organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o943-o944

3-(2-Hy­dr­oxy­phen­yl)-1-{(E)-[1-(pyrazin-2-yl)ethyl­­idene]amino}­thio­urea monohydrate

aInternational Islamic University Malaysia (IIUM), PO Box 141, Kuantan, Malaysia, bSchool of Chemical Sciences and Food Technology, Faculty Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 16 March 2011; accepted 17 March 2011; online 23 March 2011)

In the title compound, C13H13N5OS·H2O, the thio­urea mol­ecules closely resemble each other and are approximately planar; the dihedral angles formed between the terminal benzene rings are 7.88 (8) and 7.20 (8)°, respectively. The observed planarity correlates with the presence of bifurcated N—H⋯(O,N) hydrogen bonds. In the crystal, the mol­ecules are connected into supra­molecular double chains via a combination of N—H⋯S (linking the two independent mol­ecules), O—H⋯O and O—H⋯N (linking dimeric aggregates into a supra­molecular chain via hy­droxy–water, water–water and water–pyrazine inter­actions) and O—H⋯S hydrogen bonds (connecting two chains). The chains are further connected by C—H⋯N and C—H⋯S inter­actions.

Related literature

For biological activity of thio­urea derivatives, see: Venkatachalam et al. (2004[Venkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275-4284.]). For related structures, see: Gunasekaran et al. (2010[Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2572-o2573.]); Dzulkifli et al. (2011[Dzulkifli, N. N., Farina, Y., Yamin, B. M., Baba, I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o872.]). For additional geometric analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13N5OS·H2O

  • Mr = 305.36

  • Triclinic, [P \overline 1]

  • a = 7.9808 (5) Å

  • b = 11.7557 (8) Å

  • c = 16.4160 (11) Å

  • α = 99.638 (1)°

  • β = 94.128 (1)°

  • γ = 109.200 (1)°

  • V = 1420.54 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.18 × 0.14 × 0.11 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.656, Tmax = 0.746

  • 18244 measured reflections

  • 6505 independent reflections

  • 5267 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.110

  • S = 1.04

  • 6505 reflections

  • 411 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1 0.88 (1) 2.11 (2) 2.5720 (15) 112 (1)
N1—H1n⋯N3 0.88 (1) 2.04 (2) 2.5435 (18) 116 (1)
N6—H6n⋯O2 0.87 (1) 2.11 (2) 2.5676 (15) 112 (1)
N6—H6n⋯N8 0.87 (1) 2.02 (2) 2.5358 (17) 117 (1)
O1—H1o⋯O1w 0.83 (1) 1.86 (1) 2.6820 (15) 170 (2)
O2—H2o⋯O2wi 0.83 (1) 1.83 (1) 2.6481 (16) 169 (2)
O1w—H1w⋯N9ii 0.84 (1) 1.96 (1) 2.7958 (17) 169 (2)
O1w—H2w⋯S2iii 0.83 (2) 2.82 (2) 3.4648 (13) 136 (2)
O2w—H3w⋯N4 0.84 (1) 2.02 (1) 2.8547 (17) 171 (2)
O2w—H4w⋯O1w 0.85 (2) 2.00 (2) 2.8357 (18) 169 (2)
N2—H2n⋯S2iv 0.87 (1) 2.67 (1) 3.4802 (12) 156 (1)
N7—H7n⋯S1v 0.87 (1) 2.58 (1) 3.4508 (12) 176 (2)
C16—H16⋯N5vi 0.95 2.58 3.517 (2) 172
C22—H22a⋯S1v 0.98 2.79 3.4454 (16) 125
Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1; (iii) -x+1, -y+2, -z+1; (iv) x-1, y-1, z; (v) x+1, y+1, z; (vi) -x+2, -y+2, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiourea derivatives have biological potential (Venkatachalam et al., 2004) and attract continuing structural studies (Gunasekaran et al., 2010; Dzulkifli et al., 2011).

The title compound (I), Fig. 1, features two independent thiourea derivatives and two water molecules of crystallization in the asymmetric unit. As seen from the overlay diagram, Fig. 2, there are small differences between the independent thiourea molecules. These relate to the relative orientations of the terminal benzene rings; the r.m.s. deviation of bond distances = 0.0032 Å (Spek, 2009). The similarity between the molecules is seen in the dihedral angle formed between the rings = 7.88 (8) ° for the S1-containing molecule and 7.20 (8) ° for the other. The planarity of each molecule is readily explained in terms of bifurcated intramolecular N—H···O,N hydrogen bonds, Table 1.

The most prominent feature of the crystal packing is the formation of supramolecular double chains along [111]. The two molecules comprising the asymmetric unit are connected via an eight-membered {···HNCS}2 synthon and the resulting dimeric aggregates are connected by two molecules of water via a sequence of O—H···O hydrogen bonds. Thus, the hydroxyl group of one molecule is connected to a water molecule which hydrogen bonds to the second water molecule which in turn links the second hydroxyl group. Hydrogen bonds between the water molecules and pyrazine-N atoms close two fused 16-membered {···HOH···NC3N2CNC2OH···O} synthons. This arrangement is stabilized by the intramolecular interactions outlined above. The result is a supramolecular chain, Fig. 3. Pairs of chains are linked via water-O—H···S hydrogen bonds leading to a double chain, Fig. 4. The chains are consolidated in the crystal packing by C—H···N and C—H···S interactions, Table 1 and Fig. 5.

Related literature top

For biological activity of thiourea derivatives, see: Venkatachalam et al. (2004). For related structures, see: Gunasekaran et al. (2010); Dzulkifli et al. (2011). For additional geometric analysis, see: Spek (2009).

Experimental top

The reaction of 2-acetylpyrazine with methyl hydrazinecarbodithioate (II) formed (E)-methyl-2-(1-(pyrazin-2-yl)ethylidene)hydrazinecarbodithioate (III). The condensation reaction of (III) with 2-phenolamine produced the title compound, (I), i.e. (E)-N-(2-hydroxyphenyl)-2-(1-(pyrazin-2- yl)ethylidene)hydrazinecarbothioamide (yield:73.3%, M.pt. 469—471 K).

Slow recrystallization of its butanol solution afforded yellow crystals of (I). Elemental anal. (calc.): C, 51.80 (51.13); H, 4.91 (4.95), N, 24.10 (22.94) %. FT—IR (νmax; cm-1): (O—H) 3459, (N—H) 3209, (C\b C) 3016, (CH3) 2925, (CN) 1609, (CC aromatic) 1555, (C—N) 1366, (pyrazyl) 1162, (N —N) 1121 and (CS) 1023.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The water-H and amine-H atoms were refined with the distance restraints O—H = 0.84±0.01 Å and N–H = 0.88±0.01 Å, and with Uiso(H) = yUequiv(parent atom); y = 1.5 for O, and 1.2 for N. In addition, each pair of water-H atoms were constrained to be separated by 1.39±0.02 Å. Owing to poor agreement, the reflections (3 7 13) and (3 6 14) were omitted from the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the components defining the asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Overlay diagram showing the superimposition of the S1-containing molecule (red) with the S2-containing molecule (blue).
[Figure 3] Fig. 3. Supramolecular chain in (I) mediated by O—H···O (orange), O—H···N (blue) and N—H···S (purple) hydrogen bonding shown as dashed lines.
[Figure 4] Fig. 4. Supramolecular double chain in (I) whereby the chain in Fig. 3 is connected via O—H···S hydrogen bonds shown as green dashed lines.
[Figure 5] Fig. 5. View in projection down the a axis of the crystal packing for (I). The C—H···N and C—H···S contacts are shown as pink dashed lines.
3-(2-Hydroxyphenyl)-1-{(E)-[1-(pyrazin-2-yl)ethylidene]amino}thiourea monohydrate top
Crystal data top
C13H13N5OS·H2OZ = 4
Mr = 305.36F(000) = 640
Triclinic, P1Dx = 1.428 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9808 (5) ÅCell parameters from 6288 reflections
b = 11.7557 (8) Åθ = 2.5–30.6°
c = 16.4160 (11) ŵ = 0.24 mm1
α = 99.638 (1)°T = 100 K
β = 94.128 (1)°Block, yellow
γ = 109.200 (1)°0.18 × 0.14 × 0.11 mm
V = 1420.54 (16) Å3
Data collection top
Bruker SMART APEX
diffractometer
6505 independent reflections
Radiation source: fine-focus sealed tube5267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.656, Tmax = 0.746k = 1515
18244 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.4197P]
where P = (Fo2 + 2Fc2)/3
6505 reflections(Δ/σ)max = 0.001
411 parametersΔρmax = 0.39 e Å3
12 restraintsΔρmin = 0.30 e Å3
Crystal data top
C13H13N5OS·H2Oγ = 109.200 (1)°
Mr = 305.36V = 1420.54 (16) Å3
Triclinic, P1Z = 4
a = 7.9808 (5) ÅMo Kα radiation
b = 11.7557 (8) ŵ = 0.24 mm1
c = 16.4160 (11) ÅT = 100 K
α = 99.638 (1)°0.18 × 0.14 × 0.11 mm
β = 94.128 (1)°
Data collection top
Bruker SMART APEX
diffractometer
6505 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5267 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.746Rint = 0.031
18244 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03512 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.39 e Å3
6505 reflectionsΔρmin = 0.30 e Å3
411 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09788 (5)0.17115 (3)0.34884 (2)0.02054 (11)
O10.19179 (14)0.50524 (9)0.62276 (6)0.0191 (2)
H1O0.223 (2)0.5485 (15)0.6707 (7)0.029*
N10.06763 (16)0.35848 (11)0.48035 (7)0.0160 (3)
H1N0.1553 (18)0.4298 (10)0.4942 (10)0.019*
N20.17706 (16)0.37485 (11)0.35765 (7)0.0155 (3)
H2N0.176 (2)0.3458 (15)0.3051 (6)0.019*
N30.30025 (16)0.48289 (11)0.40124 (7)0.0151 (2)
N40.63006 (17)0.80104 (11)0.55376 (8)0.0187 (3)
N50.65300 (16)0.74828 (11)0.38282 (8)0.0173 (3)
C10.04480 (19)0.40506 (13)0.62335 (9)0.0157 (3)
C20.0340 (2)0.38248 (14)0.69423 (9)0.0193 (3)
H20.01340.43900.74590.023*
C30.1821 (2)0.27734 (14)0.68991 (9)0.0201 (3)
H30.23600.26190.73860.024*
C40.2515 (2)0.19499 (14)0.61453 (9)0.0194 (3)
H40.35220.12280.61190.023*
C50.17480 (19)0.21715 (13)0.54249 (9)0.0175 (3)
H50.22340.16060.49100.021*
C60.02660 (19)0.32252 (13)0.54647 (8)0.0148 (3)
C70.05216 (19)0.30635 (13)0.39999 (9)0.0153 (3)
C80.42014 (19)0.55019 (13)0.36458 (8)0.0147 (3)
C90.4445 (2)0.52302 (14)0.27451 (8)0.0187 (3)
H9A0.41490.43420.25570.028*
H9B0.56920.56590.26800.028*
H9C0.36530.55120.24100.028*
C100.53888 (18)0.66744 (13)0.41919 (9)0.0146 (3)
C110.52873 (19)0.69459 (13)0.50503 (9)0.0167 (3)
H110.44680.63490.52900.020*
C120.7435 (2)0.88265 (14)0.51665 (9)0.0201 (3)
H120.81790.96010.54910.024*
C130.7538 (2)0.85604 (14)0.43227 (10)0.0210 (3)
H130.83530.91620.40840.025*
S21.07562 (5)1.30651 (3)0.14135 (2)0.01929 (10)
O20.78422 (15)0.96845 (10)0.13104 (6)0.0210 (2)
H2O0.746 (2)0.9237 (16)0.1782 (7)0.032*
N60.91194 (16)1.11695 (11)0.01014 (7)0.0157 (2)
H6N0.8277 (18)1.0449 (10)0.0021 (10)0.019*
N70.80922 (16)1.09918 (11)0.13407 (7)0.0157 (3)
H7N0.829 (2)1.1201 (15)0.1885 (6)0.019*
N80.68925 (16)0.98922 (10)0.09106 (7)0.0150 (2)
N90.35318 (18)0.67259 (12)0.06046 (8)0.0230 (3)
N100.34629 (17)0.72072 (12)0.11192 (8)0.0194 (3)
C140.92330 (19)1.07099 (13)0.13441 (9)0.0164 (3)
C150.9944 (2)1.09597 (14)0.20668 (9)0.0201 (3)
H150.94531.03940.25810.024*
C161.1376 (2)1.20380 (14)0.20400 (10)0.0212 (3)
H161.18561.22130.25360.025*
C171.2101 (2)1.28569 (14)0.12866 (10)0.0212 (3)
H171.30811.35910.12710.025*
C181.1413 (2)1.26184 (14)0.05531 (9)0.0185 (3)
H181.19261.31820.00390.022*
C190.99712 (19)1.15496 (13)0.05791 (8)0.0154 (3)
C200.93076 (18)1.16914 (13)0.09055 (8)0.0143 (3)
C210.57203 (19)0.92136 (13)0.12853 (9)0.0157 (3)
C220.5460 (2)0.94878 (14)0.21817 (9)0.0215 (3)
H22A0.58891.03800.23860.032*
H22B0.61370.91220.25120.032*
H22C0.41850.91410.22330.032*
C230.45390 (19)0.80368 (13)0.07433 (9)0.0158 (3)
C240.4564 (2)0.77884 (14)0.01203 (9)0.0200 (3)
H240.53420.83970.03670.024*
C250.2466 (2)0.58978 (14)0.02229 (10)0.0238 (3)
H250.17070.51260.05470.029*
C260.2442 (2)0.61369 (14)0.06273 (10)0.0227 (3)
H260.16740.55200.08720.027*
O1W0.29296 (15)0.66684 (11)0.76876 (7)0.0240 (3)
H1W0.320 (3)0.6634 (19)0.8187 (7)0.036*
H2W0.209 (2)0.6932 (18)0.7662 (11)0.036*
O2W0.62751 (16)0.80846 (11)0.72836 (7)0.0264 (3)
H4W0.5218 (15)0.7672 (16)0.7342 (11)0.040*
H3W0.634 (3)0.8147 (19)0.6783 (7)0.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0241 (2)0.01728 (19)0.01090 (18)0.00349 (15)0.00142 (14)0.00018 (13)
O10.0207 (5)0.0182 (5)0.0111 (5)0.0003 (4)0.0027 (4)0.0024 (4)
N10.0165 (6)0.0149 (6)0.0117 (6)0.0001 (5)0.0033 (5)0.0003 (5)
N20.0180 (6)0.0140 (6)0.0091 (5)0.0001 (5)0.0020 (5)0.0006 (5)
N30.0156 (6)0.0141 (6)0.0125 (6)0.0027 (5)0.0002 (5)0.0000 (5)
N40.0196 (6)0.0176 (6)0.0157 (6)0.0040 (5)0.0003 (5)0.0009 (5)
N50.0162 (6)0.0180 (6)0.0154 (6)0.0026 (5)0.0029 (5)0.0038 (5)
C10.0171 (7)0.0164 (7)0.0136 (7)0.0060 (5)0.0022 (5)0.0025 (5)
C20.0243 (8)0.0221 (7)0.0125 (7)0.0089 (6)0.0043 (6)0.0033 (6)
C30.0241 (8)0.0241 (8)0.0159 (7)0.0106 (6)0.0090 (6)0.0075 (6)
C40.0191 (7)0.0189 (7)0.0211 (7)0.0054 (6)0.0078 (6)0.0064 (6)
C50.0181 (7)0.0181 (7)0.0144 (7)0.0050 (6)0.0022 (5)0.0006 (6)
C60.0175 (7)0.0168 (7)0.0113 (6)0.0070 (6)0.0043 (5)0.0033 (5)
C70.0161 (7)0.0162 (7)0.0127 (7)0.0047 (5)0.0012 (5)0.0025 (5)
C80.0165 (7)0.0154 (7)0.0113 (6)0.0049 (5)0.0013 (5)0.0019 (5)
C90.0213 (7)0.0202 (7)0.0112 (7)0.0034 (6)0.0034 (6)0.0017 (6)
C100.0138 (7)0.0158 (7)0.0140 (7)0.0048 (5)0.0017 (5)0.0033 (5)
C110.0189 (7)0.0157 (7)0.0133 (7)0.0035 (6)0.0007 (5)0.0027 (5)
C120.0202 (7)0.0152 (7)0.0200 (7)0.0015 (6)0.0000 (6)0.0010 (6)
C130.0192 (7)0.0184 (7)0.0211 (8)0.0008 (6)0.0017 (6)0.0046 (6)
S20.0241 (2)0.01506 (18)0.01128 (18)0.00166 (14)0.00061 (14)0.00055 (13)
O20.0234 (6)0.0209 (5)0.0113 (5)0.0005 (4)0.0013 (4)0.0016 (4)
N60.0174 (6)0.0131 (6)0.0116 (6)0.0005 (5)0.0031 (5)0.0001 (5)
N70.0198 (6)0.0135 (6)0.0093 (5)0.0010 (5)0.0018 (5)0.0003 (5)
N80.0170 (6)0.0118 (6)0.0135 (6)0.0026 (5)0.0008 (5)0.0004 (4)
N90.0229 (7)0.0214 (7)0.0180 (6)0.0018 (5)0.0023 (5)0.0022 (5)
N100.0179 (6)0.0185 (6)0.0187 (6)0.0013 (5)0.0022 (5)0.0057 (5)
C140.0183 (7)0.0169 (7)0.0150 (7)0.0073 (6)0.0030 (5)0.0029 (6)
C150.0251 (8)0.0255 (8)0.0117 (7)0.0116 (6)0.0033 (6)0.0032 (6)
C160.0264 (8)0.0259 (8)0.0181 (7)0.0138 (7)0.0106 (6)0.0097 (6)
C170.0223 (8)0.0212 (7)0.0225 (8)0.0076 (6)0.0088 (6)0.0079 (6)
C180.0196 (7)0.0189 (7)0.0167 (7)0.0057 (6)0.0052 (6)0.0034 (6)
C190.0187 (7)0.0182 (7)0.0110 (6)0.0079 (6)0.0037 (5)0.0035 (5)
C200.0158 (7)0.0146 (6)0.0114 (6)0.0042 (5)0.0015 (5)0.0021 (5)
C210.0173 (7)0.0167 (7)0.0127 (7)0.0054 (6)0.0019 (5)0.0029 (5)
C220.0231 (8)0.0217 (8)0.0136 (7)0.0011 (6)0.0044 (6)0.0003 (6)
C230.0150 (7)0.0160 (7)0.0153 (7)0.0040 (5)0.0018 (5)0.0027 (5)
C240.0202 (7)0.0194 (7)0.0154 (7)0.0015 (6)0.0021 (6)0.0006 (6)
C250.0215 (8)0.0166 (7)0.0264 (8)0.0008 (6)0.0015 (6)0.0016 (6)
C260.0194 (7)0.0188 (7)0.0248 (8)0.0001 (6)0.0017 (6)0.0055 (6)
O1W0.0261 (6)0.0278 (6)0.0161 (5)0.0115 (5)0.0008 (5)0.0039 (5)
O2W0.0304 (6)0.0284 (6)0.0128 (5)0.0032 (5)0.0014 (5)0.0014 (5)
Geometric parameters (Å, º) top
S1—C71.6797 (14)O2—H2O0.832 (9)
O1—C11.3638 (17)N6—C201.3347 (17)
O1—H1O0.834 (9)N6—C191.4094 (18)
N1—C71.3370 (18)N6—H6N0.871 (9)
N1—C61.4087 (18)N7—N81.3671 (16)
N1—H1N0.878 (9)N7—C201.3782 (18)
N2—N31.3656 (16)N7—H7N0.874 (9)
N2—C71.3727 (18)N8—C211.2830 (18)
N2—H2N0.872 (9)N9—C241.3294 (19)
N3—C81.2837 (18)N9—C251.342 (2)
N4—C111.3289 (18)N10—C261.3379 (19)
N4—C121.3471 (19)N10—C231.3403 (18)
N5—C101.3372 (18)C14—C151.386 (2)
N5—C131.3425 (19)C14—C191.4122 (19)
C1—C21.385 (2)C15—C161.392 (2)
C1—C61.4078 (19)C15—H150.9500
C2—C31.389 (2)C16—C171.387 (2)
C2—H20.9500C16—H160.9500
C3—C41.387 (2)C17—C181.392 (2)
C3—H30.9500C17—H170.9500
C4—C51.394 (2)C18—C191.389 (2)
C4—H40.9500C18—H180.9500
C5—C61.391 (2)C21—C231.4844 (19)
C5—H50.9500C21—C221.4972 (19)
C8—C101.4854 (19)C22—H22A0.9800
C8—C91.5000 (19)C22—H22B0.9800
C9—H9A0.9800C22—H22C0.9800
C9—H9B0.9800C23—C241.402 (2)
C9—H9C0.9800C24—H240.9500
C10—C111.4061 (19)C25—C261.380 (2)
C11—H110.9500C25—H250.9500
C12—C131.383 (2)C26—H260.9500
C12—H120.9500O1W—H1W0.845 (9)
C13—H130.9500O1W—H2W0.829 (9)
S2—C201.6799 (14)O2W—H4W0.845 (9)
O2—C141.3562 (18)O2W—H3W0.842 (9)
C1—O1—H1O109.1 (13)C20—N6—C19133.48 (12)
C7—N1—C6133.34 (12)C20—N6—H6N111.9 (11)
C7—N1—H1N112.4 (11)C19—N6—H6N114.6 (11)
C6—N1—H1N114.2 (11)N8—N7—C20117.62 (11)
N3—N2—C7117.93 (11)N8—N7—H7N123.7 (11)
N3—N2—H2N123.7 (11)C20—N7—H7N117.2 (11)
C7—N2—H2N118.4 (11)C21—N8—N7120.02 (12)
C8—N3—N2120.36 (12)C24—N9—C25116.48 (13)
C11—N4—C12116.55 (13)C26—N10—C23116.37 (13)
C10—N5—C13116.46 (13)O2—C14—C15124.21 (13)
O1—C1—C2123.55 (13)O2—C14—C19115.96 (12)
O1—C1—C6116.29 (12)C15—C14—C19119.83 (14)
C2—C1—C6120.16 (13)C14—C15—C16120.11 (14)
C1—C2—C3120.07 (14)C14—C15—H15119.9
C1—C2—H2120.0C16—C15—H15119.9
C3—C2—H2120.0C17—C16—C15119.82 (14)
C4—C3—C2119.96 (14)C17—C16—H16120.1
C4—C3—H3120.0C15—C16—H16120.1
C2—C3—H3120.0C16—C17—C18120.92 (15)
C3—C4—C5120.61 (14)C16—C17—H17119.5
C3—C4—H4119.7C18—C17—H17119.5
C5—C4—H4119.7C19—C18—C17119.41 (14)
C6—C5—C4119.63 (13)C19—C18—H18120.3
C6—C5—H5120.2C17—C18—H18120.3
C4—C5—H5120.2C18—C19—N6126.65 (13)
C5—C6—C1119.56 (13)C18—C19—C14119.91 (13)
C5—C6—N1127.05 (13)N6—C19—C14113.44 (12)
C1—C6—N1113.39 (12)N6—C20—N7113.11 (12)
N1—C7—N2113.40 (12)N6—C20—S2128.34 (11)
N1—C7—S1127.44 (11)N7—C20—S2118.52 (10)
N2—C7—S1119.15 (10)N8—C21—C23113.87 (12)
N3—C8—C10114.04 (12)N8—C21—C22127.09 (13)
N3—C8—C9126.55 (13)C23—C21—C22119.03 (12)
C10—C8—C9119.37 (12)C21—C22—H22A109.5
C8—C9—H9A109.5C21—C22—H22B109.5
C8—C9—H9B109.5H22A—C22—H22B109.5
H9A—C9—H9B109.5C21—C22—H22C109.5
C8—C9—H9C109.5H22A—C22—H22C109.5
H9A—C9—H9C109.5H22B—C22—H22C109.5
H9B—C9—H9C109.5N10—C23—C24121.20 (13)
N5—C10—C11121.07 (13)N10—C23—C21116.94 (12)
N5—C10—C8117.13 (12)C24—C23—C21121.86 (13)
C11—C10—C8121.77 (13)N9—C24—C23121.95 (14)
N4—C11—C10122.14 (13)N9—C24—H24119.0
N4—C11—H11118.9C23—C24—H24119.0
C10—C11—H11118.9N9—C25—C26121.75 (14)
N4—C12—C13121.38 (14)N9—C25—H25119.1
N4—C12—H12119.3C26—C25—H25119.1
C13—C12—H12119.3N10—C26—C25122.24 (14)
N5—C13—C12122.38 (14)N10—C26—H26118.9
N5—C13—H13118.8C25—C26—H26118.9
C12—C13—H13118.8H1W—O1W—H2W109.0 (16)
C14—O2—H2O111.0 (14)H4W—O2W—H3W110.5 (16)
C7—N2—N3—C8179.84 (13)C20—N7—N8—C21179.19 (13)
O1—C1—C2—C3179.12 (13)O2—C14—C15—C16179.93 (14)
C6—C1—C2—C30.9 (2)C19—C14—C15—C160.3 (2)
C1—C2—C3—C40.1 (2)C14—C15—C16—C170.6 (2)
C2—C3—C4—C50.6 (2)C15—C16—C17—C180.1 (2)
C3—C4—C5—C60.4 (2)C16—C17—C18—C190.6 (2)
C4—C5—C6—C10.4 (2)C17—C18—C19—N6179.92 (14)
C4—C5—C6—N1179.51 (14)C17—C18—C19—C140.8 (2)
O1—C1—C6—C5178.95 (13)C20—N6—C19—C185.0 (3)
C2—C1—C6—C51.1 (2)C20—N6—C19—C14175.84 (15)
O1—C1—C6—N10.25 (18)O2—C14—C19—C18179.25 (13)
C2—C1—C6—N1179.70 (13)C15—C14—C19—C180.4 (2)
C7—N1—C6—C52.7 (3)O2—C14—C19—N60.05 (18)
C7—N1—C6—C1176.41 (15)C15—C14—C19—N6179.61 (13)
C6—N1—C7—N2179.14 (14)C19—N6—C20—N7176.62 (14)
C6—N1—C7—S10.5 (2)C19—N6—C20—S21.4 (2)
N3—N2—C7—N11.30 (19)N8—N7—C20—N60.04 (18)
N3—N2—C7—S1178.38 (10)N8—N7—C20—S2178.23 (10)
N2—N3—C8—C10177.27 (12)N7—N8—C21—C23178.68 (12)
N2—N3—C8—C90.6 (2)N7—N8—C21—C220.9 (2)
C13—N5—C10—C110.9 (2)C26—N10—C23—C240.7 (2)
C13—N5—C10—C8177.13 (13)C26—N10—C23—C21178.17 (13)
N3—C8—C10—N5172.44 (13)N8—C21—C23—N10170.53 (13)
C9—C8—C10—N55.6 (2)C22—C21—C23—N109.1 (2)
N3—C8—C10—C115.6 (2)N8—C21—C23—C248.3 (2)
C9—C8—C10—C11176.37 (13)C22—C21—C23—C24172.12 (14)
C12—N4—C11—C100.2 (2)C25—N9—C24—C230.3 (2)
N5—C10—C11—N40.4 (2)N10—C23—C24—N90.1 (2)
C8—C10—C11—N4177.57 (13)C21—C23—C24—N9178.71 (14)
C11—N4—C12—C130.3 (2)C24—N9—C25—C260.0 (2)
C10—N5—C13—C120.9 (2)C23—N10—C26—C250.9 (2)
N4—C12—C13—N50.2 (2)N9—C25—C26—N100.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O10.88 (1)2.11 (2)2.5720 (15)112 (1)
N1—H1n···N30.88 (1)2.04 (2)2.5435 (18)116 (1)
N6—H6n···O20.87 (1)2.11 (2)2.5676 (15)112 (1)
N6—H6n···N80.87 (1)2.02 (2)2.5358 (17)117 (1)
O1—H1o···O1w0.83 (1)1.86 (1)2.6820 (15)170 (2)
O2—H2o···O2wi0.83 (1)1.83 (1)2.6481 (16)169 (2)
O1w—H1w···N9ii0.84 (1)1.96 (1)2.7958 (17)169 (2)
O1w—H2w···S2iii0.83 (2)2.82 (2)3.4648 (13)136 (2)
O2w—H3w···N40.84 (1)2.02 (1)2.8547 (17)171 (2)
O2w—H4w···O1w0.85 (2)2.00 (2)2.8357 (18)169 (2)
N2—H2n···S2iv0.87 (1)2.67 (1)3.4802 (12)156 (1)
N7—H7n···S1v0.87 (1)2.58 (1)3.4508 (12)176 (2)
C16—H16···N5vi0.952.583.517 (2)172
C22—H22a···S1v0.982.793.4454 (16)125
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+1, y+2, z+1; (iv) x1, y1, z; (v) x+1, y+1, z; (vi) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC13H13N5OS·H2O
Mr305.36
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9808 (5), 11.7557 (8), 16.4160 (11)
α, β, γ (°)99.638 (1), 94.128 (1), 109.200 (1)
V3)1420.54 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.18 × 0.14 × 0.11
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.656, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
18244, 6505, 5267
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.110, 1.04
No. of reflections6505
No. of parameters411
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.30

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O10.878 (13)2.107 (16)2.5720 (15)112.3 (12)
N1—H1n···N30.878 (13)2.038 (15)2.5435 (18)115.5 (13)
N6—H6n···O20.871 (12)2.112 (16)2.5676 (15)111.9 (12)
N6—H6n···N80.871 (12)2.023 (15)2.5358 (17)116.7 (13)
O1—H1o···O1w0.833 (12)1.857 (13)2.6820 (15)170.3 (16)
O2—H2o···O2wi0.833 (13)1.826 (14)2.6481 (16)168.9 (17)
O1w—H1w···N9ii0.844 (13)1.962 (12)2.7958 (17)169 (2)
O1w—H2w···S2iii0.827 (18)2.822 (18)3.4648 (13)136.0 (16)
O2w—H3w···N40.841 (13)2.021 (12)2.8547 (17)171 (2)
O2w—H4w···O1w0.845 (15)2.001 (16)2.8357 (18)169.1 (16)
N2—H2n···S2iv0.871 (10)2.667 (10)3.4802 (12)155.9 (14)
N7—H7n···S1v0.874 (10)2.579 (10)3.4508 (12)175.6 (15)
C16—H16···N5vi0.952.583.517 (2)172
C22—H22a···S1v0.982.793.4454 (16)125
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+1, y+2, z+1; (iv) x1, y1, z; (v) x+1, y+1, z; (vi) x+2, y+2, z.
 

Footnotes

Additional correspondence author, e-mail: farina@ukm.my.

Acknowledgements

We thank to University Kebangsaan Malaysia, the Inter­national Islamic University Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grant GUP-NBT-08–27-112. The authors also thank the University of Malaya for support of the crystallographic facility and acknowledge an UMRG grant (RG125/10AFR).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDzulkifli, N. N., Farina, Y., Yamin, B. M., Baba, I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o872.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2572–o2573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275–4284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o943-o944
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds