organic compounds
5,7-Dibromo-2-methylquinolin-8-ol
aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de
In the title compound, C10H7Br2NO, the molecule possesses a planar geometry with an r.m.s deviation of 0.0383 Å for all non-H atoms. The displays O—H⋯N and C—H⋯O hydrogen bonding, as well as Br⋯Br contacts [3.6284 (4) Å].
Related literature
For a review of hydroxyquinolines in supramolecular chemistry, see: Albrecht et al. (2008). Bei et al. (1997) report on group 4 metal alkyl complexes. The of the parent 8-hydroxyquinoline is described by Banerjee & Saha (1986) and Roychowdhury et al. (1978). Choi & Chi (2004) used the title compound as the starting material for alkylamino-substituted quinoline-5,8-diones. For halogen interactions in molecular crystal structures, see: Awwadi et al. (2006); Brammer et al. (2001); Metrangolo et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811007434/im2267sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811007434/im2267Isup2.hkl
As described by Choi & Chi (2004), 5 ml of bromine in MeOH (50 ml) was added to a mixture of 8-hydroxy-2-methylquinoline (5.0 g, 31.4 mmol), NaHCO3 (5 g) and MeOH (50 ml). After stirring for 5 min at room temperature, Na2SO3 (2.5 g) was added, and then the mixture was filtered and washed with H2O (100 ml). The white solid was dried in vacuo to give the title compound as raw product (8.9 g, 89%). Recrystallization from boiling and slowly cooling to room temperature ethanol yielded single crystals suitable for X-ray crystallography.
H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.84 Å, C—H = 0.95–0.98 Å and Uiso(H) = 1.2–1.5 Ueq(parent atom).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C10H7Br2NO | F(000) = 1216 |
Mr = 316.99 | Dx = 2.205 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9610 reflections |
a = 22.2221 (5) Å | θ = 2.4–29.2° |
b = 4.0479 (1) Å | µ = 8.45 mm−1 |
c = 21.7221 (4) Å | T = 93 K |
β = 102.167 (1)° | Piece, colourless |
V = 1910.07 (7) Å3 | 0.40 × 0.24 × 0.22 mm |
Z = 8 |
Bruker SMART CCD area-detector diffractometer | 1727 independent reflections |
Radiation source: fine-focus sealed tube | 1629 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ϕ and ω scans | θmax = 25.2°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −26→25 |
Tmin = 0.133, Tmax = 0.258 | k = −4→4 |
13437 measured reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.017 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.046 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0262P)2 + 2.9807P] where P = (Fo2 + 2Fc2)/3 |
1727 reflections | (Δ/σ)max = 0.001 |
129 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
C10H7Br2NO | V = 1910.07 (7) Å3 |
Mr = 316.99 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 22.2221 (5) Å | µ = 8.45 mm−1 |
b = 4.0479 (1) Å | T = 93 K |
c = 21.7221 (4) Å | 0.40 × 0.24 × 0.22 mm |
β = 102.167 (1)° |
Bruker SMART CCD area-detector diffractometer | 1727 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1629 reflections with I > 2σ(I) |
Tmin = 0.133, Tmax = 0.258 | Rint = 0.025 |
13437 measured reflections |
R[F2 > 2σ(F2)] = 0.017 | 0 restraints |
wR(F2) = 0.046 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.36 e Å−3 |
1727 reflections | Δρmin = −0.60 e Å−3 |
129 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.226304 (10) | 0.34054 (6) | 0.083369 (10) | 0.02104 (8) | |
Br2 | 0.431764 (10) | 1.01225 (5) | 0.033388 (9) | 0.02065 (8) | |
N1 | 0.42288 (8) | 0.6326 (4) | 0.26148 (8) | 0.0151 (4) | |
O1 | 0.47717 (7) | 0.9601 (4) | 0.17443 (7) | 0.0197 (3) | |
H1 | 0.5012 | 0.8441 | 0.2009 | 0.030* | |
C1 | 0.39566 (10) | 0.4874 (5) | 0.30307 (10) | 0.0168 (4) | |
C2 | 0.33816 (10) | 0.3287 (5) | 0.28492 (10) | 0.0198 (5) | |
H2 | 0.3204 | 0.2213 | 0.3157 | 0.024* | |
C3 | 0.30807 (10) | 0.3291 (5) | 0.22338 (10) | 0.0186 (5) | |
H3 | 0.2693 | 0.2223 | 0.2111 | 0.022* | |
C4 | 0.33477 (10) | 0.4888 (5) | 0.17805 (10) | 0.0144 (4) | |
C5 | 0.30664 (10) | 0.5140 (5) | 0.11344 (10) | 0.0155 (4) | |
C6 | 0.33502 (10) | 0.6709 (5) | 0.07179 (10) | 0.0174 (4) | |
H6 | 0.3154 | 0.6859 | 0.0286 | 0.021* | |
C7 | 0.39324 (10) | 0.8094 (5) | 0.09334 (10) | 0.0150 (4) | |
C8 | 0.42345 (10) | 0.8007 (5) | 0.15583 (10) | 0.0145 (4) | |
C9 | 0.39347 (10) | 0.6360 (5) | 0.19921 (9) | 0.0137 (4) | |
C10 | 0.42720 (11) | 0.4996 (6) | 0.37143 (10) | 0.0224 (5) | |
H10A | 0.4668 | 0.3840 | 0.3774 | 0.034* | |
H10B | 0.4012 | 0.3923 | 0.3968 | 0.034* | |
H10C | 0.4342 | 0.7303 | 0.3847 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01485 (13) | 0.02683 (14) | 0.02053 (13) | −0.00403 (8) | 0.00170 (9) | −0.00389 (8) |
Br2 | 0.02015 (14) | 0.02857 (14) | 0.01417 (13) | −0.00252 (9) | 0.00577 (9) | 0.00366 (8) |
N1 | 0.0131 (9) | 0.0189 (9) | 0.0133 (8) | 0.0042 (7) | 0.0024 (7) | 0.0016 (7) |
O1 | 0.0130 (8) | 0.0279 (9) | 0.0169 (8) | −0.0037 (6) | 0.0001 (6) | 0.0048 (6) |
C1 | 0.0168 (11) | 0.0181 (11) | 0.0160 (10) | 0.0068 (8) | 0.0048 (9) | 0.0025 (8) |
C2 | 0.0196 (12) | 0.0220 (12) | 0.0198 (11) | 0.0029 (9) | 0.0088 (9) | 0.0040 (9) |
C3 | 0.0142 (11) | 0.0193 (11) | 0.0233 (11) | 0.0004 (8) | 0.0063 (9) | 0.0011 (9) |
C4 | 0.0124 (11) | 0.0144 (10) | 0.0172 (11) | 0.0037 (8) | 0.0045 (8) | −0.0007 (8) |
C5 | 0.0114 (10) | 0.0159 (10) | 0.0187 (10) | 0.0005 (8) | 0.0021 (8) | −0.0027 (8) |
C6 | 0.0174 (11) | 0.0210 (11) | 0.0133 (10) | 0.0041 (9) | 0.0022 (8) | −0.0015 (8) |
C7 | 0.0157 (11) | 0.0168 (10) | 0.0143 (10) | 0.0023 (8) | 0.0071 (8) | 0.0017 (8) |
C8 | 0.0113 (10) | 0.0153 (10) | 0.0174 (10) | 0.0032 (8) | 0.0039 (8) | 0.0003 (8) |
C9 | 0.0131 (11) | 0.0152 (10) | 0.0130 (10) | 0.0043 (8) | 0.0030 (8) | −0.0011 (8) |
C10 | 0.0236 (13) | 0.0286 (13) | 0.0152 (11) | 0.0026 (9) | 0.0047 (9) | 0.0035 (9) |
Br1—C5 | 1.901 (2) | C3—H3 | 0.9500 |
Br2—C7 | 1.890 (2) | C4—C5 | 1.415 (3) |
N1—C1 | 1.326 (3) | C4—C9 | 1.420 (3) |
N1—C9 | 1.373 (3) | C5—C6 | 1.364 (3) |
O1—C8 | 1.342 (3) | C6—C7 | 1.397 (3) |
O1—H1 | 0.8400 | C6—H6 | 0.9500 |
C1—C2 | 1.410 (3) | C7—C8 | 1.382 (3) |
C1—C10 | 1.503 (3) | C8—C9 | 1.429 (3) |
C2—C3 | 1.363 (3) | C10—H10A | 0.9800 |
C2—H2 | 0.9500 | C10—H10B | 0.9800 |
C3—C4 | 1.409 (3) | C10—H10C | 0.9800 |
C1—N1—C9 | 119.01 (18) | C5—C6—H6 | 120.3 |
C8—O1—H1 | 109.5 | C7—C6—H6 | 120.3 |
N1—C1—C2 | 121.88 (19) | C8—C7—C6 | 122.87 (19) |
N1—C1—C10 | 118.3 (2) | C8—C7—Br2 | 119.40 (16) |
C2—C1—C10 | 119.8 (2) | C6—C7—Br2 | 117.73 (15) |
C3—C2—C1 | 120.1 (2) | O1—C8—C7 | 120.03 (19) |
C3—C2—H2 | 119.9 | O1—C8—C9 | 122.33 (18) |
C1—C2—H2 | 119.9 | C7—C8—C9 | 117.52 (19) |
C2—C3—C4 | 119.6 (2) | N1—C9—C4 | 121.94 (19) |
C2—C3—H3 | 120.2 | N1—C9—C8 | 117.59 (18) |
C4—C3—H3 | 120.2 | C4—C9—C8 | 120.45 (18) |
C3—C4—C5 | 124.3 (2) | C1—C10—H10A | 109.5 |
C3—C4—C9 | 117.38 (19) | C1—C10—H10B | 109.5 |
C5—C4—C9 | 118.34 (19) | H10A—C10—H10B | 109.5 |
C6—C5—C4 | 121.5 (2) | C1—C10—H10C | 109.5 |
C6—C5—Br1 | 118.43 (16) | H10A—C10—H10C | 109.5 |
C4—C5—Br1 | 120.05 (16) | H10B—C10—H10C | 109.5 |
C5—C6—C7 | 119.32 (19) | ||
C9—N1—C1—C2 | 1.8 (3) | C6—C7—C8—O1 | −174.87 (19) |
C9—N1—C1—C10 | −177.25 (18) | Br2—C7—C8—O1 | 5.8 (3) |
N1—C1—C2—C3 | −1.8 (3) | C6—C7—C8—C9 | 1.2 (3) |
C10—C1—C2—C3 | 177.2 (2) | Br2—C7—C8—C9 | −178.10 (15) |
C1—C2—C3—C4 | 0.0 (3) | C1—N1—C9—C4 | 0.0 (3) |
C2—C3—C4—C5 | −177.7 (2) | C1—N1—C9—C8 | 178.67 (18) |
C2—C3—C4—C9 | 1.6 (3) | C3—C4—C9—N1 | −1.7 (3) |
C3—C4—C5—C6 | −179.7 (2) | C5—C4—C9—N1 | 177.67 (18) |
C9—C4—C5—C6 | 1.0 (3) | C3—C4—C9—C8 | 179.69 (19) |
C3—C4—C5—Br1 | 2.5 (3) | C5—C4—C9—C8 | −1.0 (3) |
C9—C4—C5—Br1 | −176.86 (14) | O1—C8—C9—N1 | −2.8 (3) |
C4—C5—C6—C7 | 0.1 (3) | C7—C8—C9—N1 | −178.78 (18) |
Br1—C5—C6—C7 | 177.96 (15) | O1—C8—C9—C4 | 175.90 (18) |
C5—C6—C7—C8 | −1.3 (3) | C7—C8—C9—C4 | −0.1 (3) |
C5—C6—C7—Br2 | 178.09 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.84 | 1.92 | 2.707 (2) | 157 |
C10—H10A···O1ii | 0.98 | 2.52 | 3.342 (3) | 141 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, y−1, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H7Br2NO |
Mr | 316.99 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 93 |
a, b, c (Å) | 22.2221 (5), 4.0479 (1), 21.7221 (4) |
β (°) | 102.167 (1) |
V (Å3) | 1910.07 (7) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 8.45 |
Crystal size (mm) | 0.40 × 0.24 × 0.22 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.133, 0.258 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13437, 1727, 1629 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.600 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.017, 0.046, 1.11 |
No. of reflections | 1727 |
No. of parameters | 129 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.60 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.84 | 1.92 | 2.707 (2) | 157 |
C10—H10A···O1ii | 0.98 | 2.52 | 3.342 (3) | 141 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, y−1, −z+1/2. |
References
Albrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812–824. Web of Science CrossRef CAS Google Scholar
Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960. Web of Science CrossRef PubMed CAS Google Scholar
Banerjee, T. & Saha, N. N. (1986). Acta Cryst. C42, 1408–1411. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bei, X., Swenson, D. C. & Jordan, R. F. (1997). Organometallics, 16, 3282–3302. CSD CrossRef CAS Web of Science Google Scholar
Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290. Web of Science CrossRef CAS Google Scholar
Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choi, H. Y. & Chi, D. Y. (2004). Tetrahedron, 60, 4945–4951. CrossRef CAS Google Scholar
Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Halogen Bonding, Structure and Bonding, Vol. 126, edited by P. Metrangolo & G. Resnati, pp. 105–136. Berlin, Heidelberg: Springer. Google Scholar
Roychowdhury, P., Das, B. N. & Basak, B. S. (1978). Acta Cryst. B34, 1047–1048. CSD CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The molecular shape of the title compound is best described by the planarity of the molecule (Fig. 1), expressed by the RMS deviation of all non-hydrogen fitted atoms being 0.0383 Å. Molecular dimers are formed by a conventional hydrogen bridge, O1—H1···N1 [d = 2.707 (2) Å, θ = 157°] (Fig. 2) that is also found in the structure of the parent 8-hydroxyquinoline (Banerjee & Saha, 1986). In addition, a C—H···O contact creates chains along the crystallographic b axis. Distances between adjacent aromatic planes of 4.1 Å indicate the absence of π stacking interactions. However, halogen interactions of type I mode (Awwadi et al. 2006) represented by the Br2···Br2 contact [d = 3.6284 (4) Å, θ1 = θ2 = 143.3°] connect the formed dimers. Considering analogous dimer formation in the parent 8-hydroxyquinoline, this particular halogen contact is largely attributable to crystal packing effects.