metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­(2-fluoro­benzoato-κ2O,O′)strontium]-μ3-2-fluoro­benzoato-κ5O:O,O′:O′,F] monohydrate]

aCollege of Materials Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China
*Correspondence e-mail: jzn@chem.jhc.cn

(Received 20 February 2011; accepted 5 March 2011; online 12 March 2011)

In the title compound, {[Sr(C7H4FO2)2(H2O)2]·H2O}n, the SrII atom is coordinated by six O atoms and one F atom from four 2-fluoro­benzoate ligands and two water mol­ecules, resulting in an irregular SrFO8 coordination environment. The μ3-2-fluoro­benzoate ligand bridges three symmetry-related SrII atoms, giving rise to a chain structure extending along [010]. The polymeric chains are connected via O—H⋯O hydrogen bonds into a two-dimensional supra­molecular structure parallel to (100).

Related literature

For metal complexes with 2-fluoro­benzoate ligands, see: Zhang et al. (2005a[Zhang, B.-S., Zeng, X.-R., Fang, X.-N. & Huang, C.-F. (2005a). Z. Kristallogr. New Cryst. Struct. 220, 141-142.],b[Zhang, B.-S., Zeng, X.-R., Yu, Y.-Y., Fang, X.-N. & Huang, C.-F. (2005b). Z. Kristallogr. New Cryst. Struct. 220, 75-76.]); Zhang (2006[Zhang, B.-S. (2006). Z. Kristallogr. New Cryst. Struct. 221, 355-356.]). For related structures, see: Zhang (2008[Zhang, B.-S. (2008). Acta Cryst. E64, m1055-m1056.], 2009[Zhang, B.-S. (2009). Acta Cryst. E65, m1500.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C7H4FO2)2(H2O)2]·H2O

  • Mr = 419.87

  • Monoclinic, P 21 /c

  • a = 12.515 (3) Å

  • b = 6.8232 (14) Å

  • c = 19.489 (4) Å

  • β = 93.71 (3)°

  • V = 1660.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.30 mm−1

  • T = 290 K

  • 0.22 × 0.16 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.535, Tmax = 0.674

  • 12414 measured reflections

  • 2912 independent reflections

  • 2351 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.097

  • S = 1.28

  • 2912 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O7i 0.82 2.11 2.854 (5) 152
O5—H5B⋯O7ii 0.82 2.14 2.914 (6) 158
O6—H6A⋯O1iii 0.82 2.10 2.791 (5) 142
O6—H6B⋯O2ii 0.82 2.22 2.901 (5) 140
O7—H7A⋯O2ii 0.82 2.01 2.800 (5) 161
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal ions with 2-fluorobenzoate ligands can form, among others, mononuclear and dinuclear complexes (Zhang, 2006; Zhang et al., 2005a,b). However, very few complexes of 2-fluorobenzoate ligands with one-dimensional chain structure have been reported. In this paper, we report the synthesis and crystal structure of a one-dimensional chain strontium(II) complex with 2-fluorobenzoate.

The crystal structure of the title compound is similar to those of the reported complexes (Zhang, 2008, 2009). The SrII atom is coordinated by six O atoms and one F atom from four 2-fluorobenzoate ligands and two water molecules in an irregular SrFO8 coordination geometry. The µ3-2-fluorobenzoate ligand bridges three symmetry-related SrII atoms, giving rise to a chain structure extending along [0 1 0], with Sr—O bond lengths in the range of 2.463 (3) to 2.705 (3) Å and the Sr—F bond length being 2.908 (4) Å. Separation between Sr1 and Sr1i [symmetry code: (i) -x+1, y+1/2, -z+1/2] is 4.1869 (8)Å (Fig. 1). The polymeric chains are connected via O—H···O intermolecular hydrogen bonds (Table 2) between the coordinated and uncoordinated water molecules and the carboxylate groups of the 2-fluorobenzoate ligands into a two-dimensional supramolecular structure (Fig. 2).

Related literature top

For metal complexes with 2-fluorobenzoate ligands, see: Zhang et al. (2005a,b); Zhang (2006). For related structures, see: Zhang (2008, 2009).

Experimental top

Sr(NO3)2 (0.109 g, 0.50 mmol) was dissolved in appropriate amount of water and then 1M Na2CO3 solution was added. SrCO3 was obtained by filtration, which was washed with distilled water for 5 times. The freshly prepared SrCO3, 2-fluorobenzoic acid (0.036 g, 0.25 mmol), 2,2'-bipyridine (0.039 g, 0.25 mmol) and CH3OH/H2O (v/v = 1:2, 15 ml) were mixed and stirred for 2 h. Subsequently, the resulting cream suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 433 K for 97 h. After the autoclave was cooled to room temperature in a procedure of 43 h, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation for 6 weeks afforded colorless block single crystals.

Refinement top

C-bound H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecules were located in a difference Fourier map and refined with an O—H distance restraint of 0.82 (1) Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The one-dimensional chain structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x+1, y-1/2, -z+1/2.]
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
catena-Poly[[[diaqua(2-fluorobenzoato- κ2O,O')strontium]-µ3-2-fluorobenzoato- κ5O:O,O':O',F] monohydrate] top
Crystal data top
[Sr(C7H4FO2)2(H2O)2]·H2OF(000) = 840
Mr = 419.87Dx = 1.679 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2912 reflections
a = 12.515 (3) Åθ = 3.2–25.0°
b = 6.8232 (14) ŵ = 3.30 mm1
c = 19.489 (4) ÅT = 290 K
β = 93.71 (3)°Block, colorless
V = 1660.7 (6) Å30.22 × 0.16 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2912 independent reflections
Radiation source: rotation anode2351 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.535, Tmax = 0.674k = 78
12414 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.P)2 + 5.2938P]
where P = (Fo2 + 2Fc2)/3
S = 1.28(Δ/σ)max = 0.001
2912 reflectionsΔρmax = 0.67 e Å3
218 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0066 (5)
Crystal data top
[Sr(C7H4FO2)2(H2O)2]·H2OV = 1660.7 (6) Å3
Mr = 419.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.515 (3) ŵ = 3.30 mm1
b = 6.8232 (14) ÅT = 290 K
c = 19.489 (4) Å0.22 × 0.16 × 0.12 mm
β = 93.71 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2912 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2351 reflections with I > 2σ(I)
Tmin = 0.535, Tmax = 0.674Rint = 0.043
12414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.28Δρmax = 0.67 e Å3
2912 reflectionsΔρmin = 0.68 e Å3
218 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.49560 (4)0.13650 (6)0.18761 (2)0.02804 (17)
F10.8456 (3)0.2517 (6)0.1198 (2)0.0793 (13)
F20.6409 (3)0.4689 (5)0.4237 (2)0.0751 (12)
O10.6953 (3)0.2536 (5)0.1848 (2)0.0513 (11)
O20.6718 (3)0.0557 (5)0.15556 (19)0.0398 (9)
O30.5848 (3)0.0267 (4)0.30415 (18)0.0366 (8)
O40.4430 (3)0.2113 (5)0.18799 (19)0.0386 (9)
O50.5122 (3)0.2790 (6)0.0668 (2)0.0581 (11)
H5A0.47290.25510.03250.087*
H5B0.55700.36560.06340.087*
O60.3191 (3)0.1157 (5)0.24982 (19)0.0414 (9)
H6A0.30640.04630.28270.062*
H6B0.30060.22650.26020.062*
O70.3815 (3)0.1569 (6)0.4433 (2)0.0602 (12)
H7A0.36440.21840.40820.090*
H7B0.33700.15110.47230.090*
C10.8510 (4)0.0722 (8)0.1647 (3)0.0356 (12)
C20.9161 (5)0.2282 (10)0.1858 (3)0.0525 (16)
H20.88510.34230.20140.063*
C31.0267 (5)0.2175 (12)0.1841 (4)0.069 (2)
H31.06890.32350.19890.082*
C41.0738 (5)0.0520 (13)0.1607 (4)0.069 (2)
H41.14780.04590.15930.083*
C51.0123 (4)0.1044 (11)0.1394 (3)0.0595 (18)
H51.04390.21760.12350.071*
C60.9030 (4)0.0920 (9)0.1419 (3)0.0472 (14)
C70.7313 (4)0.0909 (7)0.1680 (2)0.0340 (12)
C80.6861 (4)0.1429 (7)0.3916 (2)0.0301 (11)
C90.7526 (4)0.0162 (8)0.4058 (3)0.0406 (13)
H90.74590.12660.37790.049*
C100.8289 (5)0.0148 (10)0.4606 (3)0.0572 (17)
H100.87240.12360.46940.069*
C110.8399 (5)0.1477 (12)0.5016 (3)0.0640 (19)
H110.89150.14850.53820.077*
C120.7760 (5)0.3100 (10)0.4897 (3)0.0594 (18)
H120.78300.41970.51800.071*
C130.7012 (4)0.3044 (8)0.4344 (3)0.0429 (13)
C140.6027 (3)0.1360 (7)0.3328 (2)0.0241 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0313 (3)0.0191 (2)0.0333 (3)0.00040 (19)0.00080 (18)0.0008 (2)
F10.050 (2)0.060 (2)0.128 (4)0.0046 (19)0.008 (2)0.038 (2)
F20.105 (3)0.046 (2)0.069 (3)0.020 (2)0.030 (2)0.0262 (19)
O10.043 (2)0.030 (2)0.082 (3)0.0060 (18)0.011 (2)0.015 (2)
O20.037 (2)0.0299 (19)0.052 (2)0.0019 (16)0.0028 (17)0.0079 (17)
O30.049 (2)0.0202 (17)0.039 (2)0.0012 (16)0.0090 (17)0.0037 (15)
O40.044 (2)0.0245 (18)0.045 (2)0.0049 (16)0.0090 (17)0.0026 (16)
O50.063 (3)0.068 (3)0.043 (2)0.017 (2)0.001 (2)0.013 (2)
O60.0369 (19)0.0283 (19)0.060 (2)0.0018 (16)0.0105 (17)0.0053 (18)
O70.072 (3)0.064 (3)0.045 (2)0.014 (2)0.004 (2)0.013 (2)
C10.030 (3)0.043 (3)0.033 (3)0.002 (2)0.000 (2)0.001 (2)
C20.044 (3)0.062 (4)0.051 (4)0.012 (3)0.001 (3)0.012 (3)
C30.040 (4)0.097 (6)0.069 (5)0.027 (4)0.000 (3)0.012 (4)
C40.028 (3)0.112 (6)0.068 (5)0.001 (4)0.005 (3)0.003 (4)
C50.032 (3)0.085 (5)0.061 (4)0.016 (3)0.007 (3)0.007 (4)
C60.036 (3)0.057 (4)0.048 (3)0.007 (3)0.001 (3)0.006 (3)
C70.039 (3)0.035 (3)0.026 (3)0.003 (2)0.009 (2)0.001 (2)
C80.032 (3)0.029 (2)0.030 (3)0.003 (2)0.007 (2)0.002 (2)
C90.038 (3)0.041 (3)0.042 (3)0.006 (2)0.004 (2)0.005 (3)
C100.042 (3)0.073 (5)0.055 (4)0.016 (3)0.006 (3)0.013 (4)
C110.049 (4)0.098 (6)0.043 (4)0.005 (4)0.011 (3)0.000 (4)
C120.069 (4)0.071 (5)0.037 (4)0.005 (4)0.009 (3)0.012 (3)
C130.044 (3)0.042 (3)0.041 (3)0.002 (3)0.003 (3)0.006 (3)
C140.021 (2)0.023 (2)0.029 (2)0.000 (2)0.0043 (18)0.000 (2)
Geometric parameters (Å, º) top
Sr1—O42.463 (3)C1—C61.384 (8)
Sr1—O3i2.518 (3)C1—C21.387 (7)
Sr1—O52.568 (4)C1—C71.509 (7)
Sr1—O62.591 (3)C2—C31.388 (8)
Sr1—O12.627 (4)C2—H20.9300
Sr1—O22.674 (3)C3—C41.365 (10)
Sr1—O4i2.703 (4)C3—H30.9300
Sr1—O32.705 (3)C4—C51.364 (9)
Sr1—F2ii2.908 (4)C4—H40.9300
F1—C61.359 (6)C5—C61.375 (7)
F2—C131.361 (6)C5—H50.9300
F2—Sr1i2.908 (4)C8—C91.385 (7)
O1—C71.250 (6)C8—C131.387 (7)
O2—C71.261 (6)C8—C141.500 (6)
O3—C141.256 (5)C9—C101.386 (8)
O3—Sr1ii2.518 (3)C9—H90.9300
O4—C14ii1.244 (5)C10—C111.369 (9)
O4—Sr1ii2.703 (4)C10—H100.9300
O5—H5A0.8200C11—C121.377 (9)
O5—H5B0.8200C11—H110.9300
O6—H6A0.8200C12—C131.382 (8)
O6—H6B0.8200C12—H120.9300
O7—H7A0.8200C14—O4i1.244 (5)
O7—H7B0.8200
O4—Sr1—O3i140.48 (11)H6A—O6—H6B105.5
O4—Sr1—O5113.89 (13)H7A—O7—H7B116.6
O3i—Sr1—O576.65 (13)C6—C1—C2115.9 (5)
O4—Sr1—O673.14 (11)C6—C1—C7124.8 (5)
O3i—Sr1—O670.37 (11)C2—C1—C7119.3 (5)
O5—Sr1—O6124.86 (13)C1—C2—C3121.4 (6)
O4—Sr1—O1123.21 (12)C1—C2—H2119.3
O3i—Sr1—O196.20 (11)C3—C2—H2119.3
O5—Sr1—O174.49 (14)C4—C3—C2120.2 (6)
O6—Sr1—O1150.09 (12)C4—C3—H3119.9
O4—Sr1—O275.68 (11)C2—C3—H3119.9
O3i—Sr1—O2143.25 (11)C5—C4—C3120.1 (6)
O5—Sr1—O281.65 (13)C5—C4—H4119.9
O6—Sr1—O2145.41 (11)C3—C4—H4119.9
O1—Sr1—O249.04 (11)C4—C5—C6119.0 (6)
O4—Sr1—O4i115.34 (9)C4—C5—H5120.5
O3i—Sr1—O4i71.56 (10)C6—C5—H5120.5
O5—Sr1—O4i129.93 (12)F1—C6—C5116.5 (6)
O6—Sr1—O4i78.62 (11)F1—C6—C1120.0 (5)
O1—Sr1—O4i71.71 (12)C5—C6—C1123.4 (6)
O2—Sr1—O4i101.95 (11)O1—C7—O2122.4 (5)
O4—Sr1—O372.34 (10)O1—C7—C1117.5 (4)
O3i—Sr1—O3117.84 (8)O2—C7—C1120.0 (5)
O5—Sr1—O3150.73 (12)O1—C7—Sr160.2 (3)
O6—Sr1—O384.40 (11)O2—C7—Sr162.3 (3)
O1—Sr1—O378.54 (12)C1—C7—Sr1175.0 (3)
O2—Sr1—O372.10 (11)C9—C8—C13116.5 (5)
O4i—Sr1—O347.70 (10)C9—C8—C14120.5 (4)
O4—Sr1—F2ii58.61 (10)C13—C8—C14123.1 (4)
O3i—Sr1—F2ii100.89 (11)C8—C9—C10121.6 (6)
O5—Sr1—F2ii62.81 (12)C8—C9—H9119.2
O6—Sr1—F2ii81.40 (12)C10—C9—H9119.2
O1—Sr1—F2ii128.15 (13)C11—C10—C9119.6 (6)
O2—Sr1—F2ii94.95 (12)C11—C10—H10120.2
O4i—Sr1—F2ii160.00 (12)C9—C10—H10120.2
O3—Sr1—F2ii130.94 (9)C10—C11—C12121.1 (6)
C13—F2—Sr1i137.0 (3)C10—C11—H11119.4
C7—O1—Sr195.5 (3)C12—C11—H11119.4
C7—O2—Sr193.0 (3)C11—C12—C13117.8 (6)
C14—O3—Sr1ii147.1 (3)C11—C12—H12121.1
C14—O3—Sr193.5 (3)C13—C12—H12121.1
Sr1ii—O3—Sr1106.53 (12)F2—C13—C12116.0 (5)
C14ii—O4—Sr1157.5 (3)F2—C13—C8120.7 (5)
C14ii—O4—Sr1ii93.9 (3)C12—C13—C8123.3 (5)
Sr1—O4—Sr1ii108.21 (12)O4i—C14—O3122.0 (4)
Sr1—O5—H5A126.3O4i—C14—C8120.3 (4)
Sr1—O5—H5B116.3O3—C14—C8117.6 (4)
H5A—O5—H5B117.0O4i—C14—Sr162.1 (2)
Sr1—O6—H6A127.7O3—C14—Sr162.2 (2)
Sr1—O6—H6B109.2C8—C14—Sr1162.0 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O7iii0.822.112.854 (5)152
O5—H5B···O7i0.822.142.914 (6)158
O6—H6A···O1ii0.822.102.791 (5)142
O6—H6B···O2i0.822.222.901 (5)140
O7—H7A···O2i0.822.012.800 (5)161
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Sr(C7H4FO2)2(H2O)2]·H2O
Mr419.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)12.515 (3), 6.8232 (14), 19.489 (4)
β (°) 93.71 (3)
V3)1660.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.30
Crystal size (mm)0.22 × 0.16 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.535, 0.674
No. of measured, independent and
observed [I > 2σ(I)] reflections
12414, 2912, 2351
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.097, 1.28
No. of reflections2912
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.68

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O7i0.822.112.854 (5)152
O5—H5B···O7ii0.822.142.914 (6)158
O6—H6A···O1iii0.822.102.791 (5)142
O6—H6B···O2ii0.822.222.901 (5)140
O7—H7A···O2ii0.822.012.800 (5)161
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The author gratefully acknowledges financial support by the Education Office of Zhejiang Province (grant No. 20051316).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, B.-S. (2006). Z. Kristallogr. New Cryst. Struct. 221, 355–356.  CAS Google Scholar
First citationZhang, B.-S. (2008). Acta Cryst. E64, m1055–m1056.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, B.-S. (2009). Acta Cryst. E65, m1500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, B.-S., Zeng, X.-R., Fang, X.-N. & Huang, C.-F. (2005a). Z. Kristallogr. New Cryst. Struct. 220, 141–142.  CAS Google Scholar
First citationZhang, B.-S., Zeng, X.-R., Yu, Y.-Y., Fang, X.-N. & Huang, C.-F. (2005b). Z. Kristallogr. New Cryst. Struct. 220, 75–76.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds