metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m438-m439

Racemic tricarbon­yl[7-meth­­oxy-2-(η6-phen­yl)chromane]­chromium(0)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: muller.theunis@gmail.com

(Received 19 February 2011; accepted 7 March 2011; online 12 March 2011)

In the title compound, [Cr(C16H16O2)(CO)3], the Cr0 atom of the Cr(CO)3 unit is coordinated to the phenyl ring of the flavan ligand in an η6 mode, with a normal arene-to-metal distance. The Cr(CO)3 unit exhibits a three-legged piano-stool conformation, while the dihydro­pyran ring displays a distorted envelope configuration. The phenyl ring is twisted away from the fused ring system by 25.5 (2)°. The meth­oxy group is almost coplanar with the phenyl ring [CMe—O—Car—Car torsion angle = 8.46 (2)°]. The crystal packing is stabilized by inter­molecular C—H⋯O inter­actions.

Related literature

For similar structures, see: van Tonder et al. (2010a[Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2010a). Acta Cryst. E66, m907-m908.],b[Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2010b). Acta Cryst. E66, m1086.]) and for other related structures, see: van Tonder et al. (2009a[Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009a). Acta Cryst. E65, m1343.],b[Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009b). Acta Cryst. E65, m1346.]). For the synthesis of the title compound, see: Müller et al. (1999[Müller, T. J. J., Ansorge, M. & Polburn, K. (1999). J. Organomet. Chem. 578, 252-259.]) and for the sythesis of 7-meth­oxy­flavan-4-one, see: Sato et al. (2006[Sato, S., Hiroe, K., Kumazawa, T. & Jun-ichi, O. (2006). Carbohydr. Res. 341, 1091-1095.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the importance of flavonoids in biological investigations, see: Rice-Evans & Packer (2003[Rice-Evans, C. A. & Packer, L. (2003). Flavonoids in Health and Disease, Vol. 578, 2nd ed., pp. 252-259. New York: Marcel Dekker Inc.]). For the use of tricarbon­yl(arene)chromium complexes in regioselective organic synthesis, see: Muschalek et al. (2007[Muschalek, B., Weidner, I. & Butenschön, H. (2007). J. Organomet. Chem. 692, 2415-2424.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C16H16O2)(CO)3]

  • Mr = 376.32

  • Monoclinic, P 21 /c

  • a = 9.7703 (5) Å

  • b = 19.1820 (9) Å

  • c = 8.8049 (4) Å

  • β = 97.494 (2)°

  • V = 1636.07 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 100 K

  • 0.34 × 0.23 × 0.08 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.818, Tmax = 0.942

  • 29057 measured reflections

  • 4069 independent reflections

  • 3526 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.00

  • 4069 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4′—H4′⋯O2i 0.93 2.54 3.459 (2) 169
C2′—H2′⋯O4ii 0.93 2.46 3.153 (2) 132
C1—H1C⋯O4iii 0.96 2.57 3.314 (2) 134
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg & Putz, 2005[Brandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, [Cr(CO)3(C16H16O2)] forms part of a series of chromium(0) complexes of the type [Cr(flav)(CO)3] (flav = flavan, flavone or isoflavone ligand) (van Tonder et al., 2009a,b and 2010a,b). Our interest in this type of chromium(0) complexes is partly due to regioselective organic syntesis (Muschalek et al., 2007) and to the general biological activity of flavanoids (Rice-Evans & Packer, 2003).

The title compound crystalized in the monoclinic space group P2(1)/c, with Z = 4. For the title compound the molecular structure displays the Cr(CO)3 moiety complexed to the flavone C-ring, exhibiting the known three-legged piano-stool conformation. All bond distances and angles are within range (Allen et al., 1987). The distance between the Cr0 atom and the centroid of the A-η6-coordinated phenyl ring is 1.7119 (3) Å. The plane through C1'-C6' (r.m.s =0.0038 fitted atoms C1'-C6') of the phenyl ring is at an angle of 42.762 (43) ° to the plane formed between C4—C10 and O1 (r.m.s = 0.00824 fitted atoms C4, C5, C6, C7, C8, C9, C10 and O1). The dihydropyran ring displays a distored envelope configuration by displacement of atoms C2 and C3 from the fused ring system plane, with distances of 0.105 (2) 0.618 (2) Å respectively. The methoxy group at the C7 position is nearley coplanar to the plane created by the fused ring system. The methoxy forme a dihedral angle of -8.464 (23) ° between C1—O2—C7—C6. The molecules form chains through intermolecular C4—H4···O2i, C2—H2···O4ii and C1—H1C···O4iii hydrogen interactions (Table 1).

Related literature top

For similar structures, see: van Tonder et al. (2010a,b) and for other related structures, see: van Tonder et al. (2009a,b). For the synthesis of the title compound, see: Müller et al. (1999) and for the sythesis of 7-methoxyflavan-4-one, see: Sato et al. (2006). For standard bond lengths, see: Allen et al. (1987). For the importance of flavonoids in biological investigations, see: Rice-Evans & Packer (2003). For the use of tricarbonyl(arene)chromium complexes in regioselective organic synthesis, see: Muschalek et al. (2007).

Experimental top

7-methoxyflavan-4-one was synthesized as described by Sato et al. (2006). 7-Methoxyflavan-4-one (1.00 g; 3.9 mmol), 10% Pd/C (0.10 g), 3 M H2SO4 (aq) (1 ml), ethanol (30 ml). Purification by means of flash column-chromatography yielded 7-methoxyflavan (0.67 g; 70.6%) as a colourless oil as described by Sato et al. (2006) Rf 0.65 (hexane:DCM:ethyl acetate; 50:50:1); 1H NMR (600 MHz, CDCl3) δ 7.44–7.41 (m, H-2' and H-6', 2H), 7.40–7.37 (m, H-3' and H-5', 2H), 7.34–7.31 (m, H-4', 1H), 6.99–6.97 (m, H-5, 1H), 6.50–6.47 (m, H-6 and H-8, 2H), 5.05 (dd, J = 10.19, 2.37 Hz, H-2 1H), 3.77 (s,-OCH3, 3H), 2.92 (ddd, J = 16.08, 10.92, 6.02 Hz, H-4(a) 1H), 2.74 (ddd, J = 16.08, 5.12, 3.40 Hz, H-4(e) 1H), 2.22–2.18 (m, H-3 1H), 2.11–2.04 (m, H-3 1H); 13C NMR (151 MHz, CDCl3) δ p.p.m. 24.47 (C-4), 30.19 (C-3), 55.38 (–OCH3), 77.98 (C-2),101.71 (C-6/8), 107.54 (C-6/8), 114.01, 126.11, 127.93, 128.61, 130.05, 141.79, 155.91, 159.23.

Preparation of the title compound was based on a method described by Müller et al. (1999). A solution of 7-methoxyflavan (0.27 g, 1.1 mmol) and Cr(CO)6 (0.25 g, 1.1 mmol, 1 eq) in butylether:THF (9:1; 25 ml) was degassed with argon, using standard Schlenk techniques, and refluxed (70 hr) under an oxygen free atmosphere. The reaction mixture was cooled to room temperature and evaporated in vacuo. Purification through flash column-chromotography yielded the title compound (0.10 g; 24%) as a yellow solid. Recrystallization from hexane:dichloromethane (6:1) yielded yellow plate like crystals suitable for X-ray analysis.

Rf 0.30 (hexane:ethyl acetate; 3:5); Mp 145–147 °C IR ν(CO) = 1952, 1894 and 1844 cm-1;1H NMR (600 MHz, CDCl3) δ 6.96 (d, J = 8.3 Hz, 1H), 6.49 (dd, J = 8.3, 2.5 Hz, 1H), 6.48 (d, J = 2.5 Hz, 1H), 5.56 (d, J = 6.2 Hz, 1H), 5.43–5.41 (m, 1H), 5.37–5.32 (m, 3H), 4.67 (dd, J = 10.4, 2.3 Hz, 1H), 3.77 (s, 3H), 2.94–2.87 (m, 1H), 2.76 (m, 1H), 2.25 (m, 1H), 1.99 (m, 1H). 13C NMR (151 MHz, CDCl3) δ p.p.m. 232.53, 159.27, 155.02, 129.85, 113.31, 111.38, 108.09, 101.51, 92.22, 91.62, 91.49, 91.22, 90.68, 75.37, 55.37, 29.89, 24.11.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent) of the parent atom with a C—H distance of 0.93. The methine H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.5Ueq(C) and at a distance of 0.97 Å. The methyl H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.5Ueq(C) and at a distance of 0.96 Å.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Diamond representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability).
tricarbonyl[7-methoxy-2-(η6-phenyl)chromane]chromium(0) top
Crystal data top
[Cr(C16H16O2)(CO)3]F(000) = 776
Mr = 376.32Dx = 1.528 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7703 (5) ÅCell parameters from 9920 reflections
b = 19.1820 (9) Åθ = 3.0–28.2°
c = 8.8049 (4) ŵ = 0.73 mm1
β = 97.494 (2)°T = 100 K
V = 1636.07 (14) Å3Plate, yellow
Z = 40.34 × 0.23 × 0.08 mm
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
4069 independent reflections
Graphite monochromator3526 reflections with I > 2σ(I)
Detector resolution: 8.5 pixels mm-1Rint = 0.033
ϕ and ω scansθmax = 28.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 139
Tmin = 0.818, Tmax = 0.942k = 2525
29057 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0434P)2 + 1.6967P]
where P = (Fo2 + 2Fc2)/3
4069 reflections(Δ/σ)max = 0.015
222 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cr(C16H16O2)(CO)3]V = 1636.07 (14) Å3
Mr = 376.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7703 (5) ŵ = 0.73 mm1
b = 19.1820 (9) ÅT = 100 K
c = 8.8049 (4) Å0.34 × 0.23 × 0.08 mm
β = 97.494 (2)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
4069 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3526 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.942Rint = 0.033
29057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.00Δρmax = 0.73 e Å3
4069 reflectionsΔρmin = 0.52 e Å3
222 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 15 s/frame. A total of 1821 frames were collected with a frame width of 0.5° covering up to θ = 28.18° with 99.7% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3380 (2)0.29331 (9)0.6478 (2)0.0208 (4)
H1A0.2910.28540.73550.031*
H1B0.30660.33630.59950.031*
H1C0.43560.29590.67980.031*
C1'0.17467 (19)0.11113 (9)0.36846 (19)0.0178 (3)
C20.28858 (19)0.07158 (9)0.4658 (2)0.0190 (3)
H20.37770.08370.43320.023*
C2'0.19981 (19)0.17979 (9)0.3254 (2)0.0196 (3)
H2'0.28590.19970.3550.023*
C3'0.0952 (2)0.21918 (9)0.2369 (2)0.0213 (4)
H3'0.11230.2650.21060.026*
C30.29216 (19)0.08786 (9)0.6350 (2)0.0202 (4)
H3A0.31060.13710.65280.024*
H3B0.20340.07710.66760.024*
C4'0.03356 (19)0.18914 (10)0.1893 (2)0.0219 (4)
H4'0.10180.21470.13010.026*
C40.40480 (18)0.04451 (8)0.72666 (19)0.0167 (3)
H4A0.40030.05010.83540.02*
H4B0.49480.06020.70560.02*
C50.43124 (17)0.08604 (9)0.77979 (19)0.0159 (3)
H50.47820.07570.87590.019*
C5'0.05972 (19)0.11962 (10)0.2316 (2)0.0220 (4)
H5'0.14540.09950.20030.026*
C60.41013 (17)0.15570 (9)0.73907 (19)0.0159 (3)
H60.44280.19120.80620.019*
C6'0.04282 (19)0.08107 (9)0.3203 (2)0.0197 (3)
H6'0.02480.03550.3480.024*
C70.33885 (17)0.17112 (9)0.59536 (19)0.0159 (3)
C7'0.20844 (19)0.03456 (9)0.0866 (2)0.0210 (2)
C80.29047 (18)0.11775 (9)0.49617 (19)0.0176 (3)
H80.24220.12810.40070.021*
C8'0.26596 (17)0.16022 (8)0.02184 (19)0.0168 (3)
C90.31439 (18)0.04906 (9)0.53999 (19)0.0163 (3)
C9'0.02989 (18)0.11148 (9)0.0765 (2)0.0185 (3)
C100.38501 (17)0.03117 (8)0.68272 (19)0.0148 (3)
O10.25988 (15)0.00078 (6)0.43410 (14)0.0232 (3)
O20.30939 (14)0.23734 (6)0.54184 (14)0.0210 (3)
O30.26044 (13)0.01758 (6)0.06402 (15)0.0210 (2)
O40.35317 (13)0.18513 (7)0.03763 (15)0.0218 (3)
O50.02741 (14)0.10672 (8)0.19953 (15)0.0280 (3)
Cr10.12859 (3)0.120499 (13)0.11540 (3)0.01295 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0271 (9)0.0133 (8)0.0223 (9)0.0016 (6)0.0046 (7)0.0035 (6)
C1'0.0238 (9)0.0148 (8)0.0143 (8)0.0025 (6)0.0010 (6)0.0018 (6)
C20.0226 (8)0.0155 (8)0.0185 (8)0.0028 (6)0.0008 (7)0.0002 (6)
C2'0.0249 (9)0.0141 (8)0.0184 (8)0.0011 (6)0.0022 (7)0.0037 (6)
C3'0.0295 (10)0.0125 (7)0.0214 (9)0.0055 (7)0.0017 (7)0.0026 (6)
C30.0240 (9)0.0170 (8)0.0189 (8)0.0025 (7)0.0007 (7)0.0026 (6)
C4'0.0204 (9)0.0238 (9)0.0215 (8)0.0092 (7)0.0030 (7)0.0029 (7)
C40.0190 (8)0.0152 (8)0.0149 (7)0.0005 (6)0.0017 (6)0.0014 (6)
C50.0134 (7)0.0194 (8)0.0145 (7)0.0003 (6)0.0003 (6)0.0010 (6)
C5'0.0157 (8)0.0282 (9)0.0231 (9)0.0005 (7)0.0062 (7)0.0040 (7)
C60.0146 (8)0.0168 (8)0.0160 (8)0.0024 (6)0.0013 (6)0.0034 (6)
C6'0.0243 (9)0.0188 (8)0.0170 (8)0.0011 (7)0.0072 (7)0.0003 (6)
C70.0168 (8)0.0143 (7)0.0169 (8)0.0001 (6)0.0029 (6)0.0005 (6)
C7'0.0240 (5)0.0159 (4)0.0236 (5)0.0015 (4)0.0056 (4)0.0004 (4)
C80.0218 (8)0.0169 (8)0.0130 (7)0.0012 (6)0.0016 (6)0.0016 (6)
C8'0.0179 (8)0.0128 (7)0.0184 (8)0.0028 (6)0.0019 (6)0.0013 (6)
C90.0215 (8)0.0140 (7)0.0134 (7)0.0029 (6)0.0019 (6)0.0017 (6)
C9'0.0143 (8)0.0202 (8)0.0213 (8)0.0005 (6)0.0036 (6)0.0005 (6)
C100.0134 (7)0.0159 (7)0.0151 (7)0.0004 (6)0.0025 (6)0.0016 (6)
O10.0419 (8)0.0117 (6)0.0135 (6)0.0046 (5)0.0057 (5)0.0009 (4)
O20.0314 (7)0.0122 (6)0.0177 (6)0.0000 (5)0.0027 (5)0.0002 (5)
O30.0240 (5)0.0159 (4)0.0236 (5)0.0015 (4)0.0056 (4)0.0004 (4)
O40.0190 (6)0.0206 (6)0.0258 (7)0.0003 (5)0.0032 (5)0.0063 (5)
O50.0236 (7)0.0394 (8)0.0195 (7)0.0032 (6)0.0032 (5)0.0001 (6)
Cr10.01308 (14)0.01116 (13)0.01423 (14)0.00064 (9)0.00033 (9)0.00028 (9)
Geometric parameters (Å, º) top
C1—O21.426 (2)C4—H4A0.97
C1—H1A0.96C4—H4B0.97
C1—H1B0.96C5—C61.392 (2)
C1—H1C0.96C5—C101.393 (2)
C1'—C2'1.401 (2)C5—H50.93
C1'—C6'1.424 (3)C5'—C6'1.399 (3)
C1'—C21.517 (2)C5'—Cr12.2187 (18)
C1'—Cr12.2221 (17)C5'—H5'0.93
C2—O11.436 (2)C6—C71.394 (2)
C2—C31.518 (2)C6—H60.93
C2—H20.98C6'—Cr12.2188 (17)
C2'—C3'1.419 (2)C6'—H6'0.93
C2'—Cr12.2044 (17)C7—O21.372 (2)
C2'—H2'0.93C7—C81.388 (2)
C3'—C4'1.397 (3)C7'—O31.151 (2)
C3'—Cr12.2194 (17)C7'—Cr11.8552 (18)
C3'—H3'0.93C8—C91.384 (2)
C3—C41.524 (2)C8—H80.93
C3—H3A0.97C8'—O41.160 (2)
C3—H3B0.97C8'—Cr11.8300 (18)
C4'—C5'1.417 (3)C9—O11.3716 (19)
C4'—Cr12.2216 (17)C9—C101.395 (2)
C4'—H4'0.93C9'—O51.156 (2)
C4—C101.508 (2)C9'—Cr11.8413 (18)
O2—C1—H1A109.5C5'—C6'—C1'120.42 (16)
O2—C1—H1B109.5C5'—C6'—Cr171.62 (10)
H1A—C1—H1B109.5C1'—C6'—Cr171.42 (10)
O2—C1—H1C109.5C5'—C6'—H6'119.8
H1A—C1—H1C109.5C1'—C6'—H6'119.8
H1B—C1—H1C109.5Cr1—C6'—H6'129.6
C2'—C1'—C6'118.91 (16)O2—C7—C8115.32 (14)
C2'—C1'—C2118.79 (16)O2—C7—C6124.44 (15)
C6'—C1'—C2122.29 (15)C8—C7—C6120.24 (15)
C2'—C1'—Cr170.86 (10)O3—C7'—Cr1177.22 (16)
C6'—C1'—Cr171.16 (10)C9—C8—C7119.69 (15)
C2—C1'—Cr1130.16 (12)C9—C8—H8120.2
O1—C2—C1'105.27 (14)C7—C8—H8120.2
O1—C2—C3111.62 (14)O4—C8'—Cr1179.72 (16)
C1'—C2—C3111.90 (14)O1—C9—C8114.63 (14)
O1—C2—H2109.3O1—C9—C10123.27 (15)
C1'—C2—H2109.3C8—C9—C10122.07 (15)
C3—C2—H2109.3O5—C9'—Cr1177.22 (16)
C1'—C2'—C3'120.66 (17)C5—C10—C9116.69 (15)
C1'—C2'—Cr172.24 (10)C5—C10—C4123.31 (15)
C3'—C2'—Cr171.86 (10)C9—C10—C4119.97 (15)
C1'—C2'—H2'119.7C9—O1—C2118.15 (13)
C3'—C2'—H2'119.7C7—O2—C1117.25 (13)
Cr1—C2'—H2'128.5C8'—Cr1—C9'87.31 (8)
C4'—C3'—C2'120.04 (17)C8'—Cr1—C7'87.84 (8)
C4'—C3'—Cr171.75 (10)C9'—Cr1—C7'88.31 (8)
C2'—C3'—Cr170.71 (10)C8'—Cr1—C2'89.59 (7)
C4'—C3'—H3'120C9'—Cr1—C2'152.67 (7)
C2'—C3'—H3'120C7'—Cr1—C2'118.72 (7)
Cr1—C3'—H3'130.1C8'—Cr1—C5'155.74 (7)
C2—C3—C4109.27 (14)C9'—Cr1—C5'93.20 (7)
C2—C3—H3A109.8C7'—Cr1—C5'116.42 (8)
C4—C3—H3A109.8C2'—Cr1—C5'78.89 (7)
C2—C3—H3B109.8C8'—Cr1—C6'152.24 (7)
C4—C3—H3B109.8C9'—Cr1—C6'120.40 (7)
H3A—C3—H3B108.3C7'—Cr1—C6'91.05 (7)
C3'—C4'—C5'119.71 (16)C2'—Cr1—C6'66.76 (7)
C3'—C4'—Cr171.57 (10)C5'—Cr1—C6'36.75 (7)
C5'—C4'—Cr171.28 (10)C8'—Cr1—C3'91.40 (7)
C3'—C4'—H4'120.1C9'—Cr1—C3'115.48 (7)
C5'—C4'—H4'120.1C7'—Cr1—C3'156.15 (8)
Cr1—C4'—H4'129.4C2'—Cr1—C3'37.43 (6)
C10—C4—C3109.26 (13)C5'—Cr1—C3'66.50 (7)
C10—C4—H4A109.8C6'—Cr1—C3'78.69 (7)
C3—C4—H4A109.8C8'—Cr1—C1'114.87 (7)
C10—C4—H4B109.8C9'—Cr1—C1'157.81 (7)
C3—C4—H4B109.8C7'—Cr1—C1'91.79 (7)
H4A—C4—H4B108.3C2'—Cr1—C1'36.90 (6)
C6—C5—C10122.81 (15)C5'—Cr1—C1'66.97 (7)
C6—C5—H5118.6C6'—Cr1—C1'37.42 (7)
C10—C5—H5118.6C3'—Cr1—C1'66.98 (6)
C6'—C5'—C4'120.25 (17)C8'—Cr1—C4'118.55 (7)
C6'—C5'—Cr171.63 (10)C9'—Cr1—C4'90.93 (7)
C4'—C5'—Cr171.51 (10)C7'—Cr1—C4'153.54 (8)
C6'—C5'—H5'119.9C2'—Cr1—C4'66.91 (7)
C4'—C5'—H5'119.9C5'—Cr1—C4'37.21 (7)
Cr1—C5'—H5'129.4C6'—Cr1—C4'66.71 (7)
C5—C6—C7118.50 (15)C3'—Cr1—C4'36.68 (7)
C5—C6—H6120.8C1'—Cr1—C4'79.24 (7)
C7—C6—H6120.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.543.459 (2)169
C2—H2···O4ii0.932.463.153 (2)132
C1—H1C···O4iii0.962.573.314 (2)134
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cr(C16H16O2)(CO)3]
Mr376.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.7703 (5), 19.1820 (9), 8.8049 (4)
β (°) 97.494 (2)
V3)1636.07 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.34 × 0.23 × 0.08
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.818, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
29057, 4069, 3526
Rint0.033
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.00
No. of reflections4069
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.52

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenberg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4'—H4'···O2i0.932.543.459 (2)169
C2'—H2'···O4ii0.932.463.153 (2)132
C1—H1C···O4iii0.962.573.314 (2)134
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The University of the Free State and Sasol Ltd are gratefully acknowledged for financial support and Johannes van Tonder for the NMR data and help with the synthesis of the title compound. Special thanks are due to Prof Andreas Roodt.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMüller, T. J. J., Ansorge, M. & Polburn, K. (1999). J. Organomet. Chem. 578, 252–259.  Google Scholar
First citationMuschalek, B., Weidner, I. & Butenschön, H. (2007). J. Organomet. Chem. 692, 2415–2424.  Web of Science CrossRef CAS Google Scholar
First citationRice-Evans, C. A. & Packer, L. (2003). Flavonoids in Health and Disease, Vol. 578, 2nd ed., pp. 252–259. New York: Marcel Dekker Inc.  Google Scholar
First citationSato, S., Hiroe, K., Kumazawa, T. & Jun-ichi, O. (2006). Carbohydr. Res. 341, 1091–1095.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009a). Acta Cryst. E65, m1343.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009b). Acta Cryst. E65, m1346.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2010a). Acta Cryst. E66, m907–m908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2010b). Acta Cryst. E66, m1086.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m438-m439
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds