organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[(2-Hy­dr­oxy­naphthalen-1-yl)methyl­­idene]-4-methyl­benzohydrazide

aCollege of Chemistry & Pharmacy, Taizhou University, Taizhou Zhejiang 317000, People's Republic of China, and bDepartment of Chemistry, Liaoning Normal University, Dalian 116029, People's Republic of China
*Correspondence e-mail: liushiyong2010@yahoo.cn

(Received 18 March 2011; accepted 18 March 2011; online 26 March 2011)

In the title compound, C19H16N2O2, the benzene ring and the naphthyl ring system form a dihedral angle of 8.7 (3)° and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming C(4) chains propagating in [001].

Related literature

For hydrazones we have reported previously and background references, see: Liu & You (2010a[Liu, S.-Y. & You, Z. (2010a). Acta Cryst. E66, o1652.],b[Liu, S.-Y. & You, Z. (2010b). Acta Cryst. E66, o1658.],c[Liu, S.-Y. & You, Z. (2010c). Acta Cryst. E66, o1662.]); Liu & Wang (2010a[Liu, S.-Y. & Wang, X. (2010a). Acta Cryst. E66, o1775.],b[Liu, S.-Y. & Wang, X. (2010b). Acta Cryst. E66, o1805.]). For a related structure, see: Cao (2009[Cao, G.-B. (2009). Acta Cryst. E65, o2086.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N2O2

  • Mr = 304.34

  • Monoclinic, P 21 /c

  • a = 11.014 (2) Å

  • b = 15.487 (2) Å

  • c = 9.150 (1) Å

  • β = 93.503 (3)°

  • V = 1557.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.983, Tmax = 0.987

  • 12464 measured reflections

  • 3335 independent reflections

  • 1515 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.192

  • S = 0.93

  • 3335 reflections

  • 213 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (1) 2.02 (1) 2.897 (3) 164 (3)
O1—H1⋯N1 0.82 1.86 2.586 (3) 146
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a continuation of our structural studies of hydrazones (Liu & You, 2010a,b,c; Liu & Wang, 2010a,b), we report herein the crystal structure of the title compound, (I) (Fig. 1).

The dihedral angle between the C1—C10 benzene ring and the C13—C18 naphthyl ring is 8.7 (3)°. All the bond lengths are comparable to those observed in related structures (Cao, 2009) and those we reported previously.

In the crystal structure, molecules are linked through N–H···O hydrogen bonds, to form one-dimensional chains running along the c axis (Fig. 2 and Table 1).

Related literature top

For hydrazones we have reported previously and background references, see: Liu & You (2010a,b,c); Liu & Wang (2010a,b). For a related structure, see: Cao (2009).

Experimental top

The title compound was prepared by the condensation reaction of 2-hydroxy-1-naphthaldehyde (0.05 mol, 8.6 g) and 4-methylbenzohydrazide (0.05 mol, 7.5 g) in anhydrous methanol (200 ml) at ambient temperature. Colourless blocks were obtained by slow evaporation of the solution for a period of a week.

Refinement top

H2 was located from a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically and constrained to ride on their parent atoms, with C–H distances of 0.93–0.96 Å, O–H distance of 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and C19).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius and the intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. The packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
(E)-N'-[(2-Hydroxynaphthalen-1-yl)methylidene]- 4-methylbenzohydrazide top
Crystal data top
C19H16N2O2F(000) = 640
Mr = 304.34Dx = 1.298 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1270 reflections
a = 11.014 (2) Åθ = 2.3–26.4°
b = 15.487 (2) ŵ = 0.09 mm1
c = 9.150 (1) ÅT = 298 K
β = 93.503 (3)°Block, colourless
V = 1557.8 (4) Å30.20 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3335 independent reflections
Radiation source: fine-focus sealed tube1515 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1413
Tmin = 0.983, Tmax = 0.987k = 1919
12464 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0921P)2]
where P = (Fo2 + 2Fc2)/3
3335 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C19H16N2O2V = 1557.8 (4) Å3
Mr = 304.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.014 (2) ŵ = 0.09 mm1
b = 15.487 (2) ÅT = 298 K
c = 9.150 (1) Å0.20 × 0.17 × 0.15 mm
β = 93.503 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3335 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1515 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.987Rint = 0.065
12464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0681 restraint
wR(F2) = 0.192H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.16 e Å3
3335 reflectionsΔρmin = 0.25 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6996 (2)0.17460 (14)0.0689 (2)0.0519 (6)
N20.7488 (2)0.24189 (14)0.0157 (2)0.0525 (7)
O10.5593 (2)0.11437 (14)0.2818 (2)0.0706 (7)
H10.59580.15160.23290.106*
O20.75910 (18)0.32363 (11)0.1872 (2)0.0596 (6)
C10.6450 (2)0.02635 (17)0.0848 (3)0.0472 (7)
C20.5756 (3)0.03725 (19)0.2161 (3)0.0553 (8)
C30.5169 (3)0.0341 (2)0.2832 (4)0.0706 (9)
H30.46790.02610.36860.085*
C40.5303 (3)0.1141 (2)0.2263 (4)0.0702 (10)
H40.48970.16000.27310.084*
C50.6039 (3)0.13015 (19)0.0983 (4)0.0586 (8)
C60.6208 (3)0.2140 (2)0.0396 (4)0.0693 (10)
H60.58100.26040.08570.083*
C70.6934 (3)0.2278 (2)0.0816 (4)0.0761 (10)
H70.70410.28350.11830.091*
C80.7527 (3)0.1584 (2)0.1524 (4)0.0721 (10)
H80.80300.16820.23610.087*
C90.7375 (3)0.07684 (18)0.1001 (3)0.0575 (8)
H90.77800.03160.14890.069*
C100.6618 (2)0.05878 (17)0.0264 (3)0.0480 (7)
C110.6973 (2)0.10041 (17)0.0080 (3)0.0494 (7)
H110.72990.09390.08760.059*
C120.7759 (2)0.31563 (17)0.0533 (3)0.0464 (7)
C130.8249 (2)0.38767 (17)0.0401 (3)0.0456 (7)
C140.8877 (3)0.37590 (19)0.1745 (3)0.0568 (8)
H140.90160.32050.21100.068*
C150.9292 (3)0.4465 (2)0.2537 (3)0.0639 (9)
H150.97060.43740.34400.077*
C160.9125 (3)0.5301 (2)0.2056 (3)0.0579 (8)
C170.8512 (3)0.54064 (19)0.0705 (4)0.0626 (9)
H170.83820.59610.03400.075*
C180.8091 (3)0.47147 (18)0.0113 (3)0.0577 (8)
H180.76940.48090.10260.069*
C190.9554 (3)0.6073 (2)0.2941 (4)0.0829 (11)
H19A1.00960.64100.23880.124*
H19B0.99730.58830.38340.124*
H19C0.88670.64190.31650.124*
H20.752 (3)0.2325 (19)0.1132 (12)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0629 (16)0.0419 (13)0.0516 (15)0.0017 (12)0.0087 (12)0.0052 (12)
N20.0786 (18)0.0367 (13)0.0428 (14)0.0055 (12)0.0079 (13)0.0006 (11)
O10.0734 (16)0.0762 (15)0.0610 (15)0.0081 (13)0.0060 (12)0.0068 (12)
O20.0847 (16)0.0572 (13)0.0364 (12)0.0029 (10)0.0010 (10)0.0036 (9)
C10.0443 (17)0.0479 (17)0.0500 (18)0.0007 (13)0.0075 (14)0.0086 (13)
C20.0518 (18)0.0588 (19)0.055 (2)0.0048 (15)0.0027 (16)0.0034 (16)
C30.052 (2)0.094 (3)0.065 (2)0.0017 (19)0.0027 (17)0.019 (2)
C40.058 (2)0.069 (2)0.084 (3)0.0140 (18)0.0074 (19)0.029 (2)
C50.0523 (19)0.057 (2)0.067 (2)0.0060 (15)0.0136 (17)0.0147 (17)
C60.074 (2)0.049 (2)0.087 (3)0.0107 (17)0.023 (2)0.0150 (18)
C70.094 (3)0.0457 (19)0.091 (3)0.0033 (19)0.025 (2)0.0035 (19)
C80.088 (3)0.058 (2)0.071 (2)0.0006 (18)0.0055 (19)0.0081 (17)
C90.070 (2)0.0435 (17)0.060 (2)0.0018 (15)0.0105 (17)0.0001 (15)
C100.0438 (17)0.0467 (17)0.0544 (19)0.0039 (13)0.0095 (14)0.0081 (14)
C110.0538 (18)0.0454 (17)0.0495 (17)0.0011 (14)0.0065 (14)0.0012 (14)
C120.0497 (17)0.0426 (16)0.0471 (17)0.0046 (13)0.0054 (13)0.0005 (14)
C130.0489 (17)0.0470 (16)0.0414 (16)0.0023 (13)0.0063 (13)0.0020 (13)
C140.0601 (19)0.0570 (19)0.0528 (19)0.0048 (15)0.0001 (16)0.0112 (15)
C150.067 (2)0.074 (2)0.0491 (19)0.0151 (18)0.0055 (16)0.0005 (17)
C160.0520 (18)0.063 (2)0.059 (2)0.0116 (15)0.0114 (16)0.0079 (16)
C170.074 (2)0.0442 (17)0.070 (2)0.0008 (15)0.0066 (18)0.0003 (16)
C180.066 (2)0.0485 (18)0.058 (2)0.0002 (15)0.0016 (16)0.0042 (15)
C190.089 (3)0.084 (2)0.077 (2)0.025 (2)0.012 (2)0.024 (2)
Geometric parameters (Å, º) top
N1—C111.278 (3)C8—C91.358 (4)
N1—N21.388 (3)C8—H80.9300
N2—C121.347 (3)C9—C101.413 (4)
N2—H20.902 (10)C9—H90.9300
O1—C21.344 (3)C11—H110.9300
O1—H10.8200C12—C131.486 (4)
O2—C121.234 (3)C13—C141.386 (4)
C1—C21.394 (4)C13—C181.388 (3)
C1—C101.430 (4)C14—C151.375 (4)
C1—C111.446 (3)C14—H140.9300
C2—C31.403 (4)C15—C161.376 (4)
C3—C41.348 (4)C15—H150.9300
C3—H30.9300C16—C171.382 (4)
C4—C51.405 (4)C16—C191.504 (4)
C4—H40.9300C17—C181.371 (4)
C5—C61.413 (4)C17—H170.9300
C5—C101.418 (4)C18—H180.9300
C6—C71.344 (4)C19—H19A0.9600
C6—H60.9300C19—H19B0.9600
C7—C81.395 (4)C19—H19C0.9600
C7—H70.9300
C11—N1—N2116.7 (2)C9—C10—C1123.0 (2)
C12—N2—N1117.7 (2)C5—C10—C1120.1 (3)
C12—N2—H2127.2 (19)N1—C11—C1121.3 (3)
N1—N2—H2114.8 (19)N1—C11—H11119.4
C2—O1—H1109.5C1—C11—H11119.4
C2—C1—C10119.0 (3)O2—C12—N2121.7 (3)
C2—C1—C11120.3 (3)O2—C12—C13121.5 (2)
C10—C1—C11120.7 (3)N2—C12—C13116.8 (2)
O1—C2—C1123.0 (3)C14—C13—C18118.0 (3)
O1—C2—C3117.3 (3)C14—C13—C12123.7 (2)
C1—C2—C3119.7 (3)C18—C13—C12118.3 (3)
C4—C3—C2121.2 (3)C15—C14—C13119.7 (3)
C4—C3—H3119.4C15—C14—H14120.2
C2—C3—H3119.4C13—C14—H14120.2
C3—C4—C5121.9 (3)C14—C15—C16123.1 (3)
C3—C4—H4119.1C14—C15—H15118.4
C5—C4—H4119.1C16—C15—H15118.4
C4—C5—C6122.4 (3)C15—C16—C17116.5 (3)
C4—C5—C10118.0 (3)C15—C16—C19123.0 (3)
C6—C5—C10119.7 (3)C17—C16—C19120.5 (3)
C7—C6—C5121.2 (3)C18—C17—C16121.8 (3)
C7—C6—H6119.4C18—C17—H17119.1
C5—C6—H6119.4C16—C17—H17119.1
C6—C7—C8119.9 (3)C17—C18—C13121.0 (3)
C6—C7—H7120.1C17—C18—H18119.5
C8—C7—H7120.1C13—C18—H18119.5
C9—C8—C7120.6 (3)C16—C19—H19A109.5
C9—C8—H8119.7C16—C19—H19B109.5
C7—C8—H8119.7H19A—C19—H19B109.5
C8—C9—C10121.8 (3)C16—C19—H19C109.5
C8—C9—H9119.1H19A—C19—H19C109.5
C10—C9—H9119.1H19B—C19—H19C109.5
C9—C10—C5116.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)2.02 (1)2.897 (3)164 (3)
O1—H1···N10.821.862.586 (3)146
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H16N2O2
Mr304.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.014 (2), 15.487 (2), 9.150 (1)
β (°) 93.503 (3)
V3)1557.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.983, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
12464, 3335, 1515
Rint0.065
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.192, 0.93
No. of reflections3335
No. of parameters213
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.902 (10)2.020 (13)2.897 (3)164 (3)
O1—H1···N10.821.862.586 (3)146
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Undergraduate Innovation Group Project of Zhejiang Province (project no. 2010R428015).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G.-B. (2009). Acta Cryst. E65, o2086.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & Wang, X. (2010a). Acta Cryst. E66, o1775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & Wang, X. (2010b). Acta Cryst. E66, o1805.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & You, Z. (2010a). Acta Cryst. E66, o1652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & You, Z. (2010b). Acta Cryst. E66, o1658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & You, Z. (2010c). Acta Cryst. E66, o1662.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds