organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-Phenyl-6b,7,8,9,9a,10-hexa­hydro-6H-cyclo­penta­[4,5]pyrano[3,2-c]chromen-6,9-dione

aBeijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
*Correspondence e-mail: lliu@iccas.ac.cn

(Received 13 February 2011; accepted 18 February 2011; online 12 March 2011)

In the title compound, C21H16O4, the dihedral angle between the phenyl ring and the 2H-chromene ring system is 59.8 (2)°. The crystal packing is stabilized by weak ππ stacking inter­actions [centroid–centroid distances = 3.667 (2) Å] and inter­molecular C—H⋯O hydrogen-bonding inter­actions.

Related literature

For applications of coumarin, see: Vu et al. (2008[Vu, H., Pham, N. B. & Quinn, R. J. (2008). J. Biomol. Screen. 13, 265-275.]); Maresca et al. (2009[Maresca, A., Temperini, C., Vu, H., Pham, N. B., Poulsen, S. A., Scozzafava, A., Quinn, R. J. & Supuran, C. T. (2009). J. Am. Chem. Soc. 131, 3057-3062.]); Maresca et al. (2010[Maresca, A., Temperini, C., Pochet, L., Masereel, B., Scozzafava, A. & Supuran, C. T. (2010). J. Med. Chem. 53, 335-344.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16O4

  • Mr = 332.34

  • Monoclinic, P 21 /n

  • a = 9.1672 (14) Å

  • b = 8.6538 (14) Å

  • c = 19.899 (3) Å

  • β = 91.295 (3)°

  • V = 1578.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.50 × 0.50 × 0.41 mm

Data collection
  • Rigaku Saturn724+ CCD diffractometer

  • Absorption correction: numerical (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.953, Tmax = 0.961

  • 13128 measured reflections

  • 3608 independent reflections

  • 3469 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.144

  • S = 1.10

  • 3608 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O3i 1.00 2.45 3.4042 (19) 160
C17—H17A⋯O2ii 0.95 2.54 3.322 (2) 140
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Coumarins constitute a ubiquitous class of heterocycles found in numerous natural products, food industry, marketed drugs, and drug candidates [Vu et al., 2008; Maresca et al., 2009; Maresca et al., 2010]. Alkylations of electron-rich arenes such as 4-hydroxycoumarin are of great importance for the synthesis of many natural products and pharmaceuticals. Therefore, multiple approaches have been undertaken to develop catalytic enantioselective additions of 4-hydroxycoumarin to α,β-unsaturated carbonyl compounds. In this context the use of cyclic Morita Baylis Hillman alcohol is of particular interest since they not only exhibit regioselectivity but also can be cyclized readily followed by reaction of the resultant allylic cation with a suitable O nucleophile. In continuation of our work in this direction, we report here the crystal structure of the title compound.

In title compound, all bond lengths in the molecular are normal (Allen et al., 1987). The dihedral angle between benzene (C16—C21) and 2H-chromene (C1—C7/C14/C15/O1) rings is 59.8 (2) °. ππ interactions are indicated by the short distance (Cg1···Cg2 distance of 3.667 (2) Å, symmetry code: 1 - x,1 - y,z) between the centroids of the 2H-pyran ring (C1/C6/C7/C14/C15/O2) (Cg1) and benzene ring C1—C6 (Cg2) (Table 1). There are weaker C—H···O intermolecular interactions, which stabilized the structure (Table 1).

Related literature top

For applications of coumarin, see: Vu et al. (2008); Maresca et al. (2009); Maresca et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 9-amino-9-deoxyepiquinine QA (20 mol %) in the combination with TFA (40 mol %) exhibited high catalytic activity for the Michael addition followed by cycloaddition of 4-hydroxycoumarin to cyclopent-2-enone-derived MBH alcohol in acetone at 60 °C for 72 h, yield 61%. Single crystals suitable for X-ray measurements were obtained by recrystallization from acetonitrile at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 to 1.00 Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.
16-phenyl-8,17-dioxatetracyclo[8.7.0.02,7.011,15]heptadeca- 1(10),2(7),3,5-tetraene-9,14-dione top
Crystal data top
C21H16O4F(000) = 696
Mr = 332.34Dx = 1.399 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4768 reflections
a = 9.1672 (14) Åθ = 1.0–27.5°
b = 8.6538 (14) ŵ = 0.10 mm1
c = 19.899 (3) ÅT = 173 K
β = 91.295 (3)°Block, colorless
V = 1578.2 (4) Å30.50 × 0.50 × 0.41 mm
Z = 4
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3608 independent reflections
Radiation source: sealed tube3469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 3.1°
Absorption correction: numerical
(CrystalClear; Rigaku, 2007)
h = 1111
Tmin = 0.953, Tmax = 0.961k = 1011
13128 measured reflectionsl = 2225
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0704P)2 + 0.6329P]
where P = (Fo2 + 2Fc2)/3
3608 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H16O4V = 1578.2 (4) Å3
Mr = 332.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1672 (14) ŵ = 0.10 mm1
b = 8.6538 (14) ÅT = 173 K
c = 19.899 (3) Å0.50 × 0.50 × 0.41 mm
β = 91.295 (3)°
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3608 independent reflections
Absorption correction: numerical
(CrystalClear; Rigaku, 2007)
3469 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.961Rint = 0.030
13128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.10Δρmax = 0.38 e Å3
3608 reflectionsΔρmin = 0.22 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50827 (10)0.14483 (13)0.10143 (5)0.0292 (2)
O20.30494 (11)0.31578 (13)0.06936 (5)0.0342 (3)
O30.21059 (14)0.10952 (16)0.24113 (6)0.0472 (3)
O40.09368 (13)0.21341 (18)0.04206 (7)0.0509 (4)
C10.45295 (15)0.33318 (17)0.05937 (7)0.0293 (3)
C20.52778 (18)0.41320 (18)0.10830 (8)0.0344 (3)
H2A0.47730.45430.14650.041*
C30.67665 (18)0.43206 (18)0.10057 (8)0.0358 (3)
H3A0.72890.48690.13370.043*
C40.75115 (17)0.37144 (19)0.04468 (8)0.0358 (3)
H4A0.85380.38460.04000.043*
C50.67574 (16)0.29218 (18)0.00397 (8)0.0321 (3)
H5A0.72670.25120.04200.039*
C60.52458 (15)0.27221 (16)0.00277 (7)0.0268 (3)
C70.43568 (15)0.19240 (16)0.04545 (7)0.0260 (3)
C80.41941 (15)0.10574 (17)0.15850 (7)0.0275 (3)
H8A0.37650.20250.17710.033*
C90.29535 (15)0.00278 (17)0.13564 (7)0.0289 (3)
H9A0.33520.10370.11980.035*
C100.18782 (18)0.02793 (19)0.19294 (8)0.0356 (3)
C110.0505 (2)0.0604 (3)0.17786 (11)0.0564 (5)
H11A0.02240.12270.21730.068*
H11B0.03050.01100.16610.068*
C120.08425 (18)0.1647 (2)0.11868 (9)0.0412 (4)
H12A0.12310.26560.13420.049*
H12B0.00390.18240.09000.049*
C130.20060 (15)0.07317 (18)0.08039 (7)0.0308 (3)
H13A0.15060.01000.05370.037*
C140.29132 (15)0.16801 (17)0.03381 (7)0.0285 (3)
C150.22106 (16)0.22987 (19)0.02619 (8)0.0343 (3)
C160.51992 (15)0.03462 (17)0.21074 (7)0.0274 (3)
C170.62801 (17)0.06787 (19)0.19234 (8)0.0360 (3)
H17A0.64230.08960.14620.043*
C180.71543 (18)0.1389 (2)0.24094 (9)0.0440 (4)
H18A0.78860.21010.22800.053*
C190.69637 (19)0.1066 (2)0.30784 (9)0.0453 (4)
H19A0.75640.15530.34110.054*
C200.59009 (19)0.0033 (2)0.32673 (8)0.0413 (4)
H20A0.57750.01940.37290.050*
C210.50157 (17)0.06724 (18)0.27822 (7)0.0325 (3)
H21A0.42830.13800.29130.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0241 (5)0.0389 (6)0.0247 (5)0.0026 (4)0.0003 (4)0.0033 (4)
O20.0283 (5)0.0438 (6)0.0306 (5)0.0048 (4)0.0013 (4)0.0074 (4)
O30.0493 (7)0.0534 (8)0.0387 (6)0.0192 (6)0.0001 (5)0.0139 (5)
O40.0280 (6)0.0765 (10)0.0478 (7)0.0013 (6)0.0061 (5)0.0182 (6)
C10.0289 (7)0.0296 (7)0.0295 (7)0.0032 (5)0.0043 (5)0.0011 (5)
C20.0418 (8)0.0309 (7)0.0307 (7)0.0054 (6)0.0077 (6)0.0029 (6)
C30.0416 (8)0.0309 (7)0.0356 (8)0.0024 (6)0.0145 (6)0.0004 (6)
C40.0303 (7)0.0372 (8)0.0402 (8)0.0051 (6)0.0093 (6)0.0060 (6)
C50.0281 (7)0.0369 (8)0.0315 (7)0.0019 (6)0.0028 (5)0.0040 (6)
C60.0261 (7)0.0279 (7)0.0264 (6)0.0002 (5)0.0044 (5)0.0029 (5)
C70.0256 (6)0.0274 (7)0.0251 (6)0.0016 (5)0.0007 (5)0.0012 (5)
C80.0263 (6)0.0307 (7)0.0256 (6)0.0004 (5)0.0042 (5)0.0006 (5)
C90.0291 (7)0.0273 (7)0.0303 (7)0.0015 (5)0.0017 (5)0.0004 (5)
C100.0367 (8)0.0374 (8)0.0327 (7)0.0132 (6)0.0032 (6)0.0016 (6)
C110.0377 (9)0.0749 (14)0.0572 (11)0.0069 (9)0.0193 (8)0.0207 (10)
C120.0290 (7)0.0491 (10)0.0460 (9)0.0061 (7)0.0093 (6)0.0064 (7)
C130.0251 (7)0.0342 (7)0.0332 (7)0.0023 (5)0.0004 (5)0.0018 (6)
C140.0261 (7)0.0326 (7)0.0269 (6)0.0019 (5)0.0023 (5)0.0009 (5)
C150.0266 (7)0.0431 (9)0.0333 (7)0.0032 (6)0.0009 (6)0.0046 (6)
C160.0270 (6)0.0284 (7)0.0267 (7)0.0024 (5)0.0001 (5)0.0003 (5)
C170.0346 (8)0.0390 (8)0.0345 (8)0.0058 (6)0.0007 (6)0.0031 (6)
C180.0330 (8)0.0438 (9)0.0550 (10)0.0062 (7)0.0019 (7)0.0089 (8)
C190.0363 (8)0.0534 (10)0.0456 (9)0.0102 (7)0.0133 (7)0.0196 (8)
C200.0456 (9)0.0494 (10)0.0288 (7)0.0187 (8)0.0053 (6)0.0039 (7)
C210.0363 (8)0.0328 (7)0.0287 (7)0.0073 (6)0.0031 (6)0.0022 (6)
Geometric parameters (Å, º) top
O1—C71.3491 (17)C9—H9A1.0000
O1—C81.4524 (16)C10—C111.498 (3)
O2—C11.3751 (17)C11—C121.521 (3)
O2—C151.3828 (18)C11—H11A0.9900
O3—C101.205 (2)C11—H11B0.9900
O4—C151.2112 (19)C12—C131.543 (2)
C1—C21.389 (2)C12—H12A0.9900
C1—C61.394 (2)C12—H12B0.9900
C2—C31.380 (2)C13—C141.503 (2)
C2—H2A0.9500C13—H13A1.0000
C3—C41.394 (2)C14—C151.446 (2)
C3—H3A0.9500C16—C171.385 (2)
C4—C51.384 (2)C16—C211.386 (2)
C4—H4A0.9500C17—C181.386 (2)
C5—C61.3999 (19)C17—H17A0.9500
C5—H5A0.9500C18—C191.375 (3)
C6—C71.4483 (19)C18—H18A0.9500
C7—C141.3548 (19)C19—C201.380 (3)
C8—C161.5050 (19)C19—H19A0.9500
C8—C91.5359 (19)C20—C211.388 (2)
C8—H8A1.0000C20—H20A0.9500
C9—C131.534 (2)C21—H21A0.9500
C9—C101.540 (2)
C7—O1—C8116.22 (10)C12—C11—H11A110.6
C1—O2—C15121.99 (11)C10—C11—H11B110.6
O2—C1—C2117.04 (13)C12—C11—H11B110.6
O2—C1—C6121.37 (12)H11A—C11—H11B108.7
C2—C1—C6121.59 (14)C11—C12—C13103.48 (14)
C3—C2—C1118.94 (14)C11—C12—H12A111.1
C3—C2—H2A120.5C13—C12—H12A111.1
C1—C2—H2A120.5C11—C12—H12B111.1
C2—C3—C4120.66 (14)C13—C12—H12B111.1
C2—C3—H3A119.7H12A—C12—H12B109.0
C4—C3—H3A119.7C14—C13—C9111.33 (12)
C5—C4—C3120.06 (14)C14—C13—C12114.99 (13)
C5—C4—H4A120.0C9—C13—C12104.62 (12)
C3—C4—H4A120.0C14—C13—H13A108.6
C4—C5—C6120.20 (14)C9—C13—H13A108.6
C4—C5—H5A119.9C12—C13—H13A108.6
C6—C5—H5A119.9C7—C14—C15119.90 (13)
C1—C6—C5118.54 (13)C7—C14—C13122.11 (13)
C1—C6—C7116.98 (12)C15—C14—C13117.96 (13)
C5—C6—C7124.48 (13)O4—C15—O2116.59 (14)
O1—C7—C14123.74 (13)O4—C15—C14125.49 (15)
O1—C7—C6114.72 (12)O2—C15—C14117.93 (13)
C14—C7—C6121.54 (13)C17—C16—C21119.32 (14)
O1—C8—C16106.85 (11)C17—C16—C8120.64 (13)
O1—C8—C9109.60 (11)C21—C16—C8120.00 (13)
C16—C8—C9113.09 (12)C16—C17—C18120.36 (15)
O1—C8—H8A109.1C16—C17—H17A119.8
C16—C8—H8A109.1C18—C17—H17A119.8
C9—C8—H8A109.1C19—C18—C17120.06 (17)
C13—C9—C8110.72 (12)C19—C18—H18A120.0
C13—C9—C10103.28 (12)C17—C18—H18A120.0
C8—C9—C10110.45 (12)C18—C19—C20120.08 (15)
C13—C9—H9A110.7C18—C19—H19A120.0
C8—C9—H9A110.7C20—C19—H19A120.0
C10—C9—H9A110.7C19—C20—C21120.03 (15)
O3—C10—C11126.03 (15)C19—C20—H20A120.0
O3—C10—C9124.73 (16)C21—C20—H20A120.0
C11—C10—C9109.21 (13)C16—C21—C20120.14 (15)
C10—C11—C12105.83 (13)C16—C21—H21A119.9
C10—C11—H11A110.6C20—C21—H21A119.9
C15—O2—C1—C2175.79 (14)C8—C9—C13—C1436.94 (16)
C15—O2—C1—C63.8 (2)C10—C9—C13—C14155.18 (12)
O2—C1—C2—C3179.40 (13)C8—C9—C13—C1287.86 (14)
C6—C1—C2—C30.2 (2)C10—C9—C13—C1230.38 (15)
C1—C2—C3—C40.2 (2)C11—C12—C13—C14159.98 (15)
C2—C3—C4—C50.4 (2)C11—C12—C13—C937.54 (17)
C3—C4—C5—C60.1 (2)O1—C7—C14—C15176.95 (13)
O2—C1—C6—C5179.16 (13)C6—C7—C14—C153.5 (2)
C2—C1—C6—C50.4 (2)O1—C7—C14—C135.1 (2)
O2—C1—C6—C71.1 (2)C6—C7—C14—C13174.40 (13)
C2—C1—C6—C7179.32 (13)C9—C13—C14—C76.2 (2)
C4—C5—C6—C10.3 (2)C12—C13—C14—C7112.55 (16)
C4—C5—C6—C7179.48 (14)C9—C13—C14—C15171.73 (13)
C8—O1—C7—C1417.6 (2)C12—C13—C14—C1569.51 (18)
C8—O1—C7—C6162.78 (12)C1—O2—C15—O4175.20 (15)
C1—C6—C7—O1175.67 (12)C1—O2—C15—C145.1 (2)
C5—C6—C7—O14.1 (2)C7—C14—C15—O4178.92 (16)
C1—C6—C7—C144.7 (2)C13—C14—C15—O40.9 (3)
C5—C6—C7—C14175.52 (14)C7—C14—C15—O21.4 (2)
C7—O1—C8—C16171.88 (11)C13—C14—C15—O2179.35 (13)
C7—O1—C8—C949.00 (16)O1—C8—C16—C1740.89 (18)
O1—C8—C9—C1358.49 (15)C9—C8—C16—C1779.79 (17)
C16—C8—C9—C13177.59 (11)O1—C8—C16—C21141.38 (13)
O1—C8—C9—C10172.27 (12)C9—C8—C16—C2197.94 (15)
C16—C8—C9—C1068.63 (15)C21—C16—C17—C181.0 (2)
C13—C9—C10—O3165.87 (15)C8—C16—C17—C18176.74 (15)
C8—C9—C10—O375.70 (19)C16—C17—C18—C190.8 (3)
C13—C9—C10—C1112.28 (18)C17—C18—C19—C200.1 (3)
C8—C9—C10—C11106.14 (16)C18—C19—C20—C210.4 (3)
O3—C10—C11—C12170.98 (17)C17—C16—C21—C200.5 (2)
C9—C10—C11—C1210.9 (2)C8—C16—C21—C20177.23 (13)
C10—C11—C12—C1329.6 (2)C19—C20—C21—C160.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i1.002.453.4042 (19)160
C17—H17A···O2ii0.952.543.322 (2)140
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H16O4
Mr332.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.1672 (14), 8.6538 (14), 19.899 (3)
β (°) 91.295 (3)
V3)1578.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.50 × 0.41
Data collection
DiffractometerRigaku Saturn724+ CCD
diffractometer
Absorption correctionNumerical
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.953, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
13128, 3608, 3469
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.144, 1.10
No. of reflections3608
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.22

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i1.002.453.4042 (19)160
C17—H17A···O2ii0.952.543.322 (2)140
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationMaresca, A., Temperini, C., Pochet, L., Masereel, B., Scozzafava, A. & Supuran, C. T. (2010). J. Med. Chem. 53, 335–344.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaresca, A., Temperini, C., Vu, H., Pham, N. B., Poulsen, S. A., Scozzafava, A., Quinn, R. J. & Supuran, C. T. (2009). J. Am. Chem. Soc. 131, 3057–3062.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVu, H., Pham, N. B. & Quinn, R. J. (2008). J. Biomol. Screen. 13, 265–275.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds