organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-(4-Chloro­benzyl­­idene)-5-(4-methyl­phen­yl)-1,3,4-thia­diazol-2-amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 7 March 2011; accepted 8 March 2011; online 12 March 2011)

The title compound, C16H12ClN3S, was synthesized by the reaction of 5-(4-methyl­phen­yl)-1,3,4-thia­diazol-2-amine and 4-chloro­benzaldehyde. The thia­diazole ring is essentially planar with mean deviation of 0.0042 Å.

Related literature

For the biological activity of 1,3,4-thia­diazole derivatives, see: He et al. (2010[He, Q., An, K., Wang, P., Yu, P. & Wan, R. (2010). Acta Cryst. E66, o1716.]); Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ, 20, 1903-1905.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12ClN3S

  • Mr = 313.80

  • Triclinic, [P \overline 1]

  • a = 5.7940 (12) Å

  • b = 8.7510 (18) Å

  • c = 14.965 (3) Å

  • α = 98.64 (3)°

  • β = 90.66 (3)°

  • γ = 99.45 (3)°

  • V = 739.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.891, Tmax = 0.962

  • 3001 measured reflections

  • 2708 independent reflections

  • 1816 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.179

  • S = 1.00

  • 2708 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996; Wang et al., 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999).

We are focusing our synthetic and structural studies on thiadiazole derivatives and published the structure of 2-(4-Fluoro-benzylidene)-[5-(4-methoxy-phenyl)-[1,3,4]thiadiazol-2-yl]-amine (He et al., 2010). We report here the crystal structure of the titled compound,(I). The molecular structure of (I) is shown in Fig.1. In this structure, ring A (S/C8/N1/N2/C9/) is a planar five-membered ring and the mean deviation from plane is 0.0042 Å. In this plane, the standard deviations for the distances of S, C8, N1, N2 and C9 to mean plane are 0.0049, -0.0032, -0.0006, -0.0018, 0.0057 and -0.0068, respectively. Ring B(C2—C7) and Ring C(C11—C16) are, of course, planar. The dihedral angles between them are A/B=21.9 (2) Å, A/C= 22.6 (3) Å, B/C =44.3 (2) Å, respectively. The intramolecular C—H···S hydrogen bonds (Table 1) result in the formation of two planar five-membered rings D(S/C8/C5/C6/H6A) and E(S/C9/N3/C10/H10A) which oriented with respect to the adjacent ring A at dihedral angles of A/D=18.2 (4) Å, A/E= 6.0 (4) Å. So ring A and ring E are nearly coplanar.

Related literature top

For the biological activity of 1,3,4-thiadiazole derivatives, see: He et al. (2010); Nakagawa et al. (1996); Wang et al. (1999).

Experimental top

5-(4-methylphenyl)-1,3,4-thiadiazol-2-yl amine (5 mmol) and 4-chlorobenzaldehyde (50 ml) were added in toluene, refluxed until stoichiometric water was collected in a Dean-Stark water separator. The reaction mixture was left to cool to room temperature, filtered, and the filter cake was crystallized from acetone to give pure compound (I) (m.p. 415–416 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were positioned geometrically, with C—H=0.98, 0.97, 0.96 and 0.93 Å for methine, methylene, methyl and aromatic H atoms,respectively,and constrained to ride on their parent atoms, with Uiso(H)=xUeq(C), where x=1.5 for methyl H atoms and x=1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular C—H···S hydrogen bonds.
[Figure 2] Fig. 2. A packing diagram for (I). Dashed lines indicate intramolecular C—H···S hydrogen bonds.
(E)-N-(4-Chlorobenzylidene)-5-(4-methylphenyl)-1,3,4- thiadiazol-2-amine top
Crystal data top
C16H12ClN3SZ = 2
Mr = 313.80F(000) = 324
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Melting point = 415–416 K
a = 5.7940 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7510 (18) ÅCell parameters from 25 reflections
c = 14.965 (3) Åθ = 9–12°
α = 98.64 (3)°µ = 0.40 mm1
β = 90.66 (3)°T = 293 K
γ = 99.45 (3)°Plate, colorless
V = 739.5 (3) Å30.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1816 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.4°, θmin = 1.4°
ω/2θ scansh = 06
Absorption correction: ψ scan
(North et al.,1968)
k = 1010
Tmin = 0.891, Tmax = 0.962l = 1818
3001 measured reflections3 standard reflections every 200 reflections
2708 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.097P)2]
where P = (Fo2 + 2Fc2)/3
2708 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H12ClN3Sγ = 99.45 (3)°
Mr = 313.80V = 739.5 (3) Å3
Triclinic, P1Z = 2
a = 5.7940 (12) ÅMo Kα radiation
b = 8.7510 (18) ŵ = 0.40 mm1
c = 14.965 (3) ÅT = 293 K
α = 98.64 (3)°0.30 × 0.10 × 0.10 mm
β = 90.66 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1816 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al.,1968)
Rint = 0.027
Tmin = 0.891, Tmax = 0.9623 standard reflections every 200 reflections
3001 measured reflections intensity decay: 1%
2708 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
2708 reflectionsΔρmin = 0.33 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.23283 (16)0.39838 (13)0.35972 (7)0.0476 (3)
Cl0.1368 (3)0.07874 (15)0.83792 (8)0.0817 (5)
N10.6673 (6)0.4295 (4)0.3257 (2)0.0519 (9)
C10.3679 (10)0.7600 (6)0.0164 (3)0.0755 (15)
H1B0.20810.73570.03880.113*
H1C0.46730.72120.06220.113*
H1D0.41250.87150.00080.113*
N20.6450 (6)0.3517 (4)0.3990 (2)0.0541 (9)
C20.3925 (8)0.6843 (5)0.0659 (3)0.0514 (10)
N30.3694 (6)0.2419 (4)0.4943 (2)0.0453 (8)
C30.6064 (8)0.7020 (5)0.1130 (3)0.0549 (11)
H3B0.73610.76320.09270.066*
C40.6334 (7)0.6324 (5)0.1885 (3)0.0509 (10)
H4A0.77840.64800.21880.061*
C50.4413 (6)0.5384 (4)0.2189 (2)0.0411 (9)
C60.2262 (7)0.5216 (5)0.1734 (3)0.0484 (10)
H6A0.09570.46130.19370.058*
C70.2041 (7)0.5928 (5)0.0990 (3)0.0527 (10)
H7A0.05800.57940.06980.063*
C80.4687 (6)0.4610 (4)0.2982 (2)0.0393 (8)
C90.4290 (7)0.3246 (4)0.4246 (3)0.0431 (9)
C100.1634 (7)0.2334 (4)0.5231 (3)0.0453 (9)
H10A0.05820.28430.49640.054*
C110.0852 (7)0.1474 (4)0.5959 (2)0.0433 (9)
C120.2161 (7)0.0438 (4)0.6275 (3)0.0455 (9)
H12A0.35160.02360.59860.055*
C130.1470 (8)0.0277 (5)0.7001 (3)0.0536 (10)
H13A0.23340.09690.72070.064*
C140.0557 (8)0.0053 (5)0.7428 (3)0.0513 (10)
C150.1919 (7)0.1018 (5)0.7109 (3)0.0529 (10)
H15A0.32940.11950.73910.063*
C160.1227 (7)0.1715 (5)0.6373 (3)0.0481 (10)
H16A0.21530.23540.61480.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0299 (5)0.0636 (7)0.0531 (6)0.0081 (4)0.0042 (4)0.0203 (5)
Cl0.1063 (11)0.0751 (9)0.0674 (8)0.0093 (8)0.0292 (8)0.0275 (7)
N10.0352 (18)0.065 (2)0.061 (2)0.0123 (16)0.0090 (16)0.0222 (18)
C10.091 (4)0.078 (3)0.058 (3)0.004 (3)0.012 (3)0.019 (2)
N20.0350 (19)0.069 (2)0.064 (2)0.0163 (17)0.0095 (16)0.0223 (18)
C20.062 (3)0.051 (2)0.041 (2)0.011 (2)0.010 (2)0.0053 (18)
N30.0394 (18)0.0472 (18)0.0524 (19)0.0119 (15)0.0037 (15)0.0125 (15)
C30.049 (3)0.057 (3)0.057 (3)0.000 (2)0.016 (2)0.013 (2)
C40.039 (2)0.055 (2)0.056 (2)0.0050 (19)0.0035 (18)0.006 (2)
C50.040 (2)0.039 (2)0.042 (2)0.0035 (17)0.0042 (16)0.0024 (16)
C60.038 (2)0.058 (2)0.047 (2)0.0003 (18)0.0041 (17)0.0078 (18)
C70.043 (2)0.064 (3)0.048 (2)0.003 (2)0.0022 (18)0.009 (2)
C80.0298 (19)0.040 (2)0.047 (2)0.0063 (16)0.0047 (16)0.0023 (16)
C90.039 (2)0.045 (2)0.046 (2)0.0113 (17)0.0026 (17)0.0051 (17)
C100.041 (2)0.047 (2)0.050 (2)0.0121 (18)0.0021 (18)0.0084 (18)
C110.038 (2)0.046 (2)0.043 (2)0.0069 (17)0.0031 (17)0.0010 (17)
C120.037 (2)0.044 (2)0.056 (2)0.0080 (17)0.0081 (18)0.0073 (18)
C130.056 (3)0.049 (2)0.058 (3)0.013 (2)0.005 (2)0.0115 (19)
C140.060 (3)0.043 (2)0.048 (2)0.000 (2)0.005 (2)0.0051 (18)
C150.038 (2)0.054 (2)0.064 (3)0.0032 (19)0.0130 (19)0.003 (2)
C160.041 (2)0.053 (2)0.052 (2)0.0108 (19)0.0015 (18)0.0098 (19)
Geometric parameters (Å, º) top
S—C81.718 (4)C5—C61.389 (5)
S—C91.748 (4)C5—C81.471 (5)
Cl—C141.734 (4)C6—C71.369 (5)
N1—C81.303 (5)C6—H6A0.9300
N1—N21.371 (4)C7—H7A0.9300
C1—C21.500 (6)C10—C111.451 (5)
C1—H1B0.9600C10—H10A0.9300
C1—H1C0.9600C11—C161.393 (5)
C1—H1D0.9600C11—C121.402 (5)
N2—C91.308 (5)C12—C131.366 (5)
C2—C71.386 (6)C12—H12A0.9300
C2—C31.392 (6)C13—C141.394 (6)
N3—C101.268 (5)C13—H13A0.9300
N3—C91.372 (5)C14—C151.376 (6)
C3—C41.381 (5)C15—C161.371 (5)
C3—H3B0.9300C15—H15A0.9300
C4—C51.395 (5)C16—H16A0.9300
C4—H4A0.9300
C8—S—C986.66 (18)N1—C8—C5123.9 (3)
C8—N1—N2112.6 (3)N1—C8—S114.6 (3)
C2—C1—H1B109.5C5—C8—S121.4 (3)
C2—C1—H1C109.5N2—C9—N3121.5 (3)
H1B—C1—H1C109.5N2—C9—S113.3 (3)
C2—C1—H1D109.5N3—C9—S125.2 (3)
H1B—C1—H1D109.5N3—C10—C11122.6 (4)
H1C—C1—H1D109.5N3—C10—H10A118.7
C9—N2—N1112.7 (3)C11—C10—H10A118.7
C7—C2—C3116.6 (4)C16—C11—C12119.0 (4)
C7—C2—C1121.8 (4)C16—C11—C10119.1 (4)
C3—C2—C1121.6 (4)C12—C11—C10121.9 (3)
C10—N3—C9119.0 (3)C13—C12—C11120.8 (4)
C4—C3—C2122.5 (4)C13—C12—H12A119.6
C4—C3—H3B118.7C11—C12—H12A119.6
C2—C3—H3B118.7C12—C13—C14118.6 (4)
C3—C4—C5119.5 (4)C12—C13—H13A120.7
C3—C4—H4A120.3C14—C13—H13A120.7
C5—C4—H4A120.3C15—C14—C13121.6 (4)
C6—C5—C4118.5 (4)C15—C14—Cl119.7 (3)
C6—C5—C8121.4 (3)C13—C14—Cl118.7 (3)
C4—C5—C8120.0 (3)C16—C15—C14119.3 (4)
C7—C6—C5120.8 (4)C16—C15—H15A120.4
C7—C6—H6A119.6C14—C15—H15A120.4
C5—C6—H6A119.6C15—C16—C11120.5 (4)
C6—C7—C2122.1 (4)C15—C16—H16A119.7
C6—C7—H7A119.0C11—C16—H16A119.7
C2—C7—H7A119.0
C8—N1—N2—C90.7 (5)N1—N2—C9—N3177.1 (3)
C7—C2—C3—C40.4 (6)N1—N2—C9—S1.2 (5)
C1—C2—C3—C4179.5 (4)C10—N3—C9—N2172.4 (4)
C2—C3—C4—C50.9 (6)C10—N3—C9—S9.6 (5)
C3—C4—C5—C61.8 (6)C8—S—C9—N21.0 (3)
C3—C4—C5—C8178.8 (3)C8—S—C9—N3177.2 (3)
C4—C5—C6—C71.5 (6)C9—N3—C10—C11179.5 (3)
C8—C5—C6—C7179.2 (3)N3—C10—C11—C16165.7 (4)
C5—C6—C7—C20.1 (6)N3—C10—C11—C1212.5 (6)
C3—C2—C7—C60.8 (6)C16—C11—C12—C132.7 (6)
C1—C2—C7—C6179.1 (4)C10—C11—C12—C13175.5 (4)
N2—N1—C8—C5177.7 (3)C11—C12—C13—C140.5 (6)
N2—N1—C8—S0.1 (4)C12—C13—C14—C153.0 (6)
C6—C5—C8—N1157.1 (4)C12—C13—C14—Cl177.2 (3)
C4—C5—C8—N123.5 (6)C13—C14—C15—C162.2 (6)
C6—C5—C8—S20.5 (5)Cl—C14—C15—C16178.0 (3)
C4—C5—C8—S158.9 (3)C14—C15—C16—C111.1 (6)
C9—S—C8—N10.6 (3)C12—C11—C16—C153.5 (6)
C9—S—C8—C5177.2 (3)C10—C11—C16—C15174.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···S0.932.763.139 (5)106
C10—H10A···S0.932.563.019 (4)111

Experimental details

Crystal data
Chemical formulaC16H12ClN3S
Mr313.80
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.7940 (12), 8.7510 (18), 14.965 (3)
α, β, γ (°)98.64 (3), 90.66 (3), 99.45 (3)
V3)739.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al.,1968)
Tmin, Tmax0.891, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
3001, 2708, 1816
Rint0.027
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.179, 1.00
No. of reflections2708
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.33

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···S0.932.763.139 (5)106
C10—H10A···S0.932.563.019 (4)111
 

Acknowledgements

The authors would like to thank Professor Hua-qin Wang of Nanjing University for carrying out the X-ray crystallographic analysis.

References

First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHe, Q., An, K., Wang, P., Yu, P. & Wan, R. (2010). Acta Cryst. E66, o1716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ, 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds