organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Bis(4-methyl­phen­yl)-1-phenyl-4,5-di­hydro-1H-pyrazole

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 25 March 2011; accepted 28 March 2011; online 31 March 2011)

In the title compound, C23H22N2, the dihedral angle between the methyl­benzene groups is 77.62 (6)°, and the dihedral angle between the envelope-shaped pyrazole ring [in which one C atom displaced by 0.109 (1) Å from the mean plane of the other four atoms] and the phenyl ring is 17.57 (7)°. The dihedral angles between the phenyl ring and the two methyl­benzene rings are 13.24 (6) and 81.02 (7)°. In the crystal, weak C—H⋯π inter­actions link the mol­ecules.

Related literature

For related structures and background references, see: Jasinski et al. (2010)[Jasinski, J. P., Pek, A. E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1950-o1951.]; Samshuddin et al. (2010[Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279-o1280.]).

[Scheme 1]

Experimental

Crystal data
  • C23H22N2

  • Mr = 326.43

  • Monoclinic, P 21 /n

  • a = 5.8113 (3) Å

  • b = 10.6959 (5) Å

  • c = 28.4455 (13) Å

  • β = 94.983 (4)°

  • V = 1761.41 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.55 mm−1

  • T = 123 K

  • 0.53 × 0.11 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.736, Tmax = 1.000

  • 12872 measured reflections

  • 3615 independent reflections

  • 3096 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.03

  • 3615 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg4 are the centroids of the C4–C9, C10–C15 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2BCg3i 0.99 2.74 3.5766 (13) 142
C12—H12ACg2ii 0.95 2.69 3.5485 (15) 150
C16—H16CCg4iii 0.98 2.81 3.6144 (17) 140
C23—H23BCg4iv 0.98 2.77 3.5742 (16) 140
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on pyrazoline derivatives Samshuddin et al., 2010, Jasinski et al., 2010), we now describe the synthesis and structure of the title compound, (I).

The title compound (I) contains two methylbenzene groups and a phenyl ring attached to an envelope configured pyrazole ring (Fig. 1). The dihedral angle between the two methylbenzene groups is 77.62 (6)° and the dihedral angle between the pyrazole and phenyl rings is 17.57 (7)°. Also, the dihedral angles between the phenyl ring and the two methyl-substituted phenyl groups are 13.24 (6) and 81.02 (7)°, respectively. Four C–H···π interactions (Table 1) contribute to the stability of the crystal structure (Fig. 2).

Related literature top

For related structures and background references, see: Jasinski et al. (2010); Samshuddin et al. (2010).

Experimental top

A mixture of (2E)-1,3-bis(4-methylphenyl)prop-2-en-1-one (2.36 g, 0.01 mol) and phenyl hydrazine (1.08 g, 0.01 mol) in 50 ml glacial acetic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Yellow needles of (I) were grown from acetonitrile by slow evaporation (m. p.: 412–414 K, yield: 78%).

Refinement top

All H atoms were placed in their calculated positions (methyl C—H = 0.98 Å, methylene C—H = 0.99 Å, methine C—H = 1.00 Å and aromatic C—H = 0.95 Å) and refined using a riding model. Isotropic displacement parameters for these atoms were set to 1.2 (or 1.5 for the methyl group) times the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis.
3,5-Bis(4-methylphenyl)-1-phenyl-4,5-dihydro-1H-pyrazole top
Crystal data top
C23H22N2F(000) = 696
Mr = 326.43Dx = 1.231 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 6406 reflections
a = 5.8113 (3) Åθ = 4.4–75.5°
b = 10.6959 (5) ŵ = 0.55 mm1
c = 28.4455 (13) ÅT = 123 K
β = 94.983 (4)°Needle, yellow
V = 1761.41 (15) Å30.53 × 0.11 × 0.07 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini CCD
diffractometer
3615 independent reflections
Radiation source: Enhance (Cu) X-ray Source3096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.5081 pixels mm-1θmax = 75.7°, θmin = 4.4°
ω scansh = 76
Absorption correction: multi-scan
(CrysAlis PRO;Oxford Diffraction, 2007)
k = 1313
Tmin = 0.736, Tmax = 1.000l = 3435
12872 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.4363P]
where P = (Fo2 + 2Fc2)/3
3615 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C23H22N2V = 1761.41 (15) Å3
Mr = 326.43Z = 4
Monoclinic, P21/nCu Kα radiation
a = 5.8113 (3) ŵ = 0.55 mm1
b = 10.6959 (5) ÅT = 123 K
c = 28.4455 (13) Å0.53 × 0.11 × 0.07 mm
β = 94.983 (4)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini CCD
diffractometer
3615 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO;Oxford Diffraction, 2007)
3096 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 1.000Rint = 0.033
12872 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
3615 reflectionsΔρmin = 0.21 e Å3
228 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.03560 (19)0.23302 (10)0.66268 (4)0.0274 (3)
N20.24215 (19)0.20597 (10)0.68799 (4)0.0255 (3)
C10.2985 (2)0.29796 (11)0.71599 (4)0.0246 (3)
C20.1238 (2)0.40318 (12)0.71220 (4)0.0269 (4)
C30.0306 (2)0.36569 (12)0.66740 (5)0.0257 (3)
C40.0433 (2)0.15597 (12)0.62528 (4)0.0253 (3)
C50.2649 (2)0.17337 (14)0.60319 (5)0.0331 (4)
C60.3486 (3)0.09418 (15)0.56701 (5)0.0355 (4)
C70.2145 (3)0.00281 (14)0.55219 (5)0.0380 (5)
C80.0064 (3)0.01954 (15)0.57400 (5)0.0374 (4)
C90.0931 (2)0.05842 (13)0.61021 (5)0.0297 (4)
C100.5036 (2)0.29188 (12)0.74964 (4)0.0243 (3)
C110.5501 (2)0.38492 (12)0.78377 (5)0.0276 (4)
C120.7391 (2)0.37447 (12)0.81698 (5)0.0282 (4)
C130.8878 (2)0.27223 (12)0.81727 (5)0.0272 (4)
C140.8428 (2)0.18087 (12)0.78254 (5)0.0289 (4)
C150.6556 (2)0.18988 (12)0.74930 (5)0.0266 (4)
C161.0901 (3)0.26048 (14)0.85368 (5)0.0342 (4)
C170.0167 (2)0.44225 (12)0.62430 (4)0.0247 (3)
C180.2099 (2)0.41944 (13)0.59980 (5)0.0302 (4)
C190.2591 (2)0.49430 (14)0.56221 (5)0.0317 (4)
C200.1173 (3)0.59488 (12)0.54784 (5)0.0294 (4)
C210.0768 (3)0.61616 (12)0.57187 (5)0.0314 (4)
C220.1273 (2)0.54094 (12)0.60961 (5)0.0285 (4)
C230.1766 (3)0.67715 (14)0.50757 (5)0.0388 (4)
H2A0.199200.485000.708200.0320*
H2B0.034300.406500.740200.0320*
H3A0.197300.372100.673300.0310*
H5A0.358700.239600.612900.0400*
H6A0.499800.106700.552200.0430*
H7A0.272800.057000.527500.0460*
H8A0.099800.085600.563900.0450*
H9A0.244700.045700.624800.0360*
H11A0.451700.455700.784200.0330*
H12A0.767600.438400.839900.0340*
H14A0.943200.111000.781800.0350*
H15A0.629600.126600.726000.0320*
H16A1.046100.290800.884100.0510*
H16B1.219300.310400.844000.0510*
H16C1.136700.172600.856600.0510*
H18A0.309300.351600.609000.0360*
H19A0.391500.476800.546000.0380*
H21A0.177200.683400.562400.0380*
H22A0.261500.557300.625400.0340*
H23A0.051600.737400.500100.0580*
H23B0.196200.625400.479800.0580*
H23C0.320500.722200.516600.0580*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0281 (6)0.0256 (5)0.0276 (6)0.0039 (4)0.0019 (4)0.0005 (4)
N20.0263 (5)0.0264 (5)0.0234 (5)0.0016 (4)0.0005 (4)0.0017 (4)
C10.0293 (6)0.0236 (6)0.0213 (6)0.0016 (5)0.0049 (5)0.0019 (4)
C20.0328 (7)0.0254 (6)0.0229 (6)0.0042 (5)0.0047 (5)0.0007 (5)
C30.0249 (6)0.0254 (6)0.0270 (6)0.0035 (5)0.0043 (5)0.0009 (5)
C40.0276 (6)0.0256 (6)0.0228 (6)0.0036 (5)0.0028 (5)0.0033 (5)
C50.0301 (7)0.0363 (7)0.0325 (7)0.0025 (5)0.0007 (5)0.0029 (6)
C60.0296 (7)0.0454 (8)0.0301 (7)0.0057 (6)0.0047 (6)0.0062 (6)
C70.0461 (9)0.0390 (8)0.0277 (7)0.0096 (6)0.0038 (6)0.0025 (6)
C80.0430 (8)0.0361 (7)0.0326 (7)0.0022 (6)0.0003 (6)0.0061 (6)
C90.0286 (7)0.0318 (7)0.0282 (7)0.0003 (5)0.0002 (5)0.0008 (5)
C100.0283 (6)0.0243 (6)0.0206 (6)0.0009 (5)0.0036 (5)0.0032 (5)
C110.0341 (7)0.0242 (6)0.0247 (6)0.0025 (5)0.0040 (5)0.0012 (5)
C120.0366 (7)0.0266 (6)0.0213 (6)0.0036 (5)0.0028 (5)0.0014 (5)
C130.0292 (7)0.0286 (6)0.0237 (6)0.0043 (5)0.0019 (5)0.0050 (5)
C140.0299 (7)0.0250 (6)0.0316 (7)0.0025 (5)0.0013 (5)0.0023 (5)
C150.0315 (7)0.0229 (6)0.0252 (6)0.0009 (5)0.0020 (5)0.0011 (5)
C160.0350 (7)0.0342 (7)0.0320 (7)0.0050 (6)0.0044 (6)0.0026 (6)
C170.0247 (6)0.0267 (6)0.0224 (6)0.0011 (5)0.0000 (5)0.0009 (5)
C180.0271 (7)0.0344 (7)0.0292 (7)0.0067 (5)0.0027 (5)0.0020 (5)
C190.0290 (7)0.0390 (7)0.0277 (7)0.0002 (5)0.0060 (5)0.0015 (5)
C200.0377 (7)0.0288 (6)0.0210 (6)0.0067 (5)0.0018 (5)0.0020 (5)
C210.0393 (8)0.0260 (6)0.0282 (7)0.0052 (5)0.0017 (6)0.0008 (5)
C220.0292 (7)0.0291 (6)0.0272 (6)0.0051 (5)0.0031 (5)0.0018 (5)
C230.0546 (9)0.0354 (7)0.0264 (7)0.0087 (6)0.0034 (6)0.0017 (6)
Geometric parameters (Å, º) top
N1—N21.3758 (16)C20—C211.388 (2)
N1—C31.4794 (17)C20—C231.508 (2)
N1—C41.3916 (16)C21—C221.393 (2)
N2—C11.2901 (16)C2—H2A0.9900
C1—C21.5132 (17)C2—H2B0.9900
C1—C101.4639 (16)C3—H3A1.0000
C2—C31.5464 (18)C5—H5A0.9500
C3—C171.5191 (18)C6—H6A0.9500
C4—C51.3955 (17)C7—H7A0.9500
C4—C91.3999 (18)C8—H8A0.9500
C5—C61.388 (2)C9—H9A0.9500
C6—C71.385 (2)C11—H11A0.9500
C7—C81.388 (2)C12—H12A0.9500
C8—C91.386 (2)C14—H14A0.9500
C10—C111.4001 (18)C15—H15A0.9500
C10—C151.4043 (18)C16—H16A0.9800
C11—C121.3896 (18)C16—H16B0.9800
C12—C131.3934 (18)C16—H16C0.9800
C13—C141.3980 (19)C18—H18A0.9500
C13—C161.503 (2)C19—H19A0.9500
C14—C151.3813 (18)C21—H21A0.9500
C17—C181.3935 (17)C22—H22A0.9500
C17—C221.3887 (18)C23—H23A0.9800
C18—C191.385 (2)C23—H23B0.9800
C19—C201.395 (2)C23—H23C0.9800
N2—N1—C3112.10 (10)H2A—C2—H2B109.00
N2—N1—C4119.35 (10)N1—C3—H3A110.00
C3—N1—C4124.50 (11)C2—C3—H3A110.00
N1—N2—C1109.02 (10)C17—C3—H3A110.00
N2—C1—C2112.98 (10)C4—C5—H5A120.00
N2—C1—C10121.23 (11)C6—C5—H5A120.00
C2—C1—C10125.64 (10)C5—C6—H6A120.00
C1—C2—C3101.74 (10)C7—C6—H6A120.00
N1—C3—C2100.76 (10)C6—C7—H7A121.00
N1—C3—C17112.15 (11)C8—C7—H7A121.00
C2—C3—C17113.12 (10)C7—C8—H8A119.00
N1—C4—C5119.68 (12)C9—C8—H8A119.00
N1—C4—C9121.18 (11)C4—C9—H9A120.00
C5—C4—C9119.11 (12)C8—C9—H9A120.00
C4—C5—C6120.19 (13)C10—C11—H11A120.00
C5—C6—C7120.84 (15)C12—C11—H11A120.00
C6—C7—C8118.92 (14)C11—C12—H12A119.00
C7—C8—C9121.14 (14)C13—C12—H12A119.00
C4—C9—C8119.81 (12)C13—C14—H14A119.00
C1—C10—C11121.26 (11)C15—C14—H14A119.00
C1—C10—C15120.46 (11)C10—C15—H15A120.00
C11—C10—C15118.25 (11)C14—C15—H15A120.00
C10—C11—C12120.52 (11)C13—C16—H16A109.00
C11—C12—C13121.35 (12)C13—C16—H16B109.00
C12—C13—C14117.81 (12)C13—C16—H16C109.00
C12—C13—C16121.15 (12)H16A—C16—H16B109.00
C14—C13—C16121.04 (11)H16A—C16—H16C110.00
C13—C14—C15121.52 (12)H16B—C16—H16C109.00
C10—C15—C14120.53 (12)C17—C18—H18A120.00
C3—C17—C18121.29 (11)C19—C18—H18A120.00
C3—C17—C22120.40 (11)C18—C19—H19A119.00
C18—C17—C22118.25 (12)C20—C19—H19A120.00
C17—C18—C19120.94 (12)C20—C21—H21A119.00
C18—C19—C20121.05 (12)C22—C21—H21A119.00
C19—C20—C21117.84 (13)C17—C22—H22A120.00
C19—C20—C23120.31 (14)C21—C22—H22A120.00
C21—C20—C23121.85 (13)C20—C23—H23A110.00
C20—C21—C22121.30 (13)C20—C23—H23B109.00
C17—C22—C21120.61 (12)C20—C23—H23C110.00
C1—C2—H2A111.00H23A—C23—H23B109.00
C1—C2—H2B111.00H23A—C23—H23C109.00
C3—C2—H2A111.00H23B—C23—H23C109.00
C3—C2—H2B111.00
C3—N1—N2—C112.24 (14)N1—C4—C9—C8177.64 (13)
C4—N1—N2—C1170.61 (11)C5—C4—C9—C80.4 (2)
N2—N1—C3—C218.27 (13)C4—C5—C6—C70.1 (2)
N2—N1—C3—C17102.32 (12)C5—C6—C7—C80.3 (2)
C4—N1—C3—C2175.32 (11)C6—C7—C8—C90.3 (2)
C4—N1—C3—C1754.74 (15)C7—C8—C9—C40.0 (2)
N2—N1—C4—C5172.10 (12)C1—C10—C11—C12176.68 (12)
N2—N1—C4—C95.93 (18)C15—C10—C11—C121.44 (19)
C3—N1—C4—C532.39 (18)C1—C10—C15—C14176.72 (12)
C3—N1—C4—C9149.59 (12)C11—C10—C15—C141.41 (19)
N1—N2—C1—C20.12 (14)C10—C11—C12—C130.3 (2)
N1—N2—C1—C10175.95 (10)C11—C12—C13—C140.90 (19)
N2—C1—C2—C311.25 (13)C11—C12—C13—C16179.14 (13)
C10—C1—C2—C3173.14 (11)C12—C13—C14—C150.93 (19)
N2—C1—C10—C11172.36 (12)C16—C13—C14—C15179.11 (13)
N2—C1—C10—C155.72 (18)C13—C14—C15—C100.2 (2)
C2—C1—C10—C112.91 (18)C3—C17—C18—C19176.21 (12)
C2—C1—C10—C15179.01 (11)C22—C17—C18—C190.94 (19)
C1—C2—C3—N116.33 (11)C3—C17—C22—C21176.07 (12)
C1—C2—C3—C17103.56 (11)C18—C17—C22—C211.10 (19)
N1—C3—C17—C1836.48 (16)C17—C18—C19—C200.2 (2)
N1—C3—C17—C22146.44 (12)C18—C19—C20—C211.1 (2)
C2—C3—C17—C1876.66 (15)C18—C19—C20—C23178.58 (13)
C2—C3—C17—C22100.43 (13)C19—C20—C21—C221.0 (2)
N1—C4—C5—C6177.62 (13)C23—C20—C21—C22178.74 (13)
C9—C4—C5—C60.5 (2)C20—C21—C22—C170.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the C4–C9, C10–C15 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cg3i0.992.743.5766 (13)142
C12—H12A···Cg2ii0.952.693.5485 (15)150
C16—H16C···Cg4iii0.982.813.6144 (17)140
C23—H23B···Cg4iv0.982.773.5742 (16)140
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H22N2
Mr326.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)5.8113 (3), 10.6959 (5), 28.4455 (13)
β (°) 94.983 (4)
V3)1761.41 (15)
Z4
Radiation typeCu Kα
µ (mm1)0.55
Crystal size (mm)0.53 × 0.11 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO;Oxford Diffraction, 2007)
Tmin, Tmax0.736, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12872, 3615, 3096
Rint0.033
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.03
No. of reflections3615
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the C4–C9, C10–C15 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cg3i0.992.743.5766 (13)142
C12—H12A···Cg2ii0.952.693.5485 (15)150
C16—H16C···Cg4iii0.982.813.6144 (17)140
C23—H23B···Cg4iv0.982.773.5742 (16)140
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2; (iv) x, y+1, z+1.
 

Acknowledgements

SS and BN thank Mangalore University for the research facilities and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Pek, A. E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1950–o1951.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds