metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[zinc-bis­­(μ-2-sulfido-1H-benzimidazol-3-ium-5-carboxyl­ato)-κ2O:S;κ2S:O] trihydrate]

aDepartment of Ophthalmology, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China, bDepartment of Vascular Surgery, the China–Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China, cDepartment of Orthopedics, the China–Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China, and dDepartment of Gynecology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
*Correspondence e-mail: li_yp2002@yahoo.com.cn

(Received 28 December 2010; accepted 21 February 2011; online 5 March 2011)

In the title compound, {[Zn(C8H5N2O2S)2]·3H2O}n, the ZnII atom, lying on a twofold rotation axis, is four-coordinated by two S atoms and two O atoms from four 2-sulfido-1H-benzimidazol-3-ium-5-carboxyl­ate (H2mbidc) ligands in a distorted tetra­hedral geometry. Two H2mbidc ligands bridge two ZnII atoms, generating a double-chain along [[\overline{1}]01]. Adjacent chains are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network. One of the two water molecules also lies on a twofold rotation axis.

Related literature

For coordination polymers with helical chain structures, see: Chen & Liu (2002[Chen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J. 8, 4811-4817.]); Cui et al. (2003[Cui, Y., Lee, S. J. & Lin, W. (2003). J. Am. Chem. Soc. 125, 6014-6015.]); Hu et al. (2008[Hu, Y.-W., Li, G.-H., Liu, X.-M., Hu, B., Bi, M.-H., Gao, L., Shi, Z. & Feng, S.-H. (2008). CrystEngComm, 10, 888-893.]); Ngo & Lin (2002[Ngo, H. L. & Lin, W. (2002). J. Am. Chem. Soc. 124, 14298-14299.]); Xiao et al. (2007[Xiao, D.-R., Li, Y.-G., Wang, E.-B., Fan, L.-L., An, H.-Y., Su, Z.-M. & Xu, L. (2007). Inorg. Chem. 46, 4158-4166.]); Yan et al. (2005[Yan, B., Capracotta, M. D. & Maggard, P. A. (2005). Inorg. Chem. 44, 6509-6511.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H5N2O2S)2]·3H2O

  • Mr = 505.86

  • Monoclinic, P 2/n

  • a = 8.031 (1) Å

  • b = 9.732 (3) Å

  • c = 12.436 (7) Å

  • β = 96.584 (9)°

  • V = 965.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.749, Tmax = 0.802

  • 4749 measured reflections

  • 1710 independent reflections

  • 1267 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.099

  • S = 0.98

  • 1710 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1W 0.86 1.88 2.738 (5) 174
N2—H2⋯O1i 0.86 1.98 2.812 (4) 163
O1W—H1A⋯O2ii 0.84 2.21 2.907 (4) 140
O2W—H2A⋯O1 0.82 2.02 2.837 (4) 177
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the synthesis of novel coordination polymers with helical structures has attracted much attention owing to the fundamental role of helicity in biology and their potential utilization in advanced materials (Cui et al., 2003; Ngo & Lin, 2002; Yan et al., 2005). In general, the V-shaped organic ligands have already been proven to be efficient for the generation of helical complexes (Chen & Liu, 2002; Hu et al., 2008; Xiao et al., 2007). 2-Mercapto-1H-benzo[d]imidazole-5-carboxylic acid (H3mbidc) is a rigid V-shaped ligand, in which the S atom can coordinate to a variety of metal ions and the carboxylate group can adopt rich coordination modes, meeting the requirements of the coordination geometries of metal ions in assembly process. We selected H3mbidc as a bridging ligand and ZnII ion as a metal center, generating a new double-chain coordination polymer, whose structure is reported here.

In the title compound (Fig. 1), the ZnII atom is four-coordinated by two S atoms and two carboxylate O atoms from four individual H2mbidc ligands in a distorted tetrahedral coordination geometry. The Cd—O and Cd—S bond lengths are 1.987 (3) and 2.3159 (12) Å. Each H2mbidc ligand bridges two neighboring ZnII atoms, generating a double-chain (Fig. 2). Furthermore, N—H···O and O—H···O hydrogen bonds (Table 1) link the chains together, resulting in a supramolecular structure.

Related literature top

For coordination polymers with helical chain structures, see: Chen & Liu (2002); Cui et al. (2003); Hu et al. (2008); Ngo & Lin (2002); Xiao et al. (2007); Yan et al. (2005).

Experimental top

A mixture of H3mbidc (0.971 g, 5 mmol), NaOH (0.4 g, 10 mmol) and ZnCl2 (1.36 g, 10 mmol) in water (50 ml) was boiled for 20 min with stirring. Then the mixture was cooled to room temperature. The resulting solution was filtered and allowed to stand. After a week, colorless crystals of the title compound were obtained.

Refinement top

H atoms on C and N were positioned geometrically and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N). H atoms of water molecules were located in a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. Dashed lines denote hydrogen bonds. [Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 3/2 - x, y, 3/2 - z; (iii) 1/2 + x, 1 - y, -1/2 + z.]
[Figure 2] Fig. 2. A view of the double-chain structure in the title compound.
catena-Poly[[zinc-bis(µ-2-sulfido-1H-benzimidazol-3-ium-5-carboxylato)-κ2O:S;κ2S:O] trihydrate] top
Crystal data top
[Zn(C8H5N2O2S)2]·3H2OF(000) = 516
Mr = 505.86Dx = 1.740 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 4749 reflections
a = 8.031 (1) Åθ = 1.3–26.0°
b = 9.732 (3) ŵ = 1.54 mm1
c = 12.436 (7) ÅT = 293 K
β = 96.584 (9)°Block, colorless
V = 965.6 (6) Å30.20 × 0.18 × 0.15 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1710 independent reflections
Radiation source: fine-focus sealed tube1267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.749, Tmax = 0.802k = 911
4749 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.5228P]
where P = (Fo2 + 2Fc2)/3
1710 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Zn(C8H5N2O2S)2]·3H2OV = 965.6 (6) Å3
Mr = 505.86Z = 2
Monoclinic, P2/nMo Kα radiation
a = 8.031 (1) ŵ = 1.54 mm1
b = 9.732 (3) ÅT = 293 K
c = 12.436 (7) Å0.20 × 0.18 × 0.15 mm
β = 96.584 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
1710 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1267 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.802Rint = 0.049
4749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 0.98Δρmax = 0.42 e Å3
1710 reflectionsΔρmin = 0.28 e Å3
137 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.75000.20862 (7)0.75000.0295 (2)
S10.46579 (13)0.94066 (11)1.22275 (9)0.0366 (3)
O10.9750 (3)0.4579 (3)0.7829 (2)0.0360 (7)
O20.8006 (3)0.3368 (3)0.8738 (2)0.0323 (7)
N10.6753 (4)0.9126 (3)1.0706 (2)0.0283 (8)
H10.69050.99971.06550.034*
N20.5899 (4)0.7152 (3)1.1261 (2)0.0298 (8)
H20.54230.65511.16300.036*
C10.5795 (4)0.8514 (4)1.1382 (3)0.0266 (9)
C20.7452 (4)0.8136 (4)1.0112 (3)0.0258 (9)
C30.6897 (4)0.6859 (4)1.0445 (3)0.0249 (9)
C40.7307 (4)0.5650 (4)0.9970 (3)0.0269 (9)
H40.69200.48071.01910.032*
C50.8334 (4)0.5746 (4)0.9136 (3)0.0261 (9)
C60.8901 (5)0.7016 (4)0.8817 (3)0.0325 (10)
H60.95780.70480.82590.039*
C70.8494 (5)0.8233 (4)0.9299 (3)0.0348 (10)
H70.89000.90750.90890.042*
C80.8752 (5)0.4488 (4)0.8531 (3)0.0280 (9)
O1W0.7018 (4)1.1927 (3)1.0612 (2)0.0472 (8)
H1A0.77661.22101.02430.071*
H1B0.68961.25301.10730.071*
O2W1.25000.6297 (5)0.75000.0456 (11)
H2A1.17200.57770.75900.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0350 (4)0.0257 (4)0.0303 (4)0.0000.0144 (3)0.000
S10.0409 (7)0.0283 (7)0.0448 (6)0.0041 (5)0.0230 (5)0.0092 (5)
O10.0392 (16)0.0356 (18)0.0363 (16)0.0035 (14)0.0184 (13)0.0098 (14)
O20.0401 (16)0.0301 (18)0.0289 (15)0.0035 (13)0.0129 (12)0.0031 (12)
N10.0341 (19)0.0180 (18)0.0353 (18)0.0021 (15)0.0148 (15)0.0016 (15)
N20.0358 (19)0.025 (2)0.0323 (18)0.0004 (16)0.0181 (15)0.0008 (16)
C10.026 (2)0.026 (2)0.029 (2)0.0005 (18)0.0077 (17)0.0018 (17)
C20.026 (2)0.022 (2)0.030 (2)0.0017 (17)0.0081 (16)0.0006 (17)
C30.026 (2)0.030 (2)0.0206 (18)0.0023 (17)0.0088 (16)0.0013 (17)
C40.029 (2)0.023 (2)0.030 (2)0.0004 (17)0.0091 (17)0.0042 (17)
C50.028 (2)0.031 (2)0.0209 (19)0.0029 (18)0.0067 (16)0.0017 (17)
C60.033 (2)0.038 (3)0.029 (2)0.003 (2)0.0162 (17)0.003 (2)
C70.042 (2)0.028 (3)0.039 (2)0.0067 (19)0.021 (2)0.0044 (19)
C80.025 (2)0.035 (3)0.024 (2)0.0016 (19)0.0012 (17)0.0022 (18)
O1W0.064 (2)0.0356 (19)0.0453 (18)0.0104 (16)0.0178 (15)0.0048 (15)
O2W0.046 (3)0.037 (3)0.058 (3)0.0000.023 (2)0.000
Geometric parameters (Å, º) top
Zn1—O21.987 (3)C2—C31.400 (5)
Zn1—S1i2.3159 (12)C3—C41.374 (5)
S1—C11.707 (4)C4—C51.400 (5)
O1—C81.254 (4)C4—H40.9300
O2—C81.284 (5)C5—C61.391 (5)
N1—C11.342 (4)C5—C81.494 (5)
N1—C21.373 (5)C6—C71.384 (6)
N1—H10.8600C6—H60.9300
N2—C11.338 (5)C7—H70.9300
N2—C31.392 (4)O1W—H1A0.84
N2—H20.8600O1W—H1B0.83
C2—C71.388 (5)O2W—H2A0.82
O2—Zn1—O2ii102.22 (17)C4—C3—N2132.5 (4)
O2—Zn1—S1i111.74 (8)C4—C3—C2122.2 (3)
O2ii—Zn1—S1i114.66 (8)N2—C3—C2105.3 (3)
O2—Zn1—S1iii114.66 (8)C3—C4—C5116.9 (4)
O2ii—Zn1—S1iii111.74 (8)C3—C4—H4121.5
S1i—Zn1—S1iii102.30 (6)C5—C4—H4121.5
C1—S1—Zn1i103.48 (14)C6—C5—C4120.7 (4)
C8—O2—Zn1115.9 (2)C6—C5—C8119.0 (3)
C1—N1—C2109.0 (3)C4—C5—C8120.2 (4)
C1—N1—H1125.5C7—C6—C5122.4 (3)
C2—N1—H1125.5C7—C6—H6118.8
C1—N2—C3109.5 (3)C5—C6—H6118.8
C1—N2—H2125.3C6—C7—C2116.7 (4)
C3—N2—H2125.3C6—C7—H7121.6
N2—C1—N1108.8 (3)C2—C7—H7121.6
N2—C1—S1128.2 (3)O1—C8—O2123.3 (4)
N1—C1—S1123.1 (3)O1—C8—C5119.4 (4)
N1—C2—C7131.5 (4)O2—C8—C5117.2 (3)
N1—C2—C3107.4 (3)H1A—O1W—H1B107.0
C7—C2—C3121.0 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+3/2, y, z+3/2; (iii) x+1/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.861.882.738 (5)174
N2—H2···O1iv0.861.982.812 (4)163
O1W—H1A···O2v0.842.212.907 (4)140
O2W—H2A···O10.822.022.837 (4)177
Symmetry codes: (iv) x1/2, y+1, z+1/2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C8H5N2O2S)2]·3H2O
Mr505.86
Crystal system, space groupMonoclinic, P2/n
Temperature (K)293
a, b, c (Å)8.031 (1), 9.732 (3), 12.436 (7)
β (°) 96.584 (9)
V3)965.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.749, 0.802
No. of measured, independent and
observed [I > 2σ(I)] reflections
4749, 1710, 1267
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.099, 0.98
No. of reflections1710
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.861.882.738 (5)174
N2—H2···O1i0.861.982.812 (4)163
O1W—H1A···O2ii0.842.212.907 (4)140
O2W—H2A···O10.822.022.837 (4)177
Symmetry codes: (i) x1/2, y+1, z+1/2; (ii) x, y+1, z.
 

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J. 8, 4811–4817.  CrossRef PubMed CAS Google Scholar
First citationCui, Y., Lee, S. J. & Lin, W. (2003). J. Am. Chem. Soc. 125, 6014–6015.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, Y.-W., Li, G.-H., Liu, X.-M., Hu, B., Bi, M.-H., Gao, L., Shi, Z. & Feng, S.-H. (2008). CrystEngComm, 10, 888–893.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNgo, H. L. & Lin, W. (2002). J. Am. Chem. Soc. 124, 14298–14299.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, D.-R., Li, Y.-G., Wang, E.-B., Fan, L.-L., An, H.-Y., Su, Z.-M. & Xu, L. (2007). Inorg. Chem. 46, 4158–4166.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYan, B., Capracotta, M. D. & Maggard, P. A. (2005). Inorg. Chem. 44, 6509–6511.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds