metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-hy­dr­oxy­methyl­anilinium) hexa­chloridostannate(IV)

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, bDépartement Sciences de la Matière, Facult des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, Oum El Bouaghi 04000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 18 February 2011; accepted 25 February 2011; online 2 March 2011)

In the title compound, (C7H10NO)2[SnCl6], the SnIV atom, located on an inversion center, exists in an octa­hedral coordination environment. The crystal structure exhibits alternating organic and inorganic layers parallel to ([\overline{1}]01). The cations and anions are linked via inter­molecular N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds. Additional stabilization is provided by ππ stacking inter­actions between the benzene rings of the cations [centroid–centroid distances = 3.6962 (15) and 3.9340 (15) Å].

Related literature

For related structures of similar monoprotonated amines or imines, see: Bouacida (2008[Bouacida, S. (2008). PhD thesis, Mentouri-Constantine University, Algeria.]); Bouacida et al. (2005a[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005a). Acta Cryst. E61, m577-m579.],b[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61, m1153-m1155.],c[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61, m2072-m2074.], 2009[Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628-o629.]); Rademeyer (2004a[Rademeyer, M. (2004a). Acta Cryst. C60, m55-m56.],b[Rademeyer, M. (2004b). Acta Cryst. E60, m345-m347.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H10NO)2[SnCl6]

  • Mr = 579.73

  • Monoclinic, P 21 /n

  • a = 7.4785 (11) Å

  • b = 11.2959 (16) Å

  • c = 12.6153 (18) Å

  • β = 105.989 (5)°

  • V = 1024.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 100 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.423, Tmax = 0.693

  • 5915 measured reflections

  • 2279 independent reflections

  • 2027 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.058

  • S = 1.07

  • 2279 reflections

  • 117 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −1.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl2 0.82 2.70 3.438 (2) 151
O1—H1⋯Cl3 0.82 2.79 3.370 (2) 130
N1—H1A⋯Cl3i 0.89 2.64 3.298 (2) 131
N1—H1B⋯O1ii 0.89 1.83 2.721 (3) 175
N1—H1C⋯Cl1iii 0.89 2.71 3.338 (2) 128
N1—H1C⋯Cl2iii 0.89 2.57 3.304 (2) 140
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structures of protonated amines (Bouacida, 2008; Bouacida et al., 2009).

In the title compound (Fig. 1), all bond distances and angles are within the ranges of accepted values (CSD, Allen, 2002). The amino N atom is protonated as in the other amines and imines (Bouacida et al., 2005a,b,c; Rademeyer, 2004a,b). The SnIV atom is six-coordinated with six Cl atoms, located on an inversion center, forming a slightly distorted octahedral geometry. The crystal structure can be described as alternating layers of [SnCl6]2- comlpex anions and 3-hydroxymethylanilinium cations parallel to (1 0 1) (Fig. 2). In the crystal, the components of the structure are linked via intermolecular N—H···O, N—H···Cl and O—H···Cl hydrogen bonds (Table 1, Fig. 3). Additional stabilization is provided by ππ stacking interactions (Table 2). These interactions link the cations and anions together, reinforcing the cohesion of the ionic structure.

Related literature top

For related structures of similar monoprotonated amines or imines, see: Bouacida (2008); Bouacida et al. (2005a,b,c, 2009); Rademeyer (2004a,b). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Crystals of the title compound were grown from an aqueous solution that was obtained by dissolving SnCl2 (1 mmol) and 3-aminophenylmethanol (2 mmol) in hydrochloric acid. The solution was slowly evaporated to dryness for a couple of weeks. Some colorless crystals were carefully isolated under polarizing microscope for X-ray diffraction analysis.

Refinement top

H atoms were located in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 and 0.97, N—H = 0.89, and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N, O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) 1-x, 1-y, 1-z.]
[Figure 2] Fig. 2. A diagram of the layered crystal packing in the title compound, viewed down the b axis, showing alternating layers of octahedral anions and cations.
[Figure 3] Fig. 3. Crystal packing of the title compound, viewed down the a axis, showing hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonds have been omitted for clarity.
Bis(3-hydroxymethylanilinium) hexachloridostannate(IV) top
Crystal data top
(C7H10NO)2[SnCl6]F(000) = 572
Mr = 579.73Dx = 1.879 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.4785 (11) ÅCell parameters from 3840 reflections
b = 11.2959 (16) Åθ = 3.4–27.4°
c = 12.6153 (18) ŵ = 2.04 mm1
β = 105.989 (5)°T = 100 K
V = 1024.5 (3) Å3Block, colorless
Z = 20.20 × 0.18 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
2027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 95
Tmin = 0.423, Tmax = 0.693k = 1014
5915 measured reflectionsl = 1416
2279 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0194P)2 + 0.1921P]
where P = (Fo2 + 2Fc2)/3
2279 reflections(Δ/σ)max = 0.001
117 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 1.27 e Å3
Crystal data top
(C7H10NO)2[SnCl6]V = 1024.5 (3) Å3
Mr = 579.73Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.4785 (11) ŵ = 2.04 mm1
b = 11.2959 (16) ÅT = 100 K
c = 12.6153 (18) Å0.20 × 0.18 × 0.16 mm
β = 105.989 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2279 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2027 reflections with I > 2σ(I)
Tmin = 0.423, Tmax = 0.693Rint = 0.038
5915 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.07Δρmax = 0.63 e Å3
2279 reflectionsΔρmin = 1.27 e Å3
117 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8165 (3)0.12498 (19)0.46444 (19)0.0181 (5)
C20.7132 (3)0.06992 (19)0.36967 (18)0.0170 (5)
H20.69180.10750.30170.02*
C30.6412 (3)0.0428 (2)0.37701 (19)0.0186 (5)
C40.6736 (4)0.0954 (2)0.48072 (19)0.0216 (5)
H40.62460.170.48670.026*
C50.7765 (4)0.0391 (2)0.5742 (2)0.0249 (6)
H50.79730.07610.64240.03*
C60.8502 (3)0.0738 (2)0.56723 (19)0.0207 (5)
H60.91970.11280.630.025*
C70.5266 (4)0.1037 (2)0.2755 (2)0.0228 (5)
H7A0.51620.05290.21210.027*
H7B0.40230.11720.28260.027*
N10.8919 (3)0.24370 (17)0.45477 (16)0.0219 (4)
H1A1.0050.24990.50140.033*
H1B0.89860.25470.38610.033*
H1C0.81760.29820.4710.033*
O10.6072 (3)0.21527 (14)0.25759 (14)0.0284 (4)
H10.56910.26780.29070.043*
Cl10.54335 (8)0.34435 (5)0.63534 (4)0.01892 (13)
Cl20.29979 (8)0.36720 (5)0.36576 (4)0.01874 (14)
Cl30.76854 (9)0.43264 (5)0.44207 (5)0.02107 (14)
Sn10.50.50.50.01371 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0175 (13)0.0183 (11)0.0200 (12)0.0004 (10)0.0073 (10)0.0020 (9)
C20.0181 (13)0.0167 (11)0.0162 (11)0.0023 (10)0.0049 (10)0.0015 (9)
C30.0171 (13)0.0174 (11)0.0218 (12)0.0041 (10)0.0062 (10)0.0006 (10)
C40.0213 (13)0.0194 (11)0.0268 (13)0.0046 (11)0.0112 (11)0.0042 (10)
C50.0268 (15)0.0302 (13)0.0207 (13)0.0091 (12)0.0118 (11)0.0071 (11)
C60.0189 (13)0.0266 (12)0.0159 (12)0.0060 (11)0.0037 (10)0.0033 (10)
C70.0195 (14)0.0179 (11)0.0298 (14)0.0007 (10)0.0047 (11)0.0037 (10)
N10.0216 (12)0.0213 (10)0.0240 (11)0.0028 (9)0.0083 (9)0.0064 (8)
O10.0455 (13)0.0152 (8)0.0273 (10)0.0035 (9)0.0144 (9)0.0013 (7)
Cl10.0239 (3)0.0162 (3)0.0145 (3)0.0011 (2)0.0017 (2)0.0028 (2)
Cl20.0234 (3)0.0171 (3)0.0138 (3)0.0036 (2)0.0019 (2)0.0007 (2)
Cl30.0195 (3)0.0229 (3)0.0219 (3)0.0023 (2)0.0074 (2)0.0003 (2)
Sn10.01617 (13)0.01257 (12)0.01161 (13)0.00006 (8)0.00251 (9)0.00002 (8)
Geometric parameters (Å, º) top
C1—C61.378 (3)C6—H60.93
C1—C21.380 (3)C7—O11.441 (3)
C1—N11.473 (3)C7—H7A0.97
C2—C31.396 (3)C7—H7B0.97
C2—H20.93N1—H1A0.89
C3—C41.396 (3)N1—H1B0.89
C3—C71.498 (3)N1—H1C0.89
C4—C51.374 (4)O1—H10.82
C4—H40.93Sn1—Cl12.4097 (6)
C5—C61.401 (3)Sn1—Cl22.4419 (6)
C5—H50.93Sn1—Cl32.4402 (6)
C6—C1—C2122.7 (2)H7A—C7—H7B107.9
C6—C1—N1119.0 (2)C1—N1—H1A109.5
C2—C1—N1118.3 (2)C1—N1—H1B109.5
C1—C2—C3119.2 (2)H1A—N1—H1B109.5
C1—C2—H2120.4C1—N1—H1C109.5
C3—C2—H2120.4H1A—N1—H1C109.5
C4—C3—C2118.7 (2)H1B—N1—H1C109.5
C4—C3—C7121.1 (2)C7—O1—H1109.5
C2—C3—C7120.2 (2)Cl1—Sn1—Cl1i180
C5—C4—C3121.3 (2)Cl1—Sn1—Cl3i88.65 (2)
C5—C4—H4119.4Cl1i—Sn1—Cl3i91.35 (2)
C3—C4—H4119.4Cl1—Sn1—Cl391.35 (2)
C4—C5—C6120.3 (2)Cl1i—Sn1—Cl388.65 (2)
C4—C5—H5119.8Cl3i—Sn1—Cl3180
C6—C5—H5119.8Cl1—Sn1—Cl2i91.13 (2)
C1—C6—C5117.9 (2)Cl1i—Sn1—Cl2i88.87 (2)
C1—C6—H6121.1Cl3i—Sn1—Cl2i89.93 (2)
C5—C6—H6121.1Cl3—Sn1—Cl2i90.07 (2)
O1—C7—C3111.7 (2)Cl1—Sn1—Cl288.87 (2)
O1—C7—H7A109.3Cl1i—Sn1—Cl291.13 (2)
C3—C7—H7A109.3Cl3i—Sn1—Cl290.07 (2)
O1—C7—H7B109.3Cl3—Sn1—Cl289.93 (2)
C3—C7—H7B109.3Cl2i—Sn1—Cl2180.000 (19)
C6—C1—C2—C30.8 (4)C3—C4—C5—C60.6 (4)
N1—C1—C2—C3179.7 (2)C2—C1—C6—C50.4 (4)
C1—C2—C3—C41.1 (3)N1—C1—C6—C5179.8 (2)
C1—C2—C3—C7179.2 (2)C4—C5—C6—C10.2 (4)
C2—C3—C4—C51.0 (4)C4—C3—C7—O160.8 (3)
C7—C3—C4—C5179.1 (2)C2—C3—C7—O1121.2 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl20.822.703.438 (2)151
O1—H1···Cl30.822.793.370 (2)130
N1—H1A···Cl3ii0.892.643.298 (2)131
N1—H1B···O1iii0.891.832.721 (3)175
N1—H1C···Cl1iv0.892.713.338 (2)128
N1—H1C···Cl2iv0.892.573.304 (2)140
Symmetry codes: (ii) x+2, y, z+1; (iii) x+3/2, y1/2, z+1/2; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula(C7H10NO)2[SnCl6]
Mr579.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.4785 (11), 11.2959 (16), 12.6153 (18)
β (°) 105.989 (5)
V3)1024.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.423, 0.693
No. of measured, independent and
observed [I > 2σ(I)] reflections
5915, 2279, 2027
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.058, 1.07
No. of reflections2279
No. of parameters117
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 1.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl20.822.703.438 (2)151
O1—H1···Cl30.822.793.370 (2)130
N1—H1A···Cl3i0.892.643.298 (2)131
N1—H1B···O1ii0.891.832.721 (3)175
N1—H1C···Cl1iii0.892.713.338 (2)128
N1—H1C···Cl2iii0.892.573.304 (2)140
Symmetry codes: (i) x+2, y, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z+1.
Table 2. ππ stacking interactions (Å,°) top
CgICgJCgI···CgJβCgI···PJslippage
Cg1Cg1i3.6962 (15)25.82-3.3272 (10)1.610
Cg1Cg1ii3.9340 (15)29.643.4194 (10)1.945
Symmetry codes: (i) -x,-y,1-z; (ii) 1-x,-y,1-z. Notes: Cg1 is the centroid of the C1–C6 ring; CgI···CgJ is the distance between the centroids; CgI···PJ is the perpendicular distance of CgI on ring plane J; β is the angle between the vector CgI—CgJ and the normal to ring plane I; slippage is the distance between CgI and the projection of CgJ on ring plane I.
 

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, Algeria.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBouacida, S. (2008). PhD thesis, Mentouri-Constantine University, Algeria.  Google Scholar
First citationBouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005a). Acta Cryst. E61, m577–m579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61, m1153–m1155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61, m2072–m2074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRademeyer, M. (2004a). Acta Cryst. C60, m55–m56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRademeyer, M. (2004b). Acta Cryst. E60, m345–m347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds