metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m402-m403

Bis(1,10-phenanthroline-κ2N,N′)[2-(4-sulfonato­anilino)acetato-κO]copper(II) dihydrate

aFaculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: lixing@nbu.edu.cn

(Received 20 February 2011; accepted 28 February 2011; online 9 March 2011)

In the title compound, [Cu(C8H7NO5S)(C12H8N2)2]·2H2O, the CuII ion is coordinated by four N atoms from two 1,10-phenanthroline (phen) ligands and one O atom from a 2-(4-sulfonato­anilino)acetate (spia) ligand in a distorted square-pyramidal geometry. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, as well as ππ inter­actions between phen ligands and between phen and spia ligands [centroid–centroid distances = 3.663 (3), 3.768 (3) and 3.565 (3) Å], result in a three-dimensional supra­molecular structure.

Related literature

For metal complexes with flexible or semi-rigid ligands, see: Chu et al. (2008[Chu, Q., Liu, G.-X., Okamura, T., Huang, Y.-Q., Sun, W.-Y. & Ueyama, N. (2008). Polyhedron, 27, 812-820.]); Xu et al. (2006a[Xu, Y.-Q., Chen, B.-Q., Gong, Y.-Q., Yuan, D.-Q., Jiang, F.-L. & Hong, M.-C. (2006a). J. Mol. Struct. 789, 220-224.],b[Xu, Y.-Q., Yuan, D.-Q., Wu, B.-L., Han, L., Wu, M.-Y., Jiang, F.-L. & Hong, M.-C. (2006b). Cryst. Growth Des. 6, 1168-1174.]); Yong et al. (2004[Yong, G.-P., Wang, Z.-Y. & Chen, J.-T. (2004). J. Mol. Struct. 707, 220-224.], 2005[Yong, G.-P., Qiao, S., Wang, Z.-Y. & Cui, Y. (2005). Inorg. Chim. Acta, 358, 3905-3913.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H7NO5S)(C12H8N2)2]·2H2O

  • Mr = 689.19

  • Triclinic, [P \overline 1]

  • a = 9.3437 (19) Å

  • b = 13.274 (3) Å

  • c = 13.880 (3) Å

  • α = 64.61 (3)°

  • β = 88.77 (3)°

  • γ = 69.83 (3)°

  • V = 1443.6 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 293 K

  • 0.24 × 0.18 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.825, Tmax = 0.931

  • 14102 measured reflections

  • 6590 independent reflections

  • 5238 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.11

  • 6590 reflections

  • 409 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −1.99 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.993 (2)
Cu1—N1 1.999 (2)
Cu1—N2 2.049 (2)
Cu1—N3 2.005 (2)
Cu1—N4 2.212 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O2i 0.86 2.35 3.173 (4) 160
O6—H6A⋯O4 0.76 2.11 2.850 (5) 166
O6—H6B⋯O1ii 0.86 2.15 2.963 (5) 156
O7—H7B⋯O3iii 0.72 2.24 2.915 (4) 156
O7—H7A⋯O5iv 0.76 2.11 2.785 (4) 148
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y-1, z; (iii) -x+1, -y+1, -z; (iv) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Flexible or semi-rigid ligands can adopt various conformations and coordination modes according to the geometric requirements of different metal ions, which have attracted more attention in the fields of supramolecular chemistry (Chu et al., 2008; Xu et al., 2006a,b; Yong et al., 2004, 2005). Here we use N-(4-sulfanilicphenyl)iminoacetic acid (H2spia) and CuSO4.5H2O to prepare a copper compound with the spia ligand. The title compound is a mononuclear complex, with five-coordinated CuII ions. As shown in Fig. 1, the CuII ion is coordinated by one O atom from an spia ligand and four N atoms from two 1,10-phenanthroline ligands. There are two uncoordinated water molecules in the asymmetric unit.

Related literature top

For metal complexes with flexible or semi-rigid ligands, see: Chu et al. (2008); Xu et al. (2006a,b); Yong et al. (2004, 2005).

Experimental top

H2spia was prepared following the method described by Yong et al. (2005). A solution of KOH (2.694 g, 48 mmol) in water (5 ml) was added dropwise to chloroacetic acid sodium salt (2.796 g, 24 mmol) in water (5 ml) with stirring. Sulfanilic acid (1.044 g, 6 mmol) was slowly added to the reaction mixture and KI (0.025 g) was added as catalyst. Then the mixture was refluxed at about 80°C for 30 h. The reaction solution was cooled to room temperature and acidified with HCl (6 mol/L) until the desired white acidic material precipitated (pH = 3), which was filtered, washed with water and dried in air.

The title compound was prepared by a solvent evaporation method. A mixture of CuSO4.5H2O (0.025 g, 0.1 mmol), H2spia (0.029 g, 0.1 mmol), and 1,10-phenanthroline (0.040 g, 0.20 mmol) in 15 ml of water was heated for 30 min. One drop of KOH solution was added to adjust pH to 5, and then the mixture was filtered. Dark green single crystals suitable for X-ray analysis were obtained by slow evaporation of solvent at room temperature.

Refinement top

H atoms attached to C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.98 (CH2), N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). H atoms of water molecules were found in a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing ππ stacking interactions (dashed lines) between the phen ligands [centroid–centroid distances = 3.663 (3) and 3.768 (3) Å] and between the phen and spia ligands [centroid–centroid distance = 3.565 (3) Å].
Bis(1,10-phenanthroline-κ2N,N')[2-(4- sulfonatoanilino)acetato-κO]copper(II) dihydrate top
Crystal data top
[Cu(C8H7NO5S)(C12H8N2)2]·2H2OZ = 2
Mr = 689.19F(000) = 710
Triclinic, P1Dx = 1.585 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3437 (19) ÅCell parameters from 14102 reflections
b = 13.274 (3) Åθ = 3.1–27.5°
c = 13.880 (3) ŵ = 0.89 mm1
α = 64.61 (3)°T = 293 K
β = 88.77 (3)°Platelet, dark green
γ = 69.83 (3)°0.24 × 0.18 × 0.08 mm
V = 1443.6 (8) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6590 independent reflections
Radiation source: rotation anode5238 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1112
Tmin = 0.825, Tmax = 0.931k = 1717
14102 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0596P)2 + 1.1815P]
where P = (Fo2 + 2Fc2)/3
6590 reflections(Δ/σ)max = 0.001
409 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 1.99 e Å3
Crystal data top
[Cu(C8H7NO5S)(C12H8N2)2]·2H2Oγ = 69.83 (3)°
Mr = 689.19V = 1443.6 (8) Å3
Triclinic, P1Z = 2
a = 9.3437 (19) ÅMo Kα radiation
b = 13.274 (3) ŵ = 0.89 mm1
c = 13.880 (3) ÅT = 293 K
α = 64.61 (3)°0.24 × 0.18 × 0.08 mm
β = 88.77 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6590 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5238 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.931Rint = 0.042
14102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.11Δρmax = 0.83 e Å3
6590 reflectionsΔρmin = 1.99 e Å3
409 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50512 (4)0.83070 (3)0.27467 (2)0.02821 (11)
S10.82946 (9)0.30436 (7)0.13978 (6)0.03859 (18)
O10.2037 (3)0.7912 (2)0.2589 (2)0.0650 (7)
O20.4453 (2)0.68782 (18)0.34176 (16)0.0363 (5)
O30.7572 (3)0.3723 (2)0.02907 (19)0.0601 (7)
O40.8555 (2)0.17807 (19)0.18310 (17)0.03859 (18)
O50.9698 (3)0.3209 (3)0.1589 (3)0.0700 (8)
O60.8946 (4)0.0692 (3)0.2861 (3)0.0805 (9)
H6B0.96810.10960.26280.097*
H6A0.88490.00490.24960.097*
O70.2154 (3)0.3957 (3)0.0958 (3)0.0848 (10)
H7B0.20700.45360.05210.102*
H7A0.13170.40140.09560.102*
N10.6589 (3)0.7539 (2)0.20033 (18)0.0299 (5)
N20.5263 (3)0.9827 (2)0.15768 (17)0.0286 (5)
N30.3742 (3)0.9116 (2)0.35647 (17)0.0280 (5)
N40.6770 (3)0.7688 (2)0.41483 (18)0.0307 (5)
N50.4049 (3)0.4718 (2)0.4122 (2)0.0372 (6)
H5A0.42380.42500.48030.045*
C10.3090 (4)0.6979 (3)0.3178 (2)0.0355 (6)
C20.2737 (3)0.5822 (3)0.3707 (3)0.0379 (7)
H2A0.21640.58430.42940.046*
H2B0.20730.58230.31790.046*
C30.5021 (3)0.4384 (2)0.3459 (2)0.0322 (6)
C40.6514 (3)0.3536 (2)0.3900 (2)0.0339 (6)
H40.68510.32260.46310.041*
C50.7493 (3)0.3154 (3)0.3265 (2)0.0342 (6)
H60.84850.25930.35730.041*
C60.7018 (3)0.3596 (2)0.2172 (2)0.0321 (6)
C70.5545 (3)0.4453 (3)0.1722 (2)0.0367 (6)
H70.52190.47650.09890.044*
C80.4560 (4)0.4848 (3)0.2347 (2)0.0372 (6)
H50.35810.54280.20310.045*
C90.7205 (3)0.6388 (3)0.2225 (2)0.0363 (6)
H90.68010.58560.27150.044*
C100.8439 (4)0.5948 (3)0.1746 (3)0.0442 (7)
H100.88430.51360.19160.053*
C110.9054 (4)0.6718 (3)0.1025 (3)0.0447 (7)
H110.98890.64290.07130.054*
C120.8420 (3)0.7936 (3)0.0762 (2)0.0361 (6)
C130.8923 (4)0.8835 (3)0.0014 (3)0.0457 (8)
H130.97450.86060.03620.055*
C140.8231 (4)0.9996 (3)0.0246 (3)0.0455 (8)
H140.85801.05550.07570.055*
C150.6969 (3)1.0401 (3)0.0272 (2)0.0356 (6)
C160.6218 (4)1.1597 (3)0.0083 (3)0.0451 (8)
H160.65431.21920.03970.054*
C170.5005 (4)1.1882 (3)0.0611 (3)0.0453 (8)
H170.44831.26760.04790.054*
C180.4555 (4)1.0975 (3)0.1349 (2)0.0375 (6)
H180.37221.11840.16960.045*
C190.6454 (3)0.9541 (2)0.1040 (2)0.0287 (5)
C200.7174 (3)0.8311 (2)0.1275 (2)0.0289 (5)
C210.2280 (3)0.9850 (3)0.3261 (2)0.0347 (6)
H210.18031.00650.25830.042*
C220.1422 (4)1.0315 (3)0.3907 (3)0.0403 (7)
H220.03981.08360.36600.048*
C230.2101 (3)0.9997 (3)0.4914 (2)0.0371 (6)
H230.15421.03010.53560.044*
C240.3645 (3)0.9212 (2)0.5271 (2)0.0295 (6)
C250.4415 (4)0.8779 (3)0.6331 (2)0.0368 (6)
H250.38860.90370.68080.044*
C260.5888 (4)0.8008 (3)0.6650 (2)0.0383 (7)
H260.63500.77170.73520.046*
C270.6758 (3)0.7627 (2)0.5921 (2)0.0322 (6)
C280.8313 (4)0.6867 (3)0.6195 (3)0.0432 (7)
H280.88380.65790.68780.052*
C290.9051 (4)0.6555 (3)0.5448 (3)0.0481 (8)
H291.00880.60590.56170.058*
C300.8241 (3)0.6985 (3)0.4431 (3)0.0399 (7)
H300.87620.67660.39300.048*
C310.6037 (3)0.8018 (2)0.4881 (2)0.0269 (5)
C320.4447 (3)0.8800 (2)0.4561 (2)0.0262 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03390 (19)0.02680 (19)0.02459 (18)0.01173 (14)0.00970 (12)0.01201 (13)
S10.0437 (4)0.0380 (4)0.0373 (4)0.0160 (3)0.0141 (3)0.0195 (3)
O10.0678 (17)0.0393 (14)0.0659 (18)0.0111 (13)0.0156 (14)0.0099 (13)
O20.0408 (11)0.0305 (10)0.0413 (12)0.0188 (9)0.0159 (9)0.0157 (9)
O30.0700 (17)0.0599 (16)0.0314 (12)0.0063 (14)0.0115 (11)0.0178 (11)
O40.0437 (4)0.0380 (4)0.0373 (4)0.0160 (3)0.0141 (3)0.0195 (3)
O50.0512 (15)0.106 (2)0.092 (2)0.0452 (17)0.0369 (15)0.068 (2)
O60.073 (2)0.0683 (19)0.094 (2)0.0366 (17)0.0195 (17)0.0232 (17)
O70.0587 (17)0.072 (2)0.078 (2)0.0235 (16)0.0072 (15)0.0056 (16)
N10.0365 (12)0.0315 (12)0.0264 (11)0.0165 (10)0.0094 (9)0.0144 (9)
N20.0342 (12)0.0281 (11)0.0240 (11)0.0109 (10)0.0028 (9)0.0125 (9)
N30.0318 (11)0.0278 (11)0.0242 (11)0.0112 (10)0.0050 (9)0.0115 (9)
N40.0305 (11)0.0330 (12)0.0303 (12)0.0130 (10)0.0078 (9)0.0148 (10)
N50.0506 (15)0.0279 (12)0.0327 (13)0.0158 (11)0.0167 (11)0.0128 (10)
C10.0452 (17)0.0315 (15)0.0304 (15)0.0134 (14)0.0094 (12)0.0153 (12)
C20.0390 (16)0.0378 (16)0.0457 (17)0.0195 (14)0.0189 (13)0.0229 (14)
C30.0439 (16)0.0270 (13)0.0319 (14)0.0212 (13)0.0141 (12)0.0129 (11)
C40.0467 (16)0.0285 (14)0.0247 (13)0.0155 (13)0.0052 (11)0.0092 (11)
C50.0384 (15)0.0269 (13)0.0328 (15)0.0101 (12)0.0034 (11)0.0108 (11)
C60.0391 (15)0.0299 (14)0.0318 (14)0.0174 (13)0.0113 (11)0.0146 (11)
C70.0421 (16)0.0373 (16)0.0266 (14)0.0131 (14)0.0049 (11)0.0121 (12)
C80.0374 (15)0.0352 (15)0.0340 (15)0.0094 (13)0.0032 (12)0.0140 (12)
C90.0401 (16)0.0310 (15)0.0410 (16)0.0146 (13)0.0129 (12)0.0182 (13)
C100.0457 (18)0.0367 (16)0.053 (2)0.0115 (15)0.0120 (15)0.0261 (15)
C110.0402 (17)0.055 (2)0.0489 (19)0.0174 (16)0.0181 (14)0.0335 (16)
C120.0354 (15)0.0477 (17)0.0345 (15)0.0204 (14)0.0121 (12)0.0230 (13)
C130.0421 (17)0.061 (2)0.0409 (18)0.0271 (17)0.0189 (14)0.0233 (16)
C140.0472 (18)0.056 (2)0.0363 (17)0.0332 (17)0.0127 (13)0.0129 (15)
C150.0400 (15)0.0404 (16)0.0290 (14)0.0238 (14)0.0016 (11)0.0107 (12)
C160.0546 (19)0.0388 (17)0.0385 (17)0.0269 (16)0.0012 (14)0.0068 (13)
C170.056 (2)0.0293 (15)0.0463 (19)0.0153 (15)0.0018 (15)0.0135 (14)
C180.0459 (17)0.0331 (15)0.0347 (15)0.0128 (13)0.0038 (12)0.0177 (12)
C190.0315 (13)0.0345 (14)0.0227 (12)0.0160 (12)0.0020 (10)0.0121 (11)
C200.0319 (13)0.0354 (14)0.0252 (13)0.0167 (12)0.0067 (10)0.0156 (11)
C210.0315 (14)0.0349 (15)0.0342 (15)0.0074 (12)0.0024 (11)0.0162 (12)
C220.0326 (15)0.0379 (16)0.0456 (18)0.0082 (13)0.0066 (12)0.0185 (14)
C230.0405 (16)0.0360 (15)0.0405 (16)0.0148 (13)0.0165 (12)0.0224 (13)
C240.0356 (14)0.0277 (13)0.0301 (14)0.0161 (12)0.0112 (11)0.0142 (11)
C250.0509 (18)0.0376 (16)0.0277 (14)0.0181 (14)0.0120 (12)0.0186 (12)
C260.0523 (18)0.0357 (15)0.0265 (14)0.0156 (14)0.0022 (12)0.0140 (12)
C270.0388 (15)0.0278 (13)0.0290 (14)0.0135 (12)0.0012 (11)0.0110 (11)
C280.0409 (17)0.0435 (18)0.0381 (17)0.0108 (15)0.0076 (13)0.0154 (14)
C290.0316 (15)0.051 (2)0.052 (2)0.0060 (15)0.0022 (13)0.0211 (16)
C300.0315 (14)0.0434 (17)0.0430 (17)0.0100 (13)0.0089 (12)0.0210 (14)
C310.0324 (13)0.0236 (12)0.0261 (13)0.0130 (11)0.0059 (10)0.0105 (10)
C320.0321 (13)0.0235 (12)0.0245 (12)0.0130 (11)0.0074 (10)0.0101 (10)
Geometric parameters (Å, º) top
Cu1—O21.993 (2)C9—H90.9300
Cu1—N11.999 (2)C10—C111.371 (5)
Cu1—N22.049 (2)C10—H100.9300
Cu1—N32.005 (2)C11—C121.394 (5)
Cu1—N42.212 (3)C11—H110.9300
S1—O31.438 (3)C12—C201.406 (4)
S1—O41.446 (2)C12—C131.438 (4)
S1—O51.450 (3)C13—C141.338 (5)
S1—C61.769 (3)C13—H130.9300
O1—C11.223 (4)C14—C151.434 (4)
O2—C11.270 (4)C14—H140.9300
O6—H6B0.86C15—C161.401 (5)
O6—H6A0.76C15—C191.409 (4)
O7—H7B0.72C16—C171.369 (5)
O7—H7A0.76C16—H160.9300
N1—C91.326 (4)C17—C181.396 (4)
N1—C201.359 (3)C17—H170.9300
N2—C181.326 (4)C18—H180.9300
N2—C191.362 (3)C19—C201.421 (4)
N3—C211.322 (4)C21—C221.389 (4)
N3—C321.369 (3)C21—H210.9300
N4—C301.319 (4)C22—C231.372 (4)
N4—C311.356 (3)C22—H220.9300
N5—C31.380 (4)C23—C241.401 (4)
N5—C21.432 (4)C23—H230.9300
N5—H5A0.8600C24—C321.407 (4)
C1—C21.543 (4)C24—C251.431 (4)
C2—H2A0.9700C25—C261.343 (4)
C2—H2B0.9700C25—H250.9300
C3—C41.397 (4)C26—C271.435 (4)
C3—C81.405 (4)C26—H260.9300
C4—C51.377 (4)C27—C281.399 (4)
C4—H40.9300C27—C311.402 (4)
C5—C61.390 (4)C28—C291.365 (5)
C5—H60.9300C28—H280.9300
C6—C71.388 (4)C29—C301.397 (5)
C7—C81.378 (4)C29—H290.9300
C7—H70.9300C30—H300.9300
C8—H50.9300C31—C321.432 (4)
C9—C101.395 (4)
O2—Cu1—N191.43 (9)C10—C11—C12119.6 (3)
O2—Cu1—N393.36 (9)C10—C11—H11120.2
N1—Cu1—N3172.29 (9)C12—C11—H11120.2
O2—Cu1—N2159.24 (9)C11—C12—C20117.3 (3)
N1—Cu1—N281.66 (9)C11—C12—C13124.6 (3)
N3—Cu1—N295.79 (9)C20—C12—C13118.0 (3)
O2—Cu1—N494.19 (9)C14—C13—C12121.3 (3)
N1—Cu1—N493.85 (9)C14—C13—H13119.3
N3—Cu1—N479.78 (9)C12—C13—H13119.3
N2—Cu1—N4105.74 (9)C13—C14—C15121.8 (3)
O3—S1—O4113.06 (15)C13—C14—H14119.1
O3—S1—O5113.39 (18)C15—C14—H14119.1
O4—S1—O5110.79 (17)C16—C15—C19117.2 (3)
O3—S1—C6107.61 (15)C16—C15—C14124.6 (3)
O4—S1—C6106.23 (13)C19—C15—C14118.2 (3)
O5—S1—C6105.13 (15)C17—C16—C15119.5 (3)
C1—O2—Cu1119.80 (19)C17—C16—H16120.3
H6B—O6—H6A102.9C15—C16—H16120.3
H7B—O7—H7A100.4C16—C17—C18119.6 (3)
C9—N1—C20118.4 (2)C16—C17—H17120.2
C9—N1—Cu1128.42 (19)C18—C17—H17120.2
C20—N1—Cu1112.63 (18)N2—C18—C17122.9 (3)
C18—N2—C19117.8 (2)N2—C18—H18118.5
C18—N2—Cu1131.1 (2)C17—C18—H18118.5
C19—N2—Cu1110.75 (18)N2—C19—C15123.0 (3)
C21—N3—C32118.6 (2)N2—C19—C20117.0 (2)
C21—N3—Cu1126.62 (19)C15—C19—C20120.0 (3)
C32—N3—Cu1114.69 (18)N1—C20—C12122.8 (3)
C30—N4—C31117.8 (2)N1—C20—C19116.6 (2)
C30—N4—Cu1132.9 (2)C12—C20—C19120.6 (2)
C31—N4—Cu1108.84 (17)N3—C21—C22123.1 (3)
C3—N5—C2121.9 (2)N3—C21—H21118.4
C3—N5—H5A119.1C22—C21—H21118.4
C2—N5—H5A119.1C23—C22—C21119.2 (3)
O1—C1—O2125.7 (3)C23—C22—H22120.4
O1—C1—C2117.8 (3)C21—C22—H22120.4
O2—C1—C2116.4 (3)C22—C23—C24119.5 (3)
N5—C2—C1115.8 (2)C22—C23—H23120.3
N5—C2—H2A108.3C24—C23—H23120.3
C1—C2—H2A108.3C23—C24—C32118.0 (3)
N5—C2—H2B108.3C23—C24—C25123.1 (3)
C1—C2—H2B108.3C32—C24—C25118.9 (3)
H2A—C2—H2B107.4C26—C25—C24121.3 (3)
N5—C3—C4119.5 (3)C26—C25—H25119.3
N5—C3—C8122.5 (3)C24—C25—H25119.3
C4—C3—C8118.0 (3)C25—C26—C27120.8 (3)
C5—C4—C3120.9 (3)C25—C26—H26119.6
C5—C4—H4119.6C27—C26—H26119.6
C3—C4—H4119.6C28—C27—C31117.3 (3)
C4—C5—C6120.9 (3)C28—C27—C26123.2 (3)
C4—C5—H6119.6C31—C27—C26119.5 (3)
C6—C5—H6119.6C29—C28—C27119.2 (3)
C7—C6—C5118.7 (3)C29—C28—H28120.4
C7—C6—S1122.0 (2)C27—C28—H28120.4
C5—C6—S1119.3 (2)C28—C29—C30119.7 (3)
C8—C7—C6120.9 (3)C28—C29—H29120.2
C8—C7—H7119.6C30—C29—H29120.2
C6—C7—H7119.6N4—C30—C29122.8 (3)
C7—C8—C3120.7 (3)N4—C30—H30118.6
C7—C8—H5119.7C29—C30—H30118.6
C3—C8—H5119.7N4—C31—C27123.2 (3)
N1—C9—C10122.2 (3)N4—C31—C32117.4 (2)
N1—C9—H9118.9C27—C31—C32119.4 (2)
C10—C9—H9118.9N3—C32—C24121.6 (2)
C11—C10—C9119.7 (3)N3—C32—C31118.4 (2)
C11—C10—H10120.1C24—C32—C31120.0 (2)
C9—C10—H10120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O2i0.862.353.173 (4)160
O6—H6A···O40.762.112.850 (5)166
O6—H6B···O1ii0.862.152.963 (5)156
O7—H7B···O3iii0.722.242.915 (4)156
O7—H7A···O5iv0.762.112.785 (4)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z; (iii) x+1, y+1, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H7NO5S)(C12H8N2)2]·2H2O
Mr689.19
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3437 (19), 13.274 (3), 13.880 (3)
α, β, γ (°)64.61 (3), 88.77 (3), 69.83 (3)
V3)1443.6 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.24 × 0.18 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.825, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
14102, 6590, 5238
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.11
No. of reflections6590
No. of parameters409
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 1.99

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O21.993 (2)Cu1—N32.005 (2)
Cu1—N11.999 (2)Cu1—N42.212 (3)
Cu1—N22.049 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O2i0.862.353.173 (4)160
O6—H6A···O40.762.112.850 (5)166
O6—H6B···O1ii0.862.152.963 (5)156
O7—H7B···O3iii0.722.242.915 (4)156
O7—H7A···O5iv0.762.112.785 (4)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z; (iii) x+1, y+1, z; (iv) x1, y, z.
 

Acknowledgements

This work was supported by the Ningbo Natural Science Foundation of China (2010A610060), the 'Qianjiang Talent' Projects of Zhejiang Province (2009R10032), the Ningbo University Foundation (XK1066) and the K. C. Wong Magna Fund in Ningbo University.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChu, Q., Liu, G.-X., Okamura, T., Huang, Y.-Q., Sun, W.-Y. & Ueyama, N. (2008). Polyhedron, 27, 812–820.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y.-Q., Chen, B.-Q., Gong, Y.-Q., Yuan, D.-Q., Jiang, F.-L. & Hong, M.-C. (2006a). J. Mol. Struct. 789, 220–224.  CrossRef CAS Google Scholar
First citationXu, Y.-Q., Yuan, D.-Q., Wu, B.-L., Han, L., Wu, M.-Y., Jiang, F.-L. & Hong, M.-C. (2006b). Cryst. Growth Des. 6, 1168–1174.  CrossRef CAS Google Scholar
First citationYong, G.-P., Qiao, S., Wang, Z.-Y. & Cui, Y. (2005). Inorg. Chim. Acta, 358, 3905–3913.  Web of Science CSD CrossRef CAS Google Scholar
First citationYong, G.-P., Wang, Z.-Y. & Chen, J.-T. (2004). J. Mol. Struct. 707, 220–224.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m402-m403
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds