organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Nitro­quinoline

aLiaoning University of Traditional Chinese Medicine, Dalian 116600, People's Republic of China
*Correspondence e-mail: lnzyxuliang@eyou.com

(Received 14 March 2011; accepted 17 March 2011; online 23 March 2011)

The molecule of the title compound, C9H6N2O2, is almost planar, with a dihedral angle of 3.0 (9)° between the pyridine and benzene rings.

Related literature

For the first synthesis of 8-nitro­quinoline, see: Königs (1879[Königs, W. (1879). Chem. Ber. 12, 448-451.]). The crystal studied was synthesised according to the method of Yale & Bernstein (1948[Yale, H. L. & Bernstein, J. (1948). J. Am. Chem. Soc. 70, 254-254.]). For the pharmacological activity of quinoline derivatives, see: Franck et al. (2004[Franck, X., Fournet, A., Prina, E., Mahieux, R., Hocquemiller, R. & Figadere, B. (2004). Bioorg. Med. Chem. Lett. 14, 3635-3638.]); Zouhiri et al. (2005[Zouhiri, F., Danet, M., Benard, C., Normand-Bayle, M., Mouscadet, J. F., Leh, H., Thomas, C. M., Mbemba, G., D'Angelo, J. & Desmaele, D. (2005). Tetrahedron Lett. 46, 2201-2205.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6N2O2

  • Mr = 174.16

  • Monoclinic, P 21 /c

  • a = 7.2421 (11) Å

  • b = 16.688 (3) Å

  • c = 7.2089 (11) Å

  • β = 114.086 (4)°

  • V = 795.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.40 × 0.32 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 10084 measured reflections

  • 2287 independent reflections

  • 1827 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.147

  • S = 1.03

  • 2287 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

8-Nitroquinoline was first synthesized in 1879 (Königs 1879) and in recent years the quinoline and quinoline derivatives have been found to possess a broad spectrum of pharmacological ativity (Franck et al.., 2004, Zouhiri et al., 2005). However, the crytal structure of 8-Nitroquinoline has not been reported so far. Knowledge of the crystal structure of 8-Nitroquinoline gives us not only information about nuclearity of the complex molecule, but is important in understanding the behaviour of this compounds in the vapour phase, and the mechanisms of sublimation and decomposition. Therefore, we have synthesized the title compound, (I), and report its crystal structure here (Fig. 1).

The bond lengths for (I) are within normal ranges (Allen et al., 1987). The molecule is almost flat, with a dihedral angle of 3.0 (9)° between the pyridine and benzene rings.

Related literature top

For the first synthesis of 8-nitroquinoline, see: Königs et al. (1879). The crystal studied was synthesised according to the method of Yale & Bernstein (1948). For the pharmacological activity of quinoline derivatives, see: Franck et al. (2004); Zouhiri et al. (2005). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound, (I), was prepared according to the literature procedure of Yale & Bernstein (1948). A mixture of 6.96 g(50 mmol) of o-Nitrophenol and 14.2 g(100 mmol) of arsenic acid in 50 ml of 86% phosphoric acid was placed in a 250 ml, 3-necked flask fitted with a thermometer, dropping funnel, reflux condenser and magnetic stirrer. The reaction mixture was warmed to 100°C and 4.75 ml(75 mmol) of acrolein added dropwise with vigorous stirring. After all the acrolein had been added, the reaction mixture was stirred for an additional thirty minutes during which time the temperature was maintained at 100°C by warming with an oil bath. The solution was poured into 200 ml of water, treated with Hyflo Supercel and decolorizing carbon and filtered. The filtrate was made alkaline with aqueous ammonia and the precipitated product filtered. The dried solid was refluxed with 150 ml of ethyl acetate and decolorizing carbon,filtered, and concentrated until crystallization started. The product weighed 5.05 g(58% yield). Crystals suitable for X-ray data collection were obtained by recrystallization from dichloromethane–hexane (1:1 v/v).

Refinement top

H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, C—H=0.93 for phenyl H atoms, with Uiso(H) = 1.2Ueq(C) for phenyl H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (thermal ellipsoids are shown at 30% probability levels).
8-Nitroquinoline top
Crystal data top
C9H6N2O2F(000) = 360
Mr = 174.16Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3873 reflections
a = 7.2421 (11) Åθ = 3.1–30.0°
b = 16.688 (3) ŵ = 0.11 mm1
c = 7.2089 (11) ÅT = 296 K
β = 114.086 (4)°Block, yellow
V = 795.4 (2) Å30.40 × 0.32 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1827 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 30.0°, θmin = 3.1°
ϕ and ω scansh = 910
10084 measured reflectionsk = 2321
2287 independent reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0809P)2 + 0.1053P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2287 reflectionsΔρmax = 0.27 e Å3
119 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.133 (14)
Crystal data top
C9H6N2O2V = 795.4 (2) Å3
Mr = 174.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2421 (11) ŵ = 0.11 mm1
b = 16.688 (3) ÅT = 296 K
c = 7.2089 (11) Å0.40 × 0.32 × 0.25 mm
β = 114.086 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1827 reflections with I > 2σ(I)
10084 measured reflectionsRint = 0.023
2287 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
2287 reflectionsΔρmin = 0.22 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.25070 (14)0.69710 (6)0.26068 (13)0.0354 (2)
C10.25541 (15)0.61239 (7)0.26308 (15)0.0380 (2)
N10.41946 (14)0.73928 (6)0.28382 (15)0.0454 (3)
C50.06270 (16)0.73360 (7)0.22521 (16)0.0422 (3)
N20.44722 (15)0.57111 (6)0.30592 (16)0.0467 (3)
C40.10800 (18)0.68516 (9)0.1935 (2)0.0554 (3)
H40.23040.70920.17380.066*
C20.08895 (19)0.56627 (8)0.2262 (2)0.0502 (3)
H20.09730.51070.22410.060*
C90.0561 (2)0.81833 (8)0.21989 (19)0.0560 (3)
H90.06340.84520.19850.067*
C70.4030 (2)0.81781 (8)0.27567 (19)0.0547 (3)
H70.51690.84740.29050.066*
C30.09546 (19)0.60401 (9)0.1914 (2)0.0595 (4)
H30.21010.57320.16680.071*
O10.59089 (14)0.58621 (7)0.46328 (17)0.0659 (3)
C80.2259 (2)0.86002 (8)0.2462 (2)0.0600 (4)
H80.22480.91570.24480.072*
O20.45132 (17)0.52226 (7)0.18178 (19)0.0742 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.0357 (5)0.0374 (5)0.0308 (4)0.0003 (3)0.0114 (4)0.0008 (3)
C10.0358 (5)0.0380 (5)0.0407 (5)0.0011 (3)0.0162 (4)0.0008 (4)
N10.0429 (5)0.0451 (5)0.0466 (5)0.0068 (4)0.0167 (4)0.0050 (4)
C50.0399 (5)0.0452 (6)0.0362 (5)0.0056 (4)0.0101 (4)0.0023 (4)
N20.0459 (5)0.0398 (5)0.0594 (6)0.0052 (4)0.0266 (4)0.0074 (4)
C40.0334 (5)0.0679 (8)0.0594 (7)0.0041 (5)0.0132 (5)0.0067 (6)
C20.0494 (6)0.0408 (6)0.0602 (7)0.0091 (4)0.0222 (5)0.0052 (5)
C90.0630 (8)0.0481 (7)0.0494 (6)0.0180 (5)0.0154 (5)0.0001 (5)
C70.0633 (8)0.0454 (7)0.0502 (6)0.0134 (5)0.0180 (6)0.0035 (5)
C30.0374 (6)0.0663 (8)0.0721 (8)0.0153 (5)0.0196 (6)0.0101 (6)
O10.0438 (5)0.0715 (7)0.0714 (7)0.0104 (4)0.0123 (5)0.0066 (5)
C80.0829 (10)0.0361 (6)0.0523 (7)0.0008 (6)0.0187 (7)0.0013 (4)
O20.0783 (7)0.0651 (7)0.0898 (8)0.0166 (5)0.0451 (6)0.0117 (5)
Geometric parameters (Å, º) top
C6—N11.3604 (14)C4—C31.358 (2)
C6—C11.4140 (15)C4—H40.9300
C6—C51.4163 (14)C2—C31.4035 (19)
C1—C21.3619 (16)C2—H20.9300
C1—N21.4661 (14)C9—C81.357 (2)
N1—C71.3151 (17)C9—H90.9300
C5—C91.4148 (18)C7—C81.401 (2)
C5—C41.4154 (18)C7—H70.9300
N2—O11.2122 (14)C3—H30.9300
N2—O21.2198 (15)C8—H80.9300
N1—C6—C1119.99 (9)C1—C2—C3118.90 (12)
N1—C6—C5123.30 (10)C1—C2—H2120.6
C1—C6—C5116.66 (9)C3—C2—H2120.5
C2—C1—C6123.20 (10)C8—C9—C5119.35 (12)
C2—C1—N2117.57 (10)C8—C9—H9120.3
C6—C1—N2119.23 (9)C5—C9—H9120.3
C7—N1—C6116.71 (10)N1—C7—C8124.64 (12)
C9—C5—C4123.30 (11)N1—C7—H7117.7
C9—C5—C6116.99 (11)C8—C7—H7117.7
C4—C5—C6119.70 (11)C4—C3—C2120.57 (11)
O1—N2—O2123.84 (11)C4—C3—H3119.7
O1—N2—C1118.49 (10)C2—C3—H3119.7
O2—N2—C1117.65 (11)C9—C8—C7118.98 (12)
C3—C4—C5120.90 (11)C9—C8—H8120.5
C3—C4—H4119.6C7—C8—H8120.5
C5—C4—H4119.6
N1—C6—C1—C2175.08 (10)C6—C1—N2—O2124.71 (12)
C5—C6—C1—C22.42 (15)C9—C5—C4—C3177.10 (13)
N1—C6—C1—N24.57 (14)C6—C5—C4—C31.69 (19)
C5—C6—C1—N2177.94 (9)C6—C1—C2—C32.46 (18)
C1—C6—N1—C7178.58 (9)N2—C1—C2—C3177.89 (11)
C5—C6—N1—C71.26 (15)C4—C5—C9—C8178.13 (12)
N1—C6—C5—C91.77 (15)C6—C5—C9—C80.68 (17)
C1—C6—C5—C9179.18 (9)C6—N1—C7—C80.35 (18)
N1—C6—C5—C4177.09 (10)C5—C4—C3—C21.7 (2)
C1—C6—C5—C40.32 (15)C1—C2—C3—C40.3 (2)
C2—C1—N2—O1123.73 (13)C5—C9—C8—C70.76 (19)
C6—C1—N2—O156.60 (14)N1—C7—C8—C91.4 (2)
C2—C1—N2—O254.95 (15)

Experimental details

Crystal data
Chemical formulaC9H6N2O2
Mr174.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.2421 (11), 16.688 (3), 7.2089 (11)
β (°) 114.086 (4)
V3)795.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.32 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10084, 2287, 1827
Rint0.023
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.147, 1.03
No. of reflections2287
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Liaoning University of Traditional Chinese Medicine for supporting this study (No. YXRC0920).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFranck, X., Fournet, A., Prina, E., Mahieux, R., Hocquemiller, R. & Figadere, B. (2004). Bioorg. Med. Chem. Lett. 14, 3635–3638.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKönigs, W. (1879). Chem. Ber. 12, 448–451.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYale, H. L. & Bernstein, J. (1948). J. Am. Chem. Soc. 70, 254–254.  CrossRef PubMed CAS Web of Science Google Scholar
First citationZouhiri, F., Danet, M., Benard, C., Normand-Bayle, M., Mouscadet, J. F., Leh, H., Thomas, C. M., Mbemba, G., D'Angelo, J. & Desmaele, D. (2005). Tetrahedron Lett. 46, 2201–2205.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds