metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­chloridocobalt(II)]-μ-4,4′-bis­­(benzimidazol-1-yl)biphen­yl]

aDepartment of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
*Correspondence e-mail: lihuiwff@163.com

(Received 19 March 2011; accepted 22 March 2011; online 26 March 2011)

In the title compound, [CoCl2(C26H18N4)]n, the CoII atom (site symmetry 2) is tetra­hedrally coordinated by two chloride ions and two N atoms from 4,4′-bis­(benzimidazol-1-yl)biphenyl ligands: the complete ligand is generated by crystallographic twofold symmetry. The dihedral angle between the benzene rings is 34.67 (8)° and the angle between the benene ring and the adjacent benzimidazole ring system is 43.26 (10)°. The bridging ligand links the CoII atoms into chains propagating in [[\overline{1}]01].

Related literature

For background to benzimidazole-based ligands in crystal engineering, see: Jin et al. (2006[Jin, C. M., Lu, H., Wu, L. Y. & Huang, J. (2006). Chem. Commun. pp. 5039-5041.]); Li et al. (2009[Li, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904-3909.]); Su et al. (2003[Su, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & zur Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595-8613.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C26H18N4)]

  • Mr = 516.27

  • Monoclinic, C 2/c

  • a = 12.878 (3) Å

  • b = 15.181 (3) Å

  • c = 11.136 (2) Å

  • β = 91.37 (3)°

  • V = 2176.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.776, Tmax = 0.853

  • 13945 measured reflections

  • 2696 independent reflections

  • 2361 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.124

  • S = 1.12

  • 2696 reflections

  • 150 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1 2.022 (2)
Co1—Cl1 2.2491 (8)

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzimidazole has been well used in crystal engineering, and a large number of benzimidazole-containing flexible ligands have been extensively studied (Su et al.,2003; Jin et al.,2006). However, to our knowledge, the research on benzimidazole ligands bearing rigid spacers is still less developed (Li et al.,2009).

Single-crystal X-ray diffraction analysis reveals that the title compound (I) crystallizes in the monoclinic space group C2/c. The geometry of the CoII ion is surrounded by two benzoiimidazole rings of distinct L ligands and two chlorine anions, which illustrates a slightly distorted tetrahedral coordination environment (Fig. 1). Notably, as shown in Fig. 2, the four-coordinated CoII center is bridged by the linear ligand L to form an infinite one-dimensional architecture. The dihedral angle between the biphenyl rings is 34.67 (8)°.

Related literature top

For background to bemzimidazole-based ligands in crystal engineering, see: Jin et al. (2006); Li et al. (2009); Su et al. (2003).

Experimental top

A mixture of CH3OH and CHCl3 (1:1, 8 ml), as a buffer layer, was carefully layered over a solution of 4,4'-Bis(benzimidazol-1-yl)terphenyl (L, 0.06 mmol) in CHCl3 (6 ml). Then a solution of CoCl2 (0.06 mmol) in CH3OH (6 ml) was layered over the buffer layer, and the resultant reaction was left to stand at room temperature. After ca three weeks, blue block single crystals appeared at the boundary. Yield: ~40% (based on L).

Refinement top

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius. Atoms with suffix A are generated by (–x, y, 3/2–z).
[Figure 2] Fig. 2. The crystal packing for (I).
catena-Poly[[dichloridocobalt(II)]-µ-4,4'-bis(benzimidazol- 1-yl)biphenyl] top
Crystal data top
[CoCl2(C26H18N4)]F(000) = 1052
Mr = 516.27Dx = 1.576 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3011 reflections
a = 12.878 (3) Åθ = 2.1–28.3°
b = 15.181 (3) ŵ = 1.06 mm1
c = 11.136 (2) ÅT = 293 K
β = 91.37 (3)°Block, blue
V = 2176.5 (8) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2696 independent reflections
Radiation source: fine-focus sealed tube2361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 9 pixels mm-1θmax = 28.3°, θmin = 2.1°
ω scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2020
Tmin = 0.776, Tmax = 0.853l = 1414
13945 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0551P)2 + 4.8457P]
where P = (Fo2 + 2Fc2)/3
2696 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[CoCl2(C26H18N4)]V = 2176.5 (8) Å3
Mr = 516.27Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.878 (3) ŵ = 1.06 mm1
b = 15.181 (3) ÅT = 293 K
c = 11.136 (2) Å0.25 × 0.20 × 0.15 mm
β = 91.37 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2696 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2361 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.853Rint = 0.053
13945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.12Δρmax = 0.48 e Å3
2696 reflectionsΔρmin = 0.71 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.40291 (3)0.75000.01602 (16)
Cl10.03587 (6)0.32578 (5)0.91836 (7)0.0311 (2)
N20.24698 (16)0.52363 (14)0.58018 (19)0.0139 (4)
N10.11781 (16)0.48022 (14)0.69588 (19)0.0151 (4)
C80.31898 (18)0.52081 (17)0.4838 (2)0.0134 (5)
C110.46103 (18)0.51614 (17)0.2986 (2)0.0140 (5)
C30.1150 (2)0.61615 (17)0.8273 (2)0.0162 (5)
H30.06010.59850.87430.019*
C120.4046 (2)0.59193 (17)0.3225 (2)0.0169 (5)
H120.41500.64190.27610.020*
C70.23231 (19)0.59156 (16)0.6623 (2)0.0139 (5)
C130.3332 (2)0.59502 (17)0.4139 (2)0.0172 (5)
H130.29550.64610.42780.021*
C10.17714 (19)0.45999 (17)0.6047 (2)0.0153 (5)
H10.17150.40750.56200.018*
C100.44322 (18)0.44110 (17)0.3680 (2)0.0145 (5)
H100.47810.38900.35140.017*
C90.37368 (19)0.44371 (17)0.4617 (2)0.0151 (5)
H90.36380.39420.50930.018*
C20.15099 (19)0.56315 (17)0.7347 (2)0.0138 (5)
C60.2823 (2)0.67174 (17)0.6813 (2)0.0173 (5)
H60.33650.69010.63360.021*
C40.1643 (2)0.69603 (18)0.8462 (2)0.0193 (5)
H40.14230.73280.90730.023*
C50.2473 (2)0.72257 (17)0.7745 (2)0.0185 (5)
H50.27950.77620.79050.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0152 (3)0.0153 (3)0.0178 (3)0.0000.00656 (19)0.000
Cl10.0347 (4)0.0324 (4)0.0267 (4)0.0187 (3)0.0143 (3)0.0116 (3)
N20.0139 (10)0.0151 (10)0.0127 (10)0.0009 (8)0.0033 (8)0.0021 (8)
N10.0146 (10)0.0170 (10)0.0138 (10)0.0027 (8)0.0039 (8)0.0005 (8)
C80.0113 (10)0.0178 (12)0.0111 (11)0.0016 (9)0.0032 (9)0.0000 (9)
C110.0112 (11)0.0184 (12)0.0126 (12)0.0020 (9)0.0041 (9)0.0012 (9)
C30.0151 (11)0.0207 (13)0.0130 (12)0.0016 (9)0.0029 (10)0.0012 (10)
C120.0169 (12)0.0189 (12)0.0152 (12)0.0011 (9)0.0045 (10)0.0044 (10)
C70.0121 (11)0.0163 (12)0.0135 (12)0.0027 (9)0.0018 (9)0.0005 (9)
C130.0180 (12)0.0177 (12)0.0161 (12)0.0046 (10)0.0063 (10)0.0030 (10)
C10.0168 (12)0.0170 (12)0.0124 (12)0.0024 (9)0.0036 (10)0.0005 (9)
C100.0117 (11)0.0144 (11)0.0175 (13)0.0001 (9)0.0002 (9)0.0015 (10)
C90.0158 (11)0.0151 (12)0.0144 (12)0.0029 (9)0.0022 (9)0.0018 (9)
C20.0129 (11)0.0169 (12)0.0116 (12)0.0007 (9)0.0017 (9)0.0006 (9)
C60.0153 (12)0.0162 (12)0.0205 (13)0.0013 (9)0.0023 (10)0.0036 (10)
C40.0216 (13)0.0185 (13)0.0177 (13)0.0036 (10)0.0009 (10)0.0023 (10)
C50.0214 (12)0.0129 (11)0.0214 (14)0.0015 (10)0.0011 (11)0.0018 (10)
Geometric parameters (Å, º) top
Co1—N12.022 (2)C3—H30.9300
Co1—N1i2.022 (2)C12—C131.388 (4)
Co1—Cl1i2.2491 (8)C12—H120.9300
Co1—Cl12.2491 (8)C7—C61.391 (3)
N2—C11.352 (3)C7—C21.404 (3)
N2—C71.394 (3)C13—H130.9300
N2—C81.436 (3)C1—H10.9300
N1—C11.321 (3)C10—C91.392 (4)
N1—C21.395 (3)C10—H100.9300
C8—C131.384 (3)C9—H90.9300
C8—C91.391 (3)C6—C51.378 (4)
C11—C121.390 (4)C6—H60.9300
C11—C101.399 (3)C4—C51.408 (4)
C11—C11ii1.494 (5)C4—H40.9300
C3—C41.383 (4)C5—H50.9300
C3—C21.396 (4)
N1—Co1—N1i109.02 (13)N2—C7—C2105.3 (2)
N1—Co1—Cl1i101.21 (7)C8—C13—C12118.9 (2)
N1i—Co1—Cl1i114.22 (7)C8—C13—H13120.5
N1—Co1—Cl1114.22 (7)C12—C13—H13120.5
N1i—Co1—Cl1101.21 (7)N1—C1—N2112.9 (2)
Cl1i—Co1—Cl1117.25 (5)N1—C1—H1123.6
C1—N2—C7107.1 (2)N2—C1—H1123.6
C1—N2—C8125.1 (2)C9—C10—C11120.5 (2)
C7—N2—C8127.8 (2)C9—C10—H10119.7
C1—N1—C2105.6 (2)C11—C10—H10119.7
C1—N1—Co1123.10 (18)C8—C9—C10119.6 (2)
C2—N1—Co1131.16 (17)C8—C9—H9120.2
C13—C8—C9120.7 (2)C10—C9—H9120.2
C13—C8—N2119.5 (2)N1—C2—C3130.1 (2)
C9—C8—N2119.7 (2)N1—C2—C7109.1 (2)
C12—C11—C10118.4 (2)C3—C2—C7120.8 (2)
C12—C11—C11ii120.15 (16)C5—C6—C7116.5 (2)
C10—C11—C11ii121.49 (16)C5—C6—H6121.8
C4—C3—C2117.3 (2)C7—C6—H6121.8
C4—C3—H3121.3C3—C4—C5121.1 (2)
C2—C3—H3121.3C3—C4—H4119.5
C13—C12—C11121.8 (2)C5—C4—H4119.5
C13—C12—H12119.1C6—C5—C4122.2 (3)
C11—C12—H12119.1C6—C5—H5118.9
C6—C7—N2132.6 (2)C4—C5—H5118.9
C6—C7—C2122.0 (2)
N1i—Co1—N1—C1143.7 (2)C8—N2—C1—N1177.9 (2)
Cl1i—Co1—N1—C123.0 (2)C12—C11—C10—C92.5 (4)
Cl1—Co1—N1—C1104.0 (2)C11ii—C11—C10—C9177.1 (3)
N1i—Co1—N1—C231.89 (19)C13—C8—C9—C100.2 (4)
Cl1i—Co1—N1—C2152.6 (2)N2—C8—C9—C10179.8 (2)
Cl1—Co1—N1—C280.5 (2)C11—C10—C9—C82.2 (4)
C1—N2—C8—C13135.7 (3)C1—N1—C2—C3179.4 (3)
C7—N2—C8—C1341.8 (4)Co1—N1—C2—C33.3 (4)
C1—N2—C8—C944.3 (4)C1—N1—C2—C70.3 (3)
C7—N2—C8—C9138.2 (3)Co1—N1—C2—C7175.87 (17)
C10—C11—C12—C131.0 (4)C4—C3—C2—N1179.3 (2)
C11ii—C11—C12—C13178.6 (3)C4—C3—C2—C71.6 (4)
C1—N2—C7—C6178.6 (3)C6—C7—C2—N1178.9 (2)
C8—N2—C7—C63.6 (4)N2—C7—C2—N10.3 (3)
C1—N2—C7—C20.1 (3)C6—C7—C2—C31.8 (4)
C8—N2—C7—C2178.0 (2)N2—C7—C2—C3179.5 (2)
C9—C8—C13—C121.3 (4)N2—C7—C6—C5178.7 (3)
N2—C8—C13—C12178.7 (2)C2—C7—C6—C50.5 (4)
C11—C12—C13—C80.8 (4)C2—C3—C4—C50.2 (4)
C2—N1—C1—N20.2 (3)C7—C6—C5—C40.9 (4)
Co1—N1—C1—N2176.35 (16)C3—C4—C5—C61.1 (4)
C7—N2—C1—N10.0 (3)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[CoCl2(C26H18N4)]
Mr516.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.878 (3), 15.181 (3), 11.136 (2)
β (°) 91.37 (3)
V3)2176.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.776, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
13945, 2696, 2361
Rint0.053
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.124, 1.12
No. of reflections2696
No. of parameters150
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.71

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—N12.022 (2)Co1—Cl12.2491 (8)
 

Acknowledgements

We thank the College Research Program of Yuncheng University (2008114) for funding.

References

First citationJin, C. M., Lu, H., Wu, L. Y. & Huang, J. (2006). Chem. Commun. pp. 5039–5041.  Web of Science CSD CrossRef Google Scholar
First citationLi, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904–3909.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & zur Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595–8613.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds