466 (8)0.0538 (9)0.0482 (8)0.0035 (7)0.0124 (7)0.0157 (7)
C150.0518 (9)0.0476 (8)0.0523 (9)0.0137 (7)0.0066 (7)0.0011 (7)
C160.0546 (10)0.0624 (11)0.0671 (11)0.0200 (8)0.0032 (8)0.0051 (8)
Geometric parameters (Å, º) top
S1—O11.4267 (11)C5—C61.370 (3)
S1—O21.4328 (12)C5—H50.9300
S1—N11.6241 (13)C6—H60.9300
S1—C91.7525 (16)C8—H8A0.9600
O3—C71.2104 (19)C8—H8B0.9600
O4—C71.3237 (18)C8—H8C0.9600
O4—C81.444 (2)C9—C101.383 (2)
O5—C151.208 (2)C9—C141.387 (2)
N1—C11.4074 (19)C10—C111.377 (2)
N1—H1n0.861 (11)C10—H100.9300
N2—C151.361 (2)C11—C121.392 (2)
N2—C121.394 (2)C11—H110.9300
N2—H2n0.859 (16)C12—C131.394 (2)
C1—C61.381 (2)C13—C141.370 (2)
C1—C21.407 (2)C13—H130.9300
C2—C31.391 (2)C14—H140.9300
C2—C71.479 (2)C15—C161.499 (2)
C3—C41.373 (3)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.371 (3)C16—H16C0.9600
C4—H40.9300
O1—S1—O2117.99 (7)O4—C8—H8A109.5
O1—S1—N1110.76 (7)O4—C8—H8B109.5
O2—S1—N1103.67 (7)H8A—C8—H8B109.5
O1—S1—C9107.67 (7)O4—C8—H8C109.5
O2—S1—C9109.45 (7)H8A—C8—H8C109.5
N1—S1—C9106.78 (7)H8B—C8—H8C109.5
C7—O4—C8116.93 (14)C10—C9—C14119.92 (15)
C1—N1—S1126.68 (11)C10—C9—S1119.16 (11)
C1—N1—H1N113.9 (13)C14—C9—S1120.77 (12)
S1—N1—H1N116.7 (13)C11—C10—C9120.63 (14)
C15—N2—C12128.75 (13)C11—C10—H10119.7
C15—N2—H2N116.5 (14)C9—C10—H10119.7
C12—N2—H2N114.4 (14)C10—C11—C12119.75 (14)
C6—C1—C2119.11 (14)C10—C11—H11120.1
C6—C1—N1121.77 (14)C12—C11—H11120.1
C2—C1—N1119.12 (13)C11—C12—N2123.53 (14)
C3—C2—C1118.39 (14)C11—C12—C13119.09 (15)
C3—C2—C7120.74 (14)N2—C12—C13117.38 (13)
C1—C2—C7120.86 (13)C14—C13—C12120.98 (14)
C4—C3—C2121.80 (16)C14—C13—H13119.5
C4—C3—H3119.1C12—C13—H13119.5
C2—C3—H3119.1C13—C14—C9119.58 (14)
C5—C4—C3118.83 (17)C13—C14—H14120.2
C5—C4—H4120.6C9—C14—H14120.2
C3—C4—H4120.6O5—C15—N2123.33 (16)
C6—C5—C4121.09 (17)O5—C15—C16122.38 (16)
C6—C5—H5119.5N2—C15—C16114.29 (14)
C4—C5—H5119.5C15—C16—H16A109.5
C5—C6—C1120.77 (17)C15—C16—H16B109.5
C5—C6—H6119.6H16A—C16—H16B109.5
C1—C6—H6119.6C15—C16—H16C109.5
O3—C7—O4122.11 (15)H16A—C16—H16C109.5
O3—C7—C2125.32 (14)H16B—C16—H16C109.5
O4—C7—C2112.57 (13)
O1—S1—N1—C158.39 (15)C1—C2—C7—O4176.68 (13)
O2—S1—N1—C1174.12 (13)O1—S1—C9—C1030.05 (15)
C9—S1—N1—C158.57 (15)O2—S1—C9—C1099.35 (14)
S1—N1—C1—C617.9 (2)N1—S1—C9—C10149.04 (13)
S1—N1—C1—C2162.13 (12)O1—S1—C9—C14154.60 (13)
C6—C1—C2—C30.3 (2)O2—S1—C9—C1475.99 (14)
N1—C1—C2—C3179.62 (14)N1—S1—C9—C1435.61 (15)
C6—C1—C2—C7179.24 (15)C14—C9—C10—C111.9 (2)
N1—C1—C2—C70.8 (2)S1—C9—C10—C11173.44 (12)
C1—C2—C3—C40.4 (2)C9—C10—C11—C120.8 (2)
C7—C2—C3—C4179.21 (16)C10—C11—C12—N2178.72 (15)
C2—C3—C4—C50.0 (3)C10—C11—C12—C131.4 (2)
C3—C4—C5—C60.4 (3)C15—N2—C12—C1113.1 (3)
C4—C5—C6—C10.4 (3)C15—N2—C12—C13167.05 (17)
C2—C1—C6—C50.0 (3)C11—C12—C13—C142.5 (3)
N1—C1—C6—C5180.00 (17)N2—C12—C13—C14177.67 (16)
C8—O4—C7—O31.4 (2)C12—C13—C14—C91.3 (3)
C8—O4—C7—C2178.13 (15)C10—C9—C14—C130.9 (3)
C3—C2—C7—O3177.58 (16)S1—C9—C14—C13174.40 (13)
C1—C2—C7—O32.9 (2)C12—N2—C15—O52.5 (3)
C3—C2—C7—O42.9 (2)C12—N2—C15—C16177.36 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O30.86 (1)1.90 (2)2.6266 (18)141 (2)
N2—H2n···O2i0.86 (2)2.31 (2)3.0888 (19)151 (2)
C10—H10···O1ii0.932.573.330 (2)140
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC16H16N2O5S
Mr348.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2835 (2), 9.3722 (3), 10.8299 (3)
α, β, γ (°)85.537 (1), 88.614 (1), 72.203 (1)
V3)798.11 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.18 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13593, 3604, 3122
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.07
No. of reflections3604
No. of parameters225
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O30.861 (11)1.902 (16)2.6266 (18)140.9 (17)
N2—H2n···O2i0.859 (16)2.311 (17)3.0888 (19)150.7 (15)
C10—H10···O1ii0.932.573.330 (2)140
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+2.
 

Footnotes

Additional correspondence author, e-mail: iuklodhi@yahoo.com.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Ahmad, W., Sharif, S., Ali, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw–Hill.  Google Scholar
First citationSharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds