organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 1-cyclo­hexyl-6,7-dimeth­­oxy-3,4-di­hydro­iso­quinoline-3-carboxyl­ate

aSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa, and bSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 14 February 2011; accepted 9 March 2011; online 15 March 2011)

There are two independent mol­ecules in the asymmetric unit of the title compound, C19H25NO4. A single C—H⋯π inter­action and various inter­molecular contacts (2.65–2.83 Å) link the independent mol­ecules in the crystal structure. The N-containing six-membered ring assumes a twisted half-boat conformation.

Related literature

For related structures, see: Naicker et al. (2010a[Naicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010a). Tetrahedron Asymmetry, 21, 2859-2867.],b[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2010b). Acta Cryst. E66, o638.], 2011[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o228.]).

[Scheme 1]

Experimental

Crystal data
  • C19H25NO4

  • Mr = 331.40

  • Triclinic, [P \overline 1]

  • a = 9.5720 (2) Å

  • b = 10.8441 (4) Å

  • c = 17.5925 (6) Å

  • α = 80.941 (1)°

  • β = 75.267 (2)°

  • γ = 89.343 (2)°

  • V = 1743.25 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.44 × 0.38 × 0.35 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • 15272 measured reflections

  • 7670 independent reflections

  • 6167 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.05

  • 7670 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2B–C7B ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8A—H8A1⋯Cgi 0.99 2.96 3.9272 (13) 167
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is a precursor in the synthesis of novel chiral catalysts containing a tetrahydroisoquinoline framework. Upon oxidation of the sp2 hybridized nitrogen, the oxide form of this compound and derivatives are currently being tested in our laboratory as novel organocatalysts for asymmetric allylation reactions (Naicker et al. 2010a).

The structure has triclinic (P1) symmetry with two molecules in the asymmetric unit (Fig. 1). These two molecules are linked by various intermolecular short contact interactions and one C—H··· π (C2B—C7B ring) bond (Table 1). The crystal packing reveals that via the centre of symmetry operation the enantiomer generates its mirror image. This results in a layered packing along the a axis (Fig. 2).

From the crystal structure it is evident that the N-containing six membered ring assumes a twisted half boat conformation (Fig. 1). This heterocyclic ring within similar structures displays either a half chair ((Naicker et al. 2010b) or half boat (Naicker et al. 2011) conformation. A possible reason for the change is the introduction of the sp2 hybrized nitrogen atom.

As anticipated the cyclohexane moieties adopt chair conformations.

Related literature top

For related structures, see: Naicker et al. (2010a,b, 2011).

Experimental top

To a solution of methyl 2-(cyclohexanecarboxamido)-3-(3,4-dimethoxyphenyl)propanoate (0.30 g, 0.86 mmol) in toluene (20 ml), phosphoryl trichloride (8.7 eq, 0.68 ml) was added. The mixture was refluxed for 4 h. Thereafter the toluene was evapourated under reduced pressure and the resulting residue treated with aqueous saturated potassium carbonate (15 ml) and extracted with ethyl acetate (2 x 10 ml). The organic extracts were combined and dried over anhydrous magnesium sulfate and then concentrated to dryness affording the crude product which was purified by column chromatography, (1:1 ethyl acetate, hexane), Rf = 0.5. Recrystallization from chloroform at room temperrature afforded colourless crystals suitable for X-ray analysis.

Melting point 377–379 K.

IR (neat) νmax: 2928, 1738, 1514, 1249, 1149, 752 cm-1.

1H NMR (400 MHz, CDCl3) δ 7.05 (s, 1H), 6.70 (s, 1H), 4.29 (t, J = 8.4 Hz, 1H), 3.91 (s, 6H), 3.75 (s, 3H), 2.87 (m, 2H), 1.87–1.21 (m, 11H).

13C NMR (101 MHz, CDCl3) δ 173.57, 151.04, 147.77, 129.82, 121.36, 110.60, 108.80, 59.40, 56.33, 55.98, 52.25, 42.67, 31.44, 30.80, 28.55, 26.55, 26.42, 26.14.

Refinement top

All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were placed in idealized positions in a riding model with Uiso set at 1.2 or 1.5 times those of their parent atoms (1.2 for tertiary C—H, secondary C—H2 and aromatic C—H or N—H groups and 1.5 for methyl C—H3) and fixed C—H bond lengths (e.g. 0.88 Å for N—H and others ranging from 0.95 Å to 1.00 Å).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A partial projection of the title compound, viewed along the [100] plane.
Methyl 1-cyclohexyl-6,7-dimethoxy-3,4-dihydroisoquinoline-3-carboxylate top
Crystal data top
C19H25NO4Z = 4
Mr = 331.40F(000) = 712
Triclinic, P1Dx = 1.263 Mg m3
Hall symbol: -P 1Melting point: 377 K
a = 9.5720 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8441 (4) ÅCell parameters from 15272 reflections
c = 17.5925 (6) Åθ = 2.2–27.1°
α = 80.941 (1)°µ = 0.09 mm1
β = 75.267 (2)°T = 173 K
γ = 89.343 (2)°Block, colourless
V = 1743.25 (9) Å30.44 × 0.38 × 0.35 mm
Data collection top
Bruker Kappa DUO APEXII
diffractometer
6167 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 27.1°, θmin = 2.2°
1.2° ϕ scans and ωh = 1212
15272 measured reflectionsk = 1313
7670 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.3824P]
where P = (Fo2 + 2Fc2)/3
7670 reflections(Δ/σ)max < 0.001
433 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C19H25NO4γ = 89.343 (2)°
Mr = 331.40V = 1743.25 (9) Å3
Triclinic, P1Z = 4
a = 9.5720 (2) ÅMo Kα radiation
b = 10.8441 (4) ŵ = 0.09 mm1
c = 17.5925 (6) ÅT = 173 K
α = 80.941 (1)°0.44 × 0.38 × 0.35 mm
β = 75.267 (2)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
6167 reflections with I > 2σ(I)
15272 measured reflectionsRint = 0.014
7670 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
7670 reflectionsΔρmin = 0.27 e Å3
433 parameters
Special details top

Experimental. Half sphere of data collected using SAINT strategy (Bruker, 2006). 2000). Crystal to detector distance = 30 mm; combination of ϕ and ω scans of 1.0°, 20 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.26686 (9)0.71209 (8)0.19855 (6)0.0351 (2)
O2A0.44184 (10)0.82229 (9)0.10407 (5)0.0347 (2)
O3A0.92893 (9)0.57579 (9)0.43538 (5)0.0334 (2)
O4A0.69445 (10)0.64633 (10)0.52482 (5)0.0390 (2)
N1A0.60340 (10)0.63179 (9)0.17689 (6)0.0232 (2)
C1A0.69095 (12)0.57660 (10)0.21465 (7)0.0217 (2)
C2A0.69670 (12)0.59983 (10)0.29469 (7)0.0225 (2)
C3A0.81857 (13)0.57647 (11)0.32469 (7)0.0246 (2)
H3A0.90410.54850.29200.029*
C4A0.81548 (13)0.59380 (11)0.40118 (7)0.0259 (3)
C5A0.68716 (14)0.63287 (11)0.45005 (7)0.0277 (3)
C6A0.56750 (13)0.65742 (11)0.42009 (7)0.0280 (3)
H6A0.48160.68460.45290.034*
C7A0.57196 (13)0.64259 (11)0.34225 (7)0.0241 (2)
C8A0.44615 (13)0.67041 (11)0.30585 (7)0.0262 (3)
H8A10.38390.73260.33260.031*
H8A20.38730.59330.31200.031*
C9A0.50709 (12)0.72152 (11)0.21826 (7)0.0238 (2)
H9A0.56390.80040.21360.029*
C10A0.39021 (13)0.74971 (11)0.17448 (7)0.0247 (3)
C11A0.34173 (15)0.84768 (14)0.05488 (8)0.0380 (3)
H11A0.38970.90130.00490.057*
H11B0.25810.89010.08310.057*
H11C0.30950.76890.04320.057*
C12A0.78396 (12)0.47538 (11)0.17883 (7)0.0228 (2)
H12A0.88550.49110.18100.027*
C13A0.78454 (13)0.47279 (11)0.09229 (7)0.0263 (3)
H13A0.82430.55350.05950.032*
H13B0.68410.46200.08850.032*
C14A0.87518 (14)0.36646 (12)0.05994 (7)0.0323 (3)
H14A0.87160.36590.00430.039*
H14B0.97710.38060.06000.039*
C15A0.81992 (15)0.24052 (12)0.10999 (8)0.0338 (3)
H15A0.72130.22260.10570.041*
H15B0.88330.17400.08940.041*
C16A0.81694 (15)0.24008 (12)0.19685 (8)0.0315 (3)
H16A0.91720.24670.20190.038*
H16B0.77340.15990.22870.038*
C17A0.73078 (13)0.34755 (11)0.22988 (7)0.0266 (3)
H17A0.73870.34820.28480.032*
H17B0.62760.33390.23230.032*
C18A1.06746 (13)0.56069 (14)0.38401 (8)0.0335 (3)
H18A1.13950.54920.41520.050*
H18B1.09380.63520.34330.050*
H18C1.06420.48730.35830.050*
C19A0.56717 (17)0.68754 (16)0.57547 (8)0.0463 (4)
H19A0.58480.69390.62720.069*
H19B0.48730.62740.58290.069*
H19C0.54210.76950.55100.069*
O1B0.76423 (9)0.92685 (9)0.20742 (5)0.0338 (2)
O2B0.94374 (9)0.88901 (9)0.10537 (5)0.0351 (2)
O3B1.43063 (9)0.95138 (9)0.43879 (5)0.0307 (2)
O4B1.19740 (10)0.83840 (9)0.52876 (5)0.0363 (2)
N1B1.10515 (10)1.02495 (9)0.18028 (6)0.0216 (2)
C1B1.19338 (12)1.05972 (10)0.21725 (7)0.0203 (2)
C2B1.19881 (12)0.99731 (10)0.29783 (7)0.0212 (2)
C3B1.32033 (12)1.00537 (11)0.32793 (7)0.0230 (2)
H3B1.40541.04880.29510.028*
C4B1.31746 (13)0.95079 (11)0.40472 (7)0.0239 (2)
C5B1.18998 (13)0.88816 (11)0.45380 (7)0.0257 (3)
C6B1.07080 (13)0.87890 (11)0.42371 (7)0.0255 (3)
H6B0.98540.83600.45660.031*
C7B1.07523 (12)0.93198 (10)0.34560 (7)0.0221 (2)
C8B0.94865 (12)0.92380 (11)0.30996 (7)0.0239 (2)
H8B10.88860.99820.31670.029*
H8B20.88780.84840.33690.029*
C9B1.00823 (12)0.91704 (11)0.22208 (7)0.0219 (2)
H9B1.06490.83940.21730.026*
C10B0.89023 (12)0.91202 (10)0.17937 (7)0.0224 (2)
C11B0.84171 (15)0.88618 (14)0.05758 (8)0.0376 (3)
H11D0.89250.86880.00470.056*
H11E0.79580.96720.05230.056*
H11F0.76760.82060.08340.056*
C12B1.28788 (12)1.17590 (10)0.17986 (6)0.0215 (2)
H12B1.38831.15750.18440.026*
C13B1.29372 (13)1.21677 (11)0.09197 (7)0.0254 (3)
H13C1.33521.14960.06170.030*
H13D1.19441.23040.08590.030*
C14B1.38490 (14)1.33662 (12)0.05783 (7)0.0296 (3)
H14C1.48591.32140.06040.036*
H14D1.38501.36150.00120.036*
C15B1.32624 (15)1.44174 (12)0.10374 (8)0.0335 (3)
H15C1.38961.51730.08190.040*
H15D1.22851.46210.09710.040*
C16B1.31858 (14)1.40480 (12)0.19170 (8)0.0315 (3)
H16C1.27291.47200.22080.038*
H16D1.41781.39550.19870.038*
C17B1.23242 (13)1.28270 (11)0.22711 (7)0.0265 (3)
H17C1.12961.29610.22790.032*
H17D1.23821.25800.28280.032*
C18B1.56838 (13)0.99195 (14)0.38721 (7)0.0321 (3)
H18D1.64040.98810.41830.048*
H18E1.56311.07810.36120.048*
H18F1.59620.93750.34670.048*
C19B1.07091 (17)0.77248 (15)0.57943 (8)0.0439 (4)
H19D1.08820.74110.63150.066*
H19E1.04810.70210.55540.066*
H19F0.98960.82900.58610.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0238 (5)0.0336 (5)0.0472 (6)0.0030 (4)0.0116 (4)0.0005 (4)
O2A0.0292 (5)0.0439 (6)0.0305 (5)0.0037 (4)0.0111 (4)0.0005 (4)
O3A0.0270 (5)0.0492 (6)0.0246 (5)0.0019 (4)0.0088 (4)0.0040 (4)
O4A0.0411 (5)0.0547 (6)0.0238 (5)0.0090 (5)0.0089 (4)0.0134 (4)
N1A0.0210 (5)0.0224 (5)0.0256 (5)0.0019 (4)0.0049 (4)0.0038 (4)
C1A0.0195 (5)0.0215 (6)0.0225 (6)0.0007 (4)0.0031 (4)0.0026 (4)
C2A0.0239 (6)0.0204 (6)0.0227 (6)0.0008 (4)0.0051 (5)0.0029 (4)
C3A0.0237 (6)0.0248 (6)0.0241 (6)0.0017 (5)0.0044 (5)0.0032 (5)
C4A0.0270 (6)0.0255 (6)0.0252 (6)0.0008 (5)0.0086 (5)0.0010 (5)
C5A0.0344 (7)0.0273 (6)0.0215 (6)0.0009 (5)0.0067 (5)0.0045 (5)
C6A0.0286 (6)0.0272 (6)0.0260 (6)0.0037 (5)0.0024 (5)0.0058 (5)
C7A0.0247 (6)0.0212 (6)0.0255 (6)0.0019 (4)0.0052 (5)0.0037 (5)
C8A0.0222 (6)0.0275 (6)0.0289 (6)0.0043 (5)0.0045 (5)0.0080 (5)
C9A0.0224 (6)0.0209 (6)0.0288 (6)0.0021 (4)0.0069 (5)0.0054 (5)
C10A0.0251 (6)0.0192 (6)0.0311 (6)0.0056 (4)0.0075 (5)0.0074 (5)
C11A0.0378 (8)0.0496 (9)0.0302 (7)0.0153 (6)0.0151 (6)0.0076 (6)
C12A0.0200 (5)0.0254 (6)0.0234 (6)0.0035 (4)0.0059 (4)0.0051 (5)
C13A0.0285 (6)0.0273 (6)0.0217 (6)0.0034 (5)0.0043 (5)0.0032 (5)
C14A0.0352 (7)0.0352 (7)0.0253 (6)0.0065 (6)0.0030 (5)0.0096 (5)
C15A0.0390 (7)0.0289 (7)0.0353 (7)0.0073 (5)0.0083 (6)0.0126 (6)
C16A0.0340 (7)0.0261 (6)0.0349 (7)0.0088 (5)0.0099 (6)0.0051 (5)
C17A0.0292 (6)0.0260 (6)0.0237 (6)0.0055 (5)0.0060 (5)0.0026 (5)
C18A0.0246 (6)0.0451 (8)0.0285 (7)0.0013 (5)0.0068 (5)0.0011 (6)
C19A0.0537 (9)0.0590 (10)0.0279 (7)0.0144 (8)0.0072 (6)0.0183 (7)
O1B0.0220 (5)0.0456 (6)0.0363 (5)0.0022 (4)0.0075 (4)0.0139 (4)
O2B0.0273 (5)0.0546 (6)0.0272 (5)0.0014 (4)0.0088 (4)0.0142 (4)
O3B0.0245 (4)0.0466 (5)0.0217 (4)0.0005 (4)0.0082 (3)0.0035 (4)
O4B0.0373 (5)0.0481 (6)0.0204 (4)0.0070 (4)0.0091 (4)0.0068 (4)
N1B0.0198 (5)0.0214 (5)0.0228 (5)0.0009 (4)0.0046 (4)0.0026 (4)
C1B0.0195 (5)0.0203 (5)0.0202 (5)0.0011 (4)0.0035 (4)0.0029 (4)
C2B0.0229 (6)0.0194 (5)0.0210 (6)0.0002 (4)0.0052 (4)0.0030 (4)
C3B0.0232 (6)0.0232 (6)0.0214 (6)0.0014 (4)0.0043 (4)0.0023 (4)
C4B0.0241 (6)0.0260 (6)0.0231 (6)0.0014 (5)0.0076 (5)0.0057 (5)
C5B0.0314 (6)0.0261 (6)0.0187 (6)0.0000 (5)0.0064 (5)0.0010 (5)
C6B0.0262 (6)0.0248 (6)0.0226 (6)0.0042 (5)0.0029 (5)0.0004 (5)
C7B0.0238 (6)0.0198 (5)0.0224 (6)0.0002 (4)0.0053 (4)0.0030 (4)
C8B0.0213 (6)0.0247 (6)0.0241 (6)0.0033 (4)0.0045 (5)0.0006 (5)
C9B0.0210 (5)0.0200 (5)0.0245 (6)0.0009 (4)0.0058 (4)0.0028 (4)
C10B0.0240 (6)0.0176 (5)0.0251 (6)0.0031 (4)0.0059 (5)0.0024 (4)
C11B0.0383 (8)0.0505 (9)0.0275 (7)0.0101 (6)0.0141 (6)0.0060 (6)
C12B0.0202 (5)0.0228 (6)0.0208 (6)0.0030 (4)0.0059 (4)0.0002 (4)
C13B0.0267 (6)0.0279 (6)0.0202 (6)0.0032 (5)0.0055 (5)0.0008 (5)
C14B0.0294 (6)0.0319 (7)0.0235 (6)0.0041 (5)0.0046 (5)0.0049 (5)
C15B0.0352 (7)0.0241 (6)0.0370 (7)0.0039 (5)0.0072 (6)0.0047 (5)
C16B0.0344 (7)0.0245 (6)0.0353 (7)0.0063 (5)0.0082 (6)0.0047 (5)
C17B0.0293 (6)0.0256 (6)0.0233 (6)0.0057 (5)0.0044 (5)0.0037 (5)
C18B0.0230 (6)0.0485 (8)0.0256 (6)0.0012 (5)0.0060 (5)0.0087 (6)
C19B0.0484 (9)0.0524 (9)0.0244 (7)0.0128 (7)0.0077 (6)0.0116 (6)
Geometric parameters (Å, º) top
O1A—C10A1.2009 (15)O1B—C10B1.2008 (14)
O2A—C10A1.3373 (15)O2B—C10B1.3340 (14)
O2A—C11A1.4436 (15)O2B—C11B1.4449 (15)
O3A—C4A1.3674 (14)O3B—C4B1.3654 (14)
O3A—C18A1.4262 (15)O3B—C18B1.4263 (15)
O4A—C5A1.3652 (15)O4B—C5B1.3631 (14)
O4A—C19A1.4278 (17)O4B—C19B1.4289 (16)
N1A—C1A1.2838 (15)N1B—C1B1.2815 (14)
N1A—C9A1.4790 (14)N1B—C9B1.4757 (14)
C1A—C2A1.4835 (16)C1B—C2B1.4849 (16)
C1A—C12A1.5181 (15)C1B—C12B1.5168 (15)
C2A—C7A1.3936 (16)C2B—C7B1.3905 (16)
C2A—C3A1.4028 (16)C2B—C3B1.4040 (16)
C3A—C4A1.3807 (17)C3B—C4B1.3806 (16)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.4117 (17)C4B—C5B1.4122 (16)
C5A—C6A1.3843 (18)C5B—C6B1.3851 (17)
C6A—C7A1.3937 (17)C6B—C7B1.3941 (16)
C6A—H6A0.9500C6B—H6B0.9500
C7A—C8A1.5081 (16)C7B—C8B1.5085 (16)
C8A—C9A1.5176 (17)C8B—C9B1.5188 (16)
C8A—H8A10.9900C8B—H8B10.9900
C8A—H8A20.9900C8B—H8B20.9900
C9A—C10A1.5148 (16)C9B—C10B1.5130 (16)
C9A—H9A1.0000C9B—H9B1.0000
C11A—H11A0.9800C11B—H11D0.9800
C11A—H11B0.9800C11B—H11E0.9800
C11A—H11C0.9800C11B—H11F0.9800
C12A—C13A1.5257 (16)C12B—C13B1.5268 (15)
C12A—C17A1.5424 (16)C12B—C17B1.5423 (16)
C12A—H12A1.0000C12B—H12B1.0000
C13A—C14A1.5293 (17)C13B—C14B1.5248 (16)
C13A—H13A0.9900C13B—H13C0.9900
C13A—H13B0.9900C13B—H13D0.9900
C14A—C15A1.5235 (19)C14B—C15B1.5204 (18)
C14A—H14A0.9900C14B—H14C0.9900
C14A—H14B0.9900C14B—H14D0.9900
C15A—C16A1.5204 (18)C15B—C16B1.5193 (18)
C15A—H15A0.9900C15B—H15C0.9900
C15A—H15B0.9900C15B—H15D0.9900
C16A—C17A1.5243 (16)C16B—C17B1.5249 (16)
C16A—H16A0.9900C16B—H16C0.9900
C16A—H16B0.9900C16B—H16D0.9900
C17A—H17A0.9900C17B—H17C0.9900
C17A—H17B0.9900C17B—H17D0.9900
C18A—H18A0.9800C18B—H18D0.9800
C18A—H18B0.9800C18B—H18E0.9800
C18A—H18C0.9800C18B—H18F0.9800
C19A—H19A0.9800C19B—H19D0.9800
C19A—H19B0.9800C19B—H19E0.9800
C19A—H19C0.9800C19B—H19F0.9800
C10A—O2A—C11A115.80 (10)C10B—O2B—C11B116.42 (10)
C4A—O3A—C18A117.12 (9)C4B—O3B—C18B117.00 (9)
C5A—O4A—C19A116.57 (11)C5B—O4B—C19B116.46 (10)
C1A—N1A—C9A115.69 (10)C1B—N1B—C9B116.15 (9)
N1A—C1A—C2A122.95 (10)N1B—C1B—C2B122.85 (10)
N1A—C1A—C12A118.45 (10)N1B—C1B—C12B118.43 (10)
C2A—C1A—C12A118.40 (10)C2B—C1B—C12B118.53 (9)
C7A—C2A—C3A119.61 (11)C7B—C2B—C3B119.51 (10)
C7A—C2A—C1A117.24 (10)C7B—C2B—C1B117.55 (10)
C3A—C2A—C1A123.11 (10)C3B—C2B—C1B122.90 (10)
C4A—C3A—C2A120.67 (11)C4B—C3B—C2B120.68 (11)
C4A—C3A—H3A119.7C4B—C3B—H3B119.7
C2A—C3A—H3A119.7C2B—C3B—H3B119.7
O3A—C4A—C3A125.14 (11)O3B—C4B—C3B125.04 (11)
O3A—C4A—C5A115.40 (10)O3B—C4B—C5B115.45 (10)
C3A—C4A—C5A119.46 (11)C3B—C4B—C5B119.51 (11)
O4A—C5A—C6A125.05 (11)O4B—C5B—C6B125.12 (11)
O4A—C5A—C4A115.09 (11)O4B—C5B—C4B115.13 (10)
C6A—C5A—C4A119.83 (11)C6B—C5B—C4B119.74 (11)
C5A—C6A—C7A120.57 (11)C5B—C6B—C7B120.51 (11)
C5A—C6A—H6A119.7C5B—C6B—H6B119.7
C7A—C6A—H6A119.7C7B—C6B—H6B119.7
C2A—C7A—C6A119.80 (11)C2B—C7B—C6B120.00 (11)
C2A—C7A—C8A117.26 (10)C2B—C7B—C8B117.49 (10)
C6A—C7A—C8A122.94 (11)C6B—C7B—C8B122.51 (10)
C7A—C8A—C9A107.65 (9)C7B—C8B—C9B107.78 (9)
C7A—C8A—H8A1110.2C7B—C8B—H8B1110.2
C9A—C8A—H8A1110.2C9B—C8B—H8B1110.2
C7A—C8A—H8A2110.2C7B—C8B—H8B2110.2
C9A—C8A—H8A2110.2C9B—C8B—H8B2110.2
H8A1—C8A—H8A2108.5H8B1—C8B—H8B2108.5
N1A—C9A—C10A106.68 (9)N1B—C9B—C10B107.54 (9)
N1A—C9A—C8A111.50 (9)N1B—C9B—C8B111.99 (9)
C10A—C9A—C8A112.55 (10)C10B—C9B—C8B112.49 (9)
N1A—C9A—H9A108.7N1B—C9B—H9B108.2
C10A—C9A—H9A108.7C10B—C9B—H9B108.2
C8A—C9A—H9A108.7C8B—C9B—H9B108.2
O1A—C10A—O2A123.43 (11)O1B—C10B—O2B123.52 (11)
O1A—C10A—C9A125.32 (11)O1B—C10B—C9B125.18 (11)
O2A—C10A—C9A111.24 (10)O2B—C10B—C9B111.29 (10)
O2A—C11A—H11A109.5O2B—C11B—H11D109.5
O2A—C11A—H11B109.5O2B—C11B—H11E109.5
H11A—C11A—H11B109.5H11D—C11B—H11E109.5
O2A—C11A—H11C109.5O2B—C11B—H11F109.5
H11A—C11A—H11C109.5H11D—C11B—H11F109.5
H11B—C11A—H11C109.5H11E—C11B—H11F109.5
C1A—C12A—C13A113.27 (9)C1B—C12B—C13B113.24 (9)
C1A—C12A—C17A108.99 (9)C1B—C12B—C17B109.00 (9)
C13A—C12A—C17A109.99 (10)C13B—C12B—C17B110.04 (9)
C1A—C12A—H12A108.1C1B—C12B—H12B108.1
C13A—C12A—H12A108.1C13B—C12B—H12B108.1
C17A—C12A—H12A108.1C17B—C12B—H12B108.1
C12A—C13A—C14A111.25 (10)C14B—C13B—C12B111.38 (10)
C12A—C13A—H13A109.4C14B—C13B—H13C109.4
C14A—C13A—H13A109.4C12B—C13B—H13C109.4
C12A—C13A—H13B109.4C14B—C13B—H13D109.4
C14A—C13A—H13B109.4C12B—C13B—H13D109.4
H13A—C13A—H13B108.0H13C—C13B—H13D108.0
C15A—C14A—C13A111.17 (10)C15B—C14B—C13B111.03 (10)
C15A—C14A—H14A109.4C15B—C14B—H14C109.4
C13A—C14A—H14A109.4C13B—C14B—H14C109.4
C15A—C14A—H14B109.4C15B—C14B—H14D109.4
C13A—C14A—H14B109.4C13B—C14B—H14D109.4
H14A—C14A—H14B108.0H14C—C14B—H14D108.0
C16A—C15A—C14A110.90 (11)C16B—C15B—C14B110.97 (10)
C16A—C15A—H15A109.5C16B—C15B—H15C109.4
C14A—C15A—H15A109.5C14B—C15B—H15C109.4
C16A—C15A—H15B109.5C16B—C15B—H15D109.4
C14A—C15A—H15B109.5C14B—C15B—H15D109.4
H15A—C15A—H15B108.0H15C—C15B—H15D108.0
C15A—C16A—C17A111.81 (10)C15B—C16B—C17B111.83 (10)
C15A—C16A—H16A109.3C15B—C16B—H16C109.2
C17A—C16A—H16A109.3C17B—C16B—H16C109.2
C15A—C16A—H16B109.3C15B—C16B—H16D109.3
C17A—C16A—H16B109.3C17B—C16B—H16D109.2
H16A—C16A—H16B107.9H16C—C16B—H16D107.9
C16A—C17A—C12A112.32 (10)C16B—C17B—C12B112.47 (10)
C16A—C17A—H17A109.1C16B—C17B—H17C109.1
C12A—C17A—H17A109.1C12B—C17B—H17C109.1
C16A—C17A—H17B109.1C16B—C17B—H17D109.1
C12A—C17A—H17B109.1C12B—C17B—H17D109.1
H17A—C17A—H17B107.9H17C—C17B—H17D107.8
O3A—C18A—H18A109.5O3B—C18B—H18D109.5
O3A—C18A—H18B109.5O3B—C18B—H18E109.5
H18A—C18A—H18B109.5H18D—C18B—H18E109.5
O3A—C18A—H18C109.5O3B—C18B—H18F109.5
H18A—C18A—H18C109.5H18D—C18B—H18F109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5
O4A—C19A—H19A109.5O4B—C19B—H19D109.5
O4A—C19A—H19B109.5O4B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
O4A—C19A—H19C109.5O4B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
C9A—N1A—C1A—C2A0.10 (16)C9B—N1B—C1B—C2B0.58 (16)
C9A—N1A—C1A—C12A174.91 (9)C9B—N1B—C1B—C12B175.56 (9)
N1A—C1A—C2A—C7A25.10 (16)N1B—C1B—C2B—C7B23.57 (16)
C12A—C1A—C2A—C7A149.71 (11)C12B—C1B—C2B—C7B151.40 (10)
N1A—C1A—C2A—C3A157.28 (11)N1B—C1B—C2B—C3B158.64 (11)
C12A—C1A—C2A—C3A27.91 (16)C12B—C1B—C2B—C3B26.38 (16)
C7A—C2A—C3A—C4A0.89 (17)C7B—C2B—C3B—C4B0.99 (17)
C1A—C2A—C3A—C4A176.68 (11)C1B—C2B—C3B—C4B176.75 (10)
C18A—O3A—C4A—C3A12.24 (18)C18B—O3B—C4B—C3B11.50 (17)
C18A—O3A—C4A—C5A167.90 (11)C18B—O3B—C4B—C5B168.27 (11)
C2A—C3A—C4A—O3A178.80 (11)C2B—C3B—C4B—O3B178.65 (11)
C2A—C3A—C4A—C5A1.35 (18)C2B—C3B—C4B—C5B1.11 (17)
C19A—O4A—C5A—C6A0.80 (19)C19B—O4B—C5B—C6B0.35 (19)
C19A—O4A—C5A—C4A179.10 (12)C19B—O4B—C5B—C4B178.92 (12)
O3A—C4A—C5A—O4A0.41 (16)O3B—C4B—C5B—O4B0.79 (16)
C3A—C4A—C5A—O4A179.45 (11)C3B—C4B—C5B—O4B179.42 (10)
O3A—C4A—C5A—C6A177.99 (11)O3B—C4B—C5B—C6B177.86 (11)
C3A—C4A—C5A—C6A2.15 (18)C3B—C4B—C5B—C6B1.92 (18)
O4A—C5A—C6A—C7A178.93 (11)O4B—C5B—C6B—C7B179.14 (11)
C4A—C5A—C6A—C7A0.70 (19)C4B—C5B—C6B—C7B0.63 (18)
C3A—C2A—C7A—C6A2.34 (17)C3B—C2B—C7B—C6B2.29 (17)
C1A—C2A—C7A—C6A175.37 (11)C1B—C2B—C7B—C6B175.57 (10)
C3A—C2A—C7A—C8A177.90 (10)C3B—C2B—C7B—C8B178.78 (10)
C1A—C2A—C7A—C8A4.38 (15)C1B—C2B—C7B—C8B3.36 (15)
C5A—C6A—C7A—C2A1.55 (18)C5B—C6B—C7B—C2B1.49 (18)
C5A—C6A—C7A—C8A178.71 (11)C5B—C6B—C7B—C8B179.64 (11)
C2A—C7A—C8A—C9A34.63 (14)C2B—C7B—C8B—C9B34.32 (14)
C6A—C7A—C8A—C9A145.63 (11)C6B—C7B—C8B—C9B146.78 (11)
C1A—N1A—C9A—C10A165.90 (10)C1B—N1B—C9B—C10B165.87 (10)
C1A—N1A—C9A—C8A42.66 (13)C1B—N1B—C9B—C8B41.79 (13)
C7A—C8A—C9A—N1A58.53 (12)C7B—C8B—C9B—N1B57.19 (12)
C7A—C8A—C9A—C10A178.37 (9)C7B—C8B—C9B—C10B178.45 (9)
C11A—O2A—C10A—O1A3.78 (17)C11B—O2B—C10B—O1B1.87 (18)
C11A—O2A—C10A—C9A175.80 (10)C11B—O2B—C10B—C9B177.99 (10)
N1A—C9A—C10A—O1A106.59 (13)N1B—C9B—C10B—O1B115.11 (12)
C8A—C9A—C10A—O1A16.00 (16)C8B—C9B—C10B—O1B8.66 (16)
N1A—C9A—C10A—O2A72.97 (11)N1B—C9B—C10B—O2B64.74 (12)
C8A—C9A—C10A—O2A164.44 (10)C8B—C9B—C10B—O2B171.48 (10)
N1A—C1A—C12A—C13A12.96 (15)N1B—C1B—C12B—C13B15.49 (15)
C2A—C1A—C12A—C13A172.00 (10)C2B—C1B—C12B—C13B169.31 (10)
N1A—C1A—C12A—C17A109.84 (12)N1B—C1B—C12B—C17B107.35 (12)
C2A—C1A—C12A—C17A65.21 (13)C2B—C1B—C12B—C17B67.85 (13)
C1A—C12A—C13A—C14A177.95 (10)C1B—C12B—C13B—C14B177.73 (10)
C17A—C12A—C13A—C14A55.72 (13)C17B—C12B—C13B—C14B55.46 (13)
C12A—C13A—C14A—C15A57.70 (14)C12B—C13B—C14B—C15B57.98 (13)
C13A—C14A—C15A—C16A56.30 (14)C13B—C14B—C15B—C16B56.74 (14)
C14A—C15A—C16A—C17A54.43 (15)C14B—C15B—C16B—C17B54.43 (15)
C15A—C16A—C17A—C12A53.90 (14)C15B—C16B—C17B—C12B53.30 (14)
C1A—C12A—C17A—C16A178.84 (10)C1B—C12B—C17B—C16B178.07 (10)
C13A—C12A—C17A—C16A54.10 (13)C13B—C12B—C17B—C16B53.33 (13)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2B–C7B ring.
D—H···AD—HH···AD···AD—H···A
C8A—H8A1···Cgi0.992.963.9272 (13)167
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H25NO4
Mr331.40
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.5720 (2), 10.8441 (4), 17.5925 (6)
α, β, γ (°)80.941 (1), 75.267 (2), 89.343 (2)
V3)1743.25 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.38 × 0.35
Data collection
DiffractometerBruker Kappa DUO APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15272, 7670, 6167
Rint0.014
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.05
No. of reflections7670
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.27

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2B–C7B ring.
D—H···AD—HH···AD···AD—H···A
C8A—H8A1···Cgi0.992.963.9272 (13)167
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors wish to thank Dr Hong Su from the Chemistry Department of the University of Cape Town for her assistance with the data collection.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2010b). Acta Cryst. E66, o638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o228.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010a). Tetrahedron Asymmetry, 21, 2859–2867.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds