organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(1R*,4R*)-1,4-Dihy­dr­oxy­cyclo­hex­yl]acetic acid

aInstitute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cInternational Centre for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 19 March 2011; accepted 19 March 2011; online 26 March 2011)

The title compound, C8H14O4, is an isolation product of the aerial parts of Senecio desfontanei. The acetic acid group is oriented at a dihedral angle of 48.03 (9)° with respect to the basal plane of the cyclo­hexane-1,4-diol chair. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring with an envelope conformation. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, resulting in R33(20) ring motifs and C(2) O—H⋯O—H⋯O—H⋯ chains. Overall, a three-dimensional polymeric network arises. A C—H⋯O contact is also present.

Related literature

For related structures, see: Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Mallesha, L., Mohana, K. N. & Narayana, B. (2009). J. Chem. Crystallogr. 39, 777-780.]); Vasudev et al. (2008[Vasudev, P. G., Rai, R., Shamala, N. & Balaram, P. (2008). Biopolymers, 90, 138-150.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H14O4

  • Mr = 174.19

  • Triclinic, P 1

  • a = 5.7301 (4) Å

  • b = 6.3493 (3) Å

  • c = 6.4964 (4) Å

  • α = 92.863 (2)°

  • β = 97.223 (1)°

  • γ = 108.258 (2)°

  • V = 221.67 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.28 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.965

  • 3664 measured reflections

  • 1092 independent reflections

  • 932 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.091

  • S = 1.07

  • 1092 reflections

  • 118 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.83 (3) 1.78 (3) 2.608 (3) 177 (3)
O3—H3⋯O4ii 0.86 (3) 1.90 (3) 2.756 (2) 175 (3)
O4—H4⋯O1iii 0.83 (3) 2.39 (3) 3.007 (3) 131 (3)
O4—H4⋯O2 0.83 (3) 2.20 (3) 2.789 (3) 128 (3)
C5—H5A⋯O1iv 0.97 2.60 3.511 (3) 157
Symmetry codes: (i) x-1, y-1, z-1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The crystal structure of (1-(aminomethyl)cyclohexane)acetic acid hydrochloride hemihydrate (Jasinski et al., 2009) and 1-ammoniocyclohexaneacetic acid chloride monohydrate (Vasudev et al., 2008) have been published which are related to the title compound (I, Fig. 1).

In (I), there are cyclohexane-1,4-diol and acetic acid moieties. The basal plane of cyclohexane A (C4,C5,C7,C8) and the acetic acid moiety B (O1/C1/C2/O2) are planar with r. m. s. deviation of 0.0022 and 0.0016 Å, respectively. The dihedral angle between A/B is 48.03 (9)°. The hydroxy atoms O3 and O4 are at a distance of 2.0320 (26) and -2.0535 (23) Å respectively, from the basal plane whereas the C-atoms C3 and C6 are at a distance of -0.6862 (29) and -0.6195 (23) Å respectively, from it. There exist an intra molecular H-bonding of O—H···O type (Table 1, Fig. 2) forming an S(6) and R33(20) ring motifs (Bernstein et al., 1995). The molecules are stabilized in the form of three dimensional polymeric network with O—H···O—H···O—H··· chains (Fig. 2).

Related literature top

For related structures, see: Jasinski et al. (2009); Vasudev et al. (2008). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The air dried and pulverized aerial parts of Senecio desfontanei (12 kg), collected from Kaghan, KPK, Pakistan, in July 2008, were subjected to cold extraction with methanol (MeOH) in percolator. The MeOH extract was concentrated in vacuo to give dark greenish crude extract (300 g) which was then suspended in distilled water and successively partitioned with n-hexane, dichloromethane (DCM), ethyl acetate (EtOAc). The EtOAc fraction (90 g) was subjected to column chromatography (CC) on silica gel and n-hexane: EtOAc (100:0 0:100) as eluting system. This resulted in total of 20 subfractions i.e. 1 A-20 A compiled on the basis of TLC profiles. Subfraction 12 A was resubjected to CC on silica gel and eluted with n-hexane: EtOAc (20:80) yielding a crystalline compound containing minor impurities. The impurity was washed off with DCM. Transparent needles of the title compound were obtained by recrystallization using a mixture of EtOAc:MeOH (85:15).

Refinement top

In the absence of significant anomolous scattering, the Friedal pairs were merged before refinement.

The coordinates of the hydroxy H-atoms were refined. The H-atoms were positioned geometrically (O—H = 0.82, C–H = 0.97–0.98 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.2 for all H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing of the title compound, which shows that molecules form polymeric network with ring motifs.
2-[(1R*,4R*)-1,4-dihydroxycyclohexyl]acetic acid top
Crystal data top
C8H14O4Z = 1
Mr = 174.19F(000) = 94
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7301 (4) ÅCell parameters from 933 reflections
b = 6.3493 (3) Åθ = 3.2–28.4°
c = 6.4964 (4) ŵ = 0.10 mm1
α = 92.863 (2)°T = 296 K
β = 97.223 (1)°Needle, colorless
γ = 108.258 (2)°0.28 × 0.12 × 0.10 mm
V = 221.67 (2) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1092 independent reflections
Radiation source: fine-focus sealed tube932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 7.50 pixels mm-1θmax = 28.4°, θmin = 3.2°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 88
Tmin = 0.935, Tmax = 0.965l = 88
3664 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.0008P]
where P = (Fo2 + 2Fc2)/3
1092 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C8H14O4γ = 108.258 (2)°
Mr = 174.19V = 221.67 (2) Å3
Triclinic, P1Z = 1
a = 5.7301 (4) ÅMo Kα radiation
b = 6.3493 (3) ŵ = 0.10 mm1
c = 6.4964 (4) ÅT = 296 K
α = 92.863 (2)°0.28 × 0.12 × 0.10 mm
β = 97.223 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1092 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
932 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.965Rint = 0.025
3664 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.22 e Å3
1092 reflectionsΔρmin = 0.15 e Å3
118 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1847 (3)0.0914 (3)0.1705 (3)0.0440 (5)
O20.1853 (4)0.0521 (4)0.1685 (4)0.0773 (9)
O30.6317 (3)0.6910 (3)0.6378 (3)0.0431 (5)
O40.5902 (3)0.4332 (3)0.0313 (2)0.0359 (5)
C10.0589 (4)0.1643 (4)0.1287 (3)0.0417 (7)
C20.1589 (4)0.4007 (4)0.0290 (4)0.0401 (7)
C30.4158 (4)0.4631 (3)0.1003 (3)0.0304 (6)
C40.4181 (4)0.3231 (3)0.2851 (3)0.0382 (7)
C50.6749 (5)0.3888 (4)0.4164 (4)0.0414 (7)
C60.7759 (4)0.6356 (4)0.4899 (3)0.0391 (7)
C70.7640 (4)0.7782 (4)0.3096 (4)0.0379 (7)
C80.5067 (4)0.7087 (3)0.1812 (3)0.0341 (7)
H10.238 (5)0.036 (5)0.231 (5)0.0528*
H2A0.043540.423910.059890.0481*
H2B0.165390.500690.137780.0481*
H30.627 (5)0.610 (5)0.740 (5)0.0517*
H40.556 (5)0.301 (5)0.077 (4)0.0430*
H4A0.298950.342230.371840.0458*
H4B0.367520.166990.233680.0458*
H5A0.665200.303690.536800.0497*
H5B0.789170.350990.334720.0497*
H60.948960.672710.556250.0469*
H7A0.809650.932950.364340.0455*
H7B0.883520.766090.220230.0455*
H8A0.510740.798000.063990.0409*
H8B0.390570.737630.266220.0409*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0402 (9)0.0388 (9)0.0490 (10)0.0100 (7)0.0025 (7)0.0051 (7)
O20.0475 (11)0.0688 (13)0.1084 (19)0.0249 (10)0.0090 (11)0.0466 (13)
O30.0573 (10)0.0406 (9)0.0293 (8)0.0122 (7)0.0094 (7)0.0006 (7)
O40.0380 (8)0.0414 (9)0.0320 (8)0.0167 (7)0.0106 (6)0.0001 (7)
C10.0380 (12)0.0476 (12)0.0379 (12)0.0158 (10)0.0004 (9)0.0073 (10)
C20.0357 (11)0.0408 (12)0.0448 (13)0.0158 (9)0.0042 (10)0.0056 (10)
C30.0343 (10)0.0324 (10)0.0265 (10)0.0126 (8)0.0087 (8)0.0002 (8)
C40.0492 (12)0.0295 (10)0.0346 (12)0.0093 (9)0.0103 (10)0.0032 (9)
C50.0574 (14)0.0424 (12)0.0315 (12)0.0253 (11)0.0073 (10)0.0079 (9)
C60.0381 (11)0.0468 (13)0.0322 (12)0.0151 (10)0.0025 (9)0.0006 (9)
C70.0422 (12)0.0336 (10)0.0352 (12)0.0069 (9)0.0097 (9)0.0024 (9)
C80.0412 (12)0.0311 (10)0.0322 (12)0.0138 (9)0.0076 (9)0.0045 (9)
Geometric parameters (Å, º) top
O1—C11.313 (3)C6—C71.524 (3)
O2—C11.205 (3)C7—C81.520 (3)
O3—C61.441 (3)C2—H2A0.9700
O4—C31.443 (3)C2—H2B0.9700
O1—H10.83 (3)C4—H4A0.9700
O3—H30.86 (3)C4—H4B0.9700
O4—H40.83 (3)C5—H5A0.9700
C1—C21.507 (3)C5—H5B0.9700
C2—C31.523 (3)C6—H60.9800
C3—C81.523 (3)C7—H7A0.9700
C3—C41.530 (3)C7—H7B0.9700
C4—C51.527 (4)C8—H8A0.9700
C5—C61.519 (3)C8—H8B0.9700
C1—O1—H1112 (2)H2A—C2—H2B108.00
C6—O3—H3111 (2)C3—C4—H4A109.00
C3—O4—H4112 (2)C3—C4—H4B109.00
O1—C1—O2122.7 (2)C5—C4—H4A109.00
O1—C1—C2112.7 (2)C5—C4—H4B109.00
O2—C1—C2124.7 (2)H4A—C4—H4B108.00
C1—C2—C3114.80 (19)C4—C5—H5A109.00
O4—C3—C8106.40 (17)C4—C5—H5B109.00
O4—C3—C4109.61 (17)C6—C5—H5A109.00
C4—C3—C8109.02 (15)C6—C5—H5B109.00
C2—C3—C4112.02 (18)H5A—C5—H5B108.00
C2—C3—C8110.55 (18)O3—C6—H6109.00
O4—C3—C2109.09 (17)C5—C6—H6109.00
C3—C4—C5111.86 (18)C7—C6—H6109.00
C4—C5—C6112.5 (2)C6—C7—H7A109.00
O3—C6—C7107.08 (19)C6—C7—H7B109.00
O3—C6—C5110.6 (2)C8—C7—H7A109.00
C5—C6—C7111.52 (18)C8—C7—H7B109.00
C6—C7—C8112.19 (19)H7A—C7—H7B108.00
C3—C8—C7112.17 (18)C3—C8—H8A109.00
C1—C2—H2A109.00C3—C8—H8B109.00
C1—C2—H2B109.00C7—C8—H8A109.00
C3—C2—H2A109.00C7—C8—H8B109.00
C3—C2—H2B109.00H8A—C8—H8B108.00
O1—C1—C2—C3156.30 (19)C2—C3—C8—C7179.47 (19)
O2—C1—C2—C324.2 (3)C4—C3—C8—C757.0 (2)
C1—C2—C3—O459.4 (2)C3—C4—C5—C654.8 (3)
C1—C2—C3—C462.1 (2)C4—C5—C6—O367.6 (2)
C1—C2—C3—C8176.07 (18)C4—C5—C6—C751.4 (3)
O4—C3—C4—C559.7 (2)O3—C6—C7—C869.5 (2)
C2—C3—C4—C5179.04 (19)C5—C6—C7—C851.6 (3)
C8—C3—C4—C556.4 (2)C6—C7—C8—C355.6 (2)
O4—C3—C8—C761.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.83 (3)1.78 (3)2.608 (3)177 (3)
O3—H3···O4ii0.86 (3)1.90 (3)2.756 (2)175 (3)
O4—H4···O1iii0.83 (3)2.39 (3)3.007 (3)131 (3)
O4—H4···O20.83 (3)2.20 (3)2.789 (3)128 (3)
C5—H5A···O1iv0.972.603.511 (3)157
Symmetry codes: (i) x1, y1, z1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H14O4
Mr174.19
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.7301 (4), 6.3493 (3), 6.4964 (4)
α, β, γ (°)92.863 (2), 97.223 (1), 108.258 (2)
V3)221.67 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.935, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
3664, 1092, 932
Rint0.025
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.07
No. of reflections1092
No. of parameters118
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.15

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.83 (3)1.78 (3)2.608 (3)177 (3)
O3—H3···O4ii0.86 (3)1.90 (3)2.756 (2)175 (3)
O4—H4···O1iii0.83 (3)2.39 (3)3.007 (3)131 (3)
O4—H4···O20.83 (3)2.20 (3)2.789 (3)128 (3)
C5—H5A···O1iv0.972.603.511 (3)157
Symmetry codes: (i) x1, y1, z1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1.
 

Acknowledgements

SHH and JR acknowledge financial support by the Higher Education Commission, Pakistan, under its Indigenous 5000 PhD scheme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Mallesha, L., Mohana, K. N. & Narayana, B. (2009). J. Chem. Crystallogr. 39, 777–780.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasudev, P. G., Rai, R., Shamala, N. & Balaram, P. (2008). Biopolymers, 90, 138–150.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds