organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{2-[4-(Di­methyl­amino)­phen­yl]ethen­yl}-1-methyl­pyridinium 2,4,6-tri­methyl­benzene­sulfonate monohydrate

aKey Laboratory of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
*Correspondence e-mail: zjx@mail.ipc.ac.cn

(Received 25 January 2011; accepted 1 March 2011; online 9 March 2011)

In the crystal structure of the title organic salt, C16H19N2+·C9H11O3S·H2O, the cations pack head-to-tail within a sheet and are aligned in opposite directions in neighboring sheets. The benzene ring of the anion makes an angle of 76.99 (6)° with the plane of the cationic chromophore. The cations are situated in the ab plane, whereas the benzene rings of the anions lie in the ac plane.

Related literature

For the crystal structure of solvent-free 2,4,6- trimethyl­benzene­sulfonate (DSTMS), see: Yang et al. (2007[Yang, Z., Mutter, L., Ruiz, B., Aravazhi, S., Stillhart, M., Jazbinsek, M., Gramlich, V. & Günter, P. (2007). Adv. Funct. Mater. 17, 2018-2023.]); Mutter et al. (2007[Mutter, L., Brunner, F. D., Yang, Z., Jazbinsek, M. & Günter, P. (2007). J. Opt. Soc. 24, 2556-2561.]). For the crystal structure of 4-N,N-dimethyl­amino-4′-N′-methyl­stilbazolium tosyl­ate (DAST) and DAST·H2O, see: Marder et al. (1989[Marder, S. R., Perry, J. W. & Schaefer, W. P. (1989). Science, 245, 626-628.]); Pan et al. (1996[Pan, F., Wong, M. S., Bosshard, C. & Günter, P. (1996). Adv. Mater. 8, 592-595.]); Bryant et al. (1993[Bryant, G. L., Yakymyshyn, C. P. & Stewart, K. R. (1993). Acta Cryst. C49, 350-351.]). For the synthesis, see: Marder et al. (1994[Marder, S. R., Perry, J. W. & Yakymyshyn, C. P. (1994). Chem. Mater. 6, 1137-1147.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N2+·C9H11O3S·H2O

  • Mr = 456.59

  • Triclinic, [P \overline 1]

  • a = 8.1993 (17) Å

  • b = 9.669 (2) Å

  • c = 15.247 (3) Å

  • α = 87.806 (7)°

  • β = 75.805 (6)°

  • γ = 83.239 (5)°

  • V = 1163.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 103 K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.918, Tmax = 0.966

  • 11232 measured reflections

  • 5240 independent reflections

  • 4259 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.00

  • 5240 reflections

  • 303 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 1998[Dowty, E. (1998). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N,N-Dimethyl-{4-[2-(1'-methylpyridinium-4'-yl)-vinyl]-phenyl}-amine 2,4,6- trimethylbenzenesulfonate (DSTMS) is an organic nonlinear optical crystal, which is similar to 4-N,N-dimethylamino-4'-N'- methyl-stilbazolium tosylate (DAST). Both compounds show large nonlinear optical susceptibilities (Yang et al., 2007; Marder et al., 1989; Pan et al., 1996; Mutter et al., 2007). In the presence of water, orange DSTMS hydrate with no nonlinear optical effect is easy to obtain. Fig. 1 illustrates the molecular structure of DSTMS.H2O together with the atomic numbering scheme. The C—H distances for the methyl groups are 0.98 Å, other H atoms are placed in idealized positions and constrained to have C—H=0.95 Å. The C—C distances for the phenyl groups range between 1.347 Å and 1.412 Å.

The unit cell of DSTMS.H2O contains two (C16H19N2)+ cations, two (C9H11O3S)- anions and two water molecules, with 1 symmetry. By comparing the data of geometric parameters of solvent free DSTMS and the hydrate, there are no obvious changes of bond distances and bond angles. In both compounds, the cations group pack head to tail within a sheet and are aligned in the opposite direction in the neighboring sheets. The phenyl rings in the anion group of DSTMS.H2O lie at an angle of 76.99 (6)° relative to the cation chromophores, whereas the angle in the solvent free structure of DSTMS is 63.7 (2)°.

The crystal structure of DSTMS.H2O (Fig. 2) is analogous to DAST.H2O both belonging to triclinic space group P1 (Bryant et al., 1993). DSTMS.H2O has two more methyl groups at the phenyl ring of the anion and the volume of unit cell therefore is larger compared with DAST.H2O.

Related literature top

For the crystal structure of solvent-free 2,4,6- trimethylbenzenesulfonate (DSTMS), see: Yang et al. (2007); Mutter et al. (2007). For the crystal structure of 4-N,N-dimethylamino-4'-N'-methylstilbazolium tosylate (DAST) and DAST.H2O, see: Marder et al. (1989); Pan et al. (1996); Bryant et al. (1993). For the synthesis, see: Marder et al. (1994).

Experimental top

DSTMS was synthesized by the condensation of 4-methyl-N-methyl pyridinium 2,4,6-trimethyl benzenesulfonate, which was prepared from 4-picoline and 2,4,6-trimethyl toluenesulfonate, and 4-N,N-dimethylamino-benzaldehyde in the presence of piperidine (Marder et al., 1994). A crystal of DSTMS.H2O was grown by slow evaporation at room temperature from a saturated solution of DSTMS and 90% methanol/water.

Refinement top

H atoms of water were localized from Fourier maps and refined isotropically. Other H atoms were placed in calculated positions (C–H = 0.95–0.98 Å) and included in the refinement in the riding model approximation, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal-ellipsoid (50% probability) plot showing the atomic numbering scheme.
[Figure 2] Fig. 2. Molecular packing plot of DSTMS.H2O.
4-{2-[4-(Dimethylamino)phenyl]ethenyl}-1-methylpyridinium 2,4,6-trimethylbenzenesulfonate monohydrate top
Crystal data top
C16H19N2+·C9H11O3S·H2OZ = 2
Mr = 456.59F(000) = 488
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1993 (17) ÅCell parameters from 3579 reflections
b = 9.669 (2) Åθ = 3.2–27.5°
c = 15.247 (3) ŵ = 0.17 mm1
α = 87.806 (7)°T = 103 K
β = 75.805 (6)°Chunk, red
γ = 83.239 (5)°0.50 × 0.40 × 0.20 mm
V = 1163.7 (4) Å3
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
5240 independent reflections
Radiation source: Rotating Anode4259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1112
Tmin = 0.918, Tmax = 0.966l = 1919
11232 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.560P]
where P = (Fo2 + 2Fc2)/3
5240 reflections(Δ/σ)max = 0.001
303 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H19N2+·C9H11O3S·H2Oγ = 83.239 (5)°
Mr = 456.59V = 1163.7 (4) Å3
Triclinic, P1Z = 2
a = 8.1993 (17) ÅMo Kα radiation
b = 9.669 (2) ŵ = 0.17 mm1
c = 15.247 (3) ÅT = 103 K
α = 87.806 (7)°0.50 × 0.40 × 0.20 mm
β = 75.805 (6)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
5240 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4259 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.966Rint = 0.022
11232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.70 e Å3
5240 reflectionsΔρmin = 0.35 e Å3
303 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36608 (5)0.78675 (4)0.16984 (2)0.01575 (11)
O10.51685 (14)0.75321 (13)0.20319 (8)0.0232 (3)
O20.36736 (15)0.92045 (12)0.12167 (8)0.0231 (3)
O30.33464 (15)0.67560 (12)0.11702 (8)0.0235 (3)
N11.13709 (16)0.36393 (14)0.06835 (9)0.0163 (3)
N20.18615 (17)0.31865 (14)0.36790 (9)0.0199 (3)
C11.0477 (2)0.25780 (17)0.06110 (11)0.0194 (3)
H11.10370.17640.02920.023*
C20.8769 (2)0.26638 (18)0.09932 (11)0.0215 (3)
H20.81580.19080.09400.026*
C30.7916 (2)0.38704 (18)0.14644 (11)0.0204 (3)
C40.8883 (2)0.49457 (18)0.15010 (11)0.0221 (3)
H40.83510.57880.17940.027*
C51.0588 (2)0.48092 (17)0.11214 (11)0.0197 (3)
H51.12280.55490.11670.024*
C61.3204 (2)0.35286 (19)0.02549 (11)0.0226 (4)
H6A1.33780.35880.04040.027*
H6B1.37500.26340.04210.027*
H6C1.37010.42900.04630.027*
C70.6116 (2)0.40354 (18)0.19219 (11)0.0222 (3)
H70.56120.49330.21380.027*
C80.5143 (2)0.29984 (17)0.20536 (11)0.0209 (3)
H80.56580.21190.18100.025*
C90.3364 (2)0.30837 (18)0.25350 (11)0.0204 (3)
C100.2517 (2)0.19128 (18)0.25496 (11)0.0213 (3)
H100.31340.10780.22820.026*
C110.0816 (2)0.19291 (17)0.29396 (10)0.0189 (3)
H110.02810.11100.29390.023*
C120.01440 (19)0.31519 (16)0.33420 (10)0.0163 (3)
C130.0716 (2)0.43197 (16)0.33729 (11)0.0202 (3)
H130.01170.51400.36700.024*
C140.2427 (2)0.42795 (17)0.29738 (11)0.0213 (3)
H140.29830.50810.29970.026*
C150.2692 (2)0.19605 (18)0.36304 (11)0.0221 (3)
H15A0.24410.16590.30000.027*
H15B0.39180.21810.38580.027*
H15C0.22790.12120.40000.027*
C160.2850 (2)0.44394 (19)0.40913 (13)0.0295 (4)
H16A0.25280.46230.46500.035*
H16B0.40560.43160.42310.035*
H16C0.26340.52270.36710.035*
C170.02360 (19)0.82889 (15)0.24753 (10)0.0154 (3)
C180.1177 (2)0.83123 (16)0.32025 (11)0.0174 (3)
H180.22700.84120.30840.021*
C190.1047 (2)0.81959 (16)0.40931 (11)0.0183 (3)
C200.0562 (2)0.80729 (17)0.42491 (11)0.0199 (3)
H200.06700.80270.48560.024*
C210.2030 (2)0.80140 (16)0.35469 (10)0.0178 (3)
C220.18631 (19)0.80801 (15)0.26519 (10)0.0143 (3)
C230.0066 (2)0.85704 (17)0.15439 (11)0.0211 (3)
H23A0.12630.85220.15670.025*
H23B0.06350.78720.11220.025*
H23C0.02330.95000.13380.025*
C240.2586 (2)0.8222 (2)0.48747 (11)0.0261 (4)
H24A0.36110.83820.46460.031*
H24B0.25780.89720.52870.031*
H24C0.25700.73270.51990.031*
C250.3698 (2)0.7919 (2)0.38181 (12)0.0287 (4)
H25A0.34810.80060.44760.034*
H25B0.43430.86710.35210.034*
H25C0.43500.70170.36320.034*
O40.69606 (17)1.00845 (14)0.04707 (10)0.0259 (3)
H4A0.611 (3)0.977 (3)0.0748 (18)0.053 (8)*
H4B0.675 (3)1.039 (3)0.0023 (18)0.050 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01557 (19)0.01519 (19)0.01466 (18)0.00387 (14)0.00108 (14)0.00183 (13)
O10.0144 (5)0.0307 (7)0.0228 (6)0.0005 (5)0.0015 (5)0.0032 (5)
O20.0271 (6)0.0198 (6)0.0196 (6)0.0058 (5)0.0006 (5)0.0033 (4)
O30.0215 (6)0.0238 (6)0.0230 (6)0.0079 (5)0.0028 (5)0.0095 (5)
N10.0142 (6)0.0215 (7)0.0136 (6)0.0040 (5)0.0028 (5)0.0006 (5)
N20.0143 (6)0.0190 (7)0.0240 (7)0.0016 (5)0.0001 (5)0.0006 (5)
C10.0218 (8)0.0198 (8)0.0186 (8)0.0046 (6)0.0077 (6)0.0004 (6)
C20.0218 (8)0.0247 (8)0.0217 (8)0.0100 (7)0.0098 (7)0.0048 (6)
C30.0183 (8)0.0276 (9)0.0160 (7)0.0042 (7)0.0058 (6)0.0073 (6)
C40.0212 (8)0.0242 (8)0.0198 (8)0.0014 (7)0.0031 (6)0.0000 (6)
C50.0205 (8)0.0207 (8)0.0179 (8)0.0056 (6)0.0033 (6)0.0005 (6)
C60.0136 (7)0.0326 (9)0.0202 (8)0.0046 (7)0.0002 (6)0.0015 (7)
C70.0229 (8)0.0219 (8)0.0219 (8)0.0007 (7)0.0064 (7)0.0010 (6)
C80.0200 (8)0.0229 (8)0.0202 (8)0.0011 (6)0.0061 (6)0.0006 (6)
C90.0163 (8)0.0277 (9)0.0164 (7)0.0005 (6)0.0041 (6)0.0034 (6)
C100.0198 (8)0.0236 (8)0.0190 (8)0.0026 (6)0.0042 (6)0.0025 (6)
C110.0203 (8)0.0175 (8)0.0186 (8)0.0010 (6)0.0045 (6)0.0016 (6)
C120.0159 (7)0.0176 (7)0.0146 (7)0.0010 (6)0.0029 (6)0.0021 (6)
C130.0190 (8)0.0157 (7)0.0248 (8)0.0005 (6)0.0046 (6)0.0002 (6)
C140.0213 (8)0.0187 (8)0.0255 (8)0.0057 (6)0.0078 (7)0.0048 (6)
C150.0199 (8)0.0244 (8)0.0222 (8)0.0057 (7)0.0046 (6)0.0039 (6)
C160.0182 (8)0.0279 (9)0.0363 (10)0.0028 (7)0.0034 (7)0.0055 (8)
C170.0176 (7)0.0116 (7)0.0167 (7)0.0005 (6)0.0043 (6)0.0004 (5)
C180.0151 (7)0.0165 (7)0.0204 (8)0.0010 (6)0.0042 (6)0.0005 (6)
C190.0170 (8)0.0173 (8)0.0181 (7)0.0018 (6)0.0001 (6)0.0007 (6)
C200.0197 (8)0.0262 (8)0.0132 (7)0.0023 (7)0.0027 (6)0.0006 (6)
C210.0159 (7)0.0196 (8)0.0179 (7)0.0021 (6)0.0040 (6)0.0004 (6)
C220.0146 (7)0.0115 (7)0.0151 (7)0.0020 (5)0.0005 (6)0.0014 (5)
C230.0228 (8)0.0232 (8)0.0180 (8)0.0004 (7)0.0074 (6)0.0015 (6)
C240.0193 (8)0.0344 (10)0.0201 (8)0.0005 (7)0.0025 (7)0.0008 (7)
C250.0191 (8)0.0506 (12)0.0169 (8)0.0021 (8)0.0058 (7)0.0031 (8)
O40.0243 (7)0.0278 (7)0.0286 (7)0.0110 (5)0.0098 (6)0.0085 (5)
Geometric parameters (Å, º) top
S1—O11.4468 (12)C12—C131.408 (2)
S1—O31.4503 (11)C13—C141.382 (2)
S1—O21.4619 (12)C13—H130.9500
S1—C221.7969 (15)C14—H140.9500
N1—C51.347 (2)C15—H15A0.9800
N1—C11.352 (2)C15—H15B0.9800
N1—C61.478 (2)C15—H15C0.9800
N2—C121.372 (2)C16—H16A0.9800
N2—C151.448 (2)C16—H16B0.9800
N2—C161.448 (2)C16—H16C0.9800
C1—C21.372 (2)C17—C181.392 (2)
C1—H10.9500C17—C221.415 (2)
C2—C31.411 (2)C17—C231.510 (2)
C2—H20.9500C18—C191.387 (2)
C3—C41.390 (2)C18—H180.9500
C3—C71.463 (2)C19—C201.388 (2)
C4—C51.369 (2)C19—C241.507 (2)
C4—H40.9500C20—C211.398 (2)
C5—H50.9500C20—H200.9500
C6—H6A0.9800C21—C221.403 (2)
C6—H6B0.9800C21—C251.515 (2)
C6—H6C0.9800C23—H23A0.9800
C7—C81.333 (2)C23—H23B0.9800
C7—H70.9500C23—H23C0.9800
C8—C91.457 (2)C24—H24A0.9800
C8—H80.9500C24—H24B0.9800
C9—C101.393 (2)C24—H24C0.9800
C9—C141.405 (2)C25—H25A0.9800
C10—C111.374 (2)C25—H25B0.9800
C10—H100.9500C25—H25C0.9800
C11—C121.412 (2)O4—H4A0.81 (3)
C11—H110.9500O4—H4B0.85 (3)
O1—S1—O3112.80 (7)C12—C13—H13119.8
O1—S1—O2111.61 (7)C13—C14—C9121.66 (15)
O3—S1—O2112.36 (7)C13—C14—H14119.2
O1—S1—C22108.39 (7)C9—C14—H14119.2
O3—S1—C22105.54 (7)N2—C15—H15A109.5
O2—S1—C22105.59 (7)N2—C15—H15B109.5
C5—N1—C1120.26 (14)H15A—C15—H15B109.5
C5—N1—C6120.03 (13)N2—C15—H15C109.5
C1—N1—C6119.69 (13)H15A—C15—H15C109.5
C12—N2—C15119.93 (13)H15B—C15—H15C109.5
C12—N2—C16120.42 (14)N2—C16—H16A109.5
C15—N2—C16119.65 (14)N2—C16—H16B109.5
N1—C1—C2120.76 (15)H16A—C16—H16B109.5
N1—C1—H1119.6N2—C16—H16C109.5
C2—C1—H1119.6H16A—C16—H16C109.5
C1—C2—C3120.28 (15)H16B—C16—H16C109.5
C1—C2—H2119.9C18—C17—C22118.60 (14)
C3—C2—H2119.9C18—C17—C23117.57 (14)
C4—C3—C2116.78 (15)C22—C17—C23123.74 (14)
C4—C3—C7119.04 (15)C19—C18—C17122.41 (15)
C2—C3—C7124.16 (15)C19—C18—H18118.8
C5—C4—C3121.03 (16)C17—C18—H18118.8
C5—C4—H4119.5C18—C19—C20117.74 (14)
C3—C4—H4119.5C18—C19—C24121.92 (15)
N1—C5—C4120.85 (15)C20—C19—C24120.33 (15)
N1—C5—H5119.6C19—C20—C21122.50 (15)
C4—C5—H5119.6C19—C20—H20118.7
N1—C6—H6A109.5C21—C20—H20118.7
N1—C6—H6B109.5C20—C21—C22118.52 (14)
H6A—C6—H6B109.5C20—C21—C25116.73 (14)
N1—C6—H6C109.5C22—C21—C25124.74 (14)
H6A—C6—H6C109.5C21—C22—C17120.04 (14)
H6B—C6—H6C109.5C21—C22—S1122.28 (12)
C8—C7—C3123.74 (16)C17—C22—S1117.66 (11)
C8—C7—H7118.1C17—C23—H23A109.5
C3—C7—H7118.1C17—C23—H23B109.5
C7—C8—C9126.30 (16)H23A—C23—H23B109.5
C7—C8—H8116.9C17—C23—H23C109.5
C9—C8—H8116.8H23A—C23—H23C109.5
C10—C9—C14117.34 (15)H23B—C23—H23C109.5
C10—C9—C8118.18 (15)C19—C24—H24A109.5
C14—C9—C8124.46 (16)C19—C24—H24B109.5
C11—C10—C9121.99 (15)H24A—C24—H24B109.5
C11—C10—H10119.0C19—C24—H24C109.5
C9—C10—H10119.0H24A—C24—H24C109.5
C10—C11—C12120.65 (15)H24B—C24—H24C109.5
C10—C11—H11119.7C21—C25—H25A109.5
C12—C11—H11119.7C21—C25—H25B109.5
N2—C12—C13121.89 (14)H25A—C25—H25B109.5
N2—C12—C11120.30 (14)C21—C25—H25C109.5
C13—C12—C11117.81 (14)H25A—C25—H25C109.5
C14—C13—C12120.40 (15)H25B—C25—H25C109.5
C14—C13—H13119.8H4A—O4—H4B105 (2)
C5—N1—C1—C21.1 (2)C12—C13—C14—C90.6 (2)
C6—N1—C1—C2179.16 (14)C10—C9—C14—C132.6 (2)
N1—C1—C2—C30.4 (2)C8—C9—C14—C13176.07 (15)
C1—C2—C3—C41.1 (2)C22—C17—C18—C192.7 (2)
C1—C2—C3—C7177.60 (15)C23—C17—C18—C19173.92 (14)
C2—C3—C4—C52.1 (2)C17—C18—C19—C201.0 (2)
C7—C3—C4—C5176.71 (15)C17—C18—C19—C24179.96 (15)
C1—N1—C5—C40.1 (2)C18—C19—C20—C212.3 (2)
C6—N1—C5—C4178.19 (15)C24—C19—C20—C21178.59 (15)
C3—C4—C5—N11.5 (3)C19—C20—C21—C220.1 (2)
C4—C3—C7—C8168.78 (16)C19—C20—C21—C25178.41 (16)
C2—C3—C7—C89.9 (3)C20—C21—C22—C173.9 (2)
C3—C7—C8—C9177.35 (15)C25—C21—C22—C17174.51 (15)
C7—C8—C9—C10175.50 (16)C20—C21—C22—S1174.67 (12)
C7—C8—C9—C143.2 (3)C25—C21—C22—S17.0 (2)
C14—C9—C10—C112.8 (2)C18—C17—C22—C215.1 (2)
C8—C9—C10—C11175.95 (15)C23—C17—C22—C21171.28 (14)
C9—C10—C11—C120.2 (2)C18—C17—C22—S1173.46 (11)
C15—N2—C12—C13179.87 (15)C23—C17—C22—S110.1 (2)
C16—N2—C12—C130.7 (2)O1—S1—C22—C214.19 (15)
C15—N2—C12—C110.6 (2)O3—S1—C22—C21125.28 (13)
C16—N2—C12—C11179.95 (15)O2—S1—C22—C21115.53 (13)
C10—C11—C12—N2175.85 (14)O1—S1—C22—C17174.38 (11)
C10—C11—C12—C133.4 (2)O3—S1—C22—C1753.28 (13)
N2—C12—C13—C14175.66 (15)O2—S1—C22—C1765.90 (13)
C11—C12—C13—C143.6 (2)

Experimental details

Crystal data
Chemical formulaC16H19N2+·C9H11O3S·H2O
Mr456.59
Crystal system, space groupTriclinic, P1
Temperature (K)103
a, b, c (Å)8.1993 (17), 9.669 (2), 15.247 (3)
α, β, γ (°)87.806 (7), 75.805 (6), 83.239 (5)
V3)1163.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.918, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
11232, 5240, 4259
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.00
No. of reflections5240
No. of parameters303
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.35

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 1998).

 

Footnotes

Current address; Graduate University of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China.

Acknowledgements

The authors thank Professor Kaibei Yu, State Key Laboratory of Explosion Science and Technology of Beijing Institute of Technology, for the data collection. This work was supported by the National Basic Research Project of China (No. 2010CB630701).

References

First citationBryant, G. L., Yakymyshyn, C. P. & Stewart, K. R. (1993). Acta Cryst. C49, 350–351.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDowty, E. (1998). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMarder, S. R., Perry, J. W. & Schaefer, W. P. (1989). Science, 245, 626–628.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMarder, S. R., Perry, J. W. & Yakymyshyn, C. P. (1994). Chem. Mater. 6, 1137–1147.  CSD CrossRef CAS Web of Science Google Scholar
First citationMutter, L., Brunner, F. D., Yang, Z., Jazbinsek, M. & Günter, P. (2007). J. Opt. Soc. 24, 2556–2561.  CrossRef CAS Google Scholar
First citationPan, F., Wong, M. S., Bosshard, C. & Günter, P. (1996). Adv. Mater. 8, 592–595.  CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Z., Mutter, L., Ruiz, B., Aravazhi, S., Stillhart, M., Jazbinsek, M., Gramlich, V. & Günter, P. (2007). Adv. Funct. Mater. 17, 2018–2023.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds