organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o850-o851

4a-Hy­dr­oxy-3,3,6,6-tetra­methyl-9-[6-(3,3,6,6-tetra­methyl-1,8-dioxo-2,3,4,5,6,7,8,9-octa­hydro-1H-xanthen-9-yl)pyridin-2-yl]-2,3,4,4a,5,6,7,8,9,9a-deca­hydro-1H-xanthene-1,8-dione ethanol hemisolvate hemihydrate

aSchool of Biology, Chemistry and Material Science, Manchester Metropolitan University, Manchester, England, bDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 16 February 2011; accepted 7 March 2011; online 12 March 2011)

The pyridine ring in the title compound, C39H47NO7·0.5C2H5OH·0.5 H2O, is connected to one 3,3,6,6-tetra­methyl-1,8-dioxoxanthenyl and one 4a-hy­droxy-3,3,6,6-tetra­methyl-1,8-dioxodeca­hydroxanthenyl substituent in the 2- and 6-positions of the ring. In the former substituent, the six-membered xanthenyl ring adopts a flattened envelope conformation (with the methine C atom as the flap) while in the latter, the six-membered xanthenyl ring adopts a twisted envelope conformation (with the C atom bearing the hy­droxy group representing the flap). The hy­droxy H atom forms an intra­molecular hydrogen bond to the pyridyl N atom. An ethanol solvent mol­ecule is disordered with respect to a water mol­ecule in a 1:1 ratio. The water mol­ecule itself is disordered over two positions of equal occupancy.

Related literature

For 3,3,6,6-tetra­methyl-9-phenyl-3,4,5,6-tetra­hydro-9H-xan­thene-1,8(2H,7H)-dione, see: Rao et al. (2009[Rao, X.-P., Wu, Y., Song, Z.-Q. & Shang, S.-B. (2009). J. Chem. Crystallogr. 39, 500-503.]); Reddy et al. (2009[Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.]).

[Scheme 1]

Experimental

Crystal data
  • C39H47NO7·0.5C2H6O·0.5H2O

  • Mr = 673.82

  • Monoclinic, P 21 /n

  • a = 14.9739 (5) Å

  • b = 16.3416 (4) Å

  • c = 15.3412 (4) Å

  • β = 101.113 (3)°

  • V = 3683.56 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.983, Tmax = 0.992

  • 32212 measured reflections

  • 8332 independent reflections

  • 5349 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.247

  • S = 0.99

  • 8332 reflections

  • 472 parameters

  • 33 restraints

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯N1 0.84 1.86 2.695 (3) 171

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzaldehyde (and its derivatives) and dimedone readily condense to form 3,3,6,6-tetramethyl-9-phenyl-3,4,5,6-tetrahydro-9H-xanthene-1,8(2H,7H)-dione (Rao et al., 2009; Reddy et al., 2009), which belongs to the pharmaceutically useful class of xanthenes. An aromatic reactant having two aldehyde groups should therefore furnish a bis-xanthene. In this study, pyridine-2,6-dicarboxaldehyde yielded the expected compound, but one water molecule has added across one of the four carbon-carbon double bonds to yield the title compound (Scheme I, Fig. 1), which was isolated from ethanol as the hemihydrated hemisolvate. The pyridine ring in the title compound, C39H47NO7 × 0.5 C2H5OH × 0.5 H2O, is connected to one tetramethyloctahydroxanthen-1,8-dionyl and one hydroxy-tetramethyldecahydro-xanthen-1,8-dionyl substituent in the 2- and 6-positions of the ring. The hydroxy H atom of the second substituent forms an intramolecular hydrogen bond to the pyridyl N atom.

Related literature top

For 3,3,6,6-tetramethyl-9-phenyl-3,4,5,6-tetrahydro-9H-xanthene-1,8(2H,7H)-dione, see: Rao et al. (2009); Reddy et al. (2009).

Experimental top

Amino-iso-propanol (20 mmol), pyridine-2,6-dicarboxaldeyde (10 mol) and dimedone (40 mmol) were heated in ethanol (100 ml) for 5 h. The solution was cooled and the brown solid collected and recrystallized from ethanol to give colorless crystals, m.p. 348 K. The synthesis did not yield the expected decahydroacridine derivative (in which the iso-propylamino group would replaced the ether oxygen of the xanthene unit).

Refinement top

Carbon- and oxygen-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å and O–H 0.84 Å; Uiso(H) 1.2 to 1.5Ueq(C,O)] and were included in the refinement in the riding model approximation.

The ethanol molecule is statistically disodered with respect to a water molecule As the occupancy refined to a nearly 1:1 ratio, the disordered was interpretated as a hemisolvate hemihydrate. For the ethanol molecule, the carbon–carbon distance was tightly restrained to 1.500±0.005 Å and the carbon–oxygen distance to 1.450±0.005 Å; the carbon···oxygen distance was restrained to 2.30±0.01 Å. The water molecule is disordered over two positions and the occupancies were fixed to 0.25. The temperature factors of the disordered atoms were restrained to be nearly isotropic. The H-atoms of the disordered water components were placed in arbitrary positions.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C39H47NO7 × 0.5 C2H5OH × 0.5 H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disordered water molecules are not shown.
4a-Hydroxy-3,3,6,6-tetramethyl-9-[6-(3,3,6,6-tetramethyl-1,8-dioxo- 2,3,4,5,6,7,8,9-octahydro-1H-xanthen-9-yl)pyridin-2-yl]- 2,3,4,4a,5,6,7,8,9,9a-decahydro-1H-xanthene-1,8-dione ethanol hemisolvate hemihydrate top
Crystal data top
C39H47NO7·0.5C2H6O·0.5H2OF(000) = 1448
Mr = 673.82Dx = 1.215 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7177 reflections
a = 14.9739 (5) Åθ = 2.5–29.2°
b = 16.3416 (4) ŵ = 0.08 mm1
c = 15.3412 (4) ÅT = 100 K
β = 101.113 (3)°Block, colorless
V = 3683.56 (18) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
8332 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5349 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.056
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2121
Tmin = 0.983, Tmax = 0.992l = 1919
32212 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.247H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.117P)2 + 4.4589P]
where P = (Fo2 + 2Fc2)/3
8332 reflections(Δ/σ)max = 0.001
472 parametersΔρmax = 0.86 e Å3
33 restraintsΔρmin = 0.43 e Å3
Crystal data top
C39H47NO7·0.5C2H6O·0.5H2OV = 3683.56 (18) Å3
Mr = 673.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.9739 (5) ŵ = 0.08 mm1
b = 16.3416 (4) ÅT = 100 K
c = 15.3412 (4) Å0.20 × 0.15 × 0.10 mm
β = 101.113 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
8332 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
5349 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.992Rint = 0.056
32212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07933 restraints
wR(F2) = 0.247H-atom parameters constrained
S = 0.99Δρmax = 0.86 e Å3
8332 reflectionsΔρmin = 0.43 e Å3
472 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.75927 (15)0.77336 (14)0.87079 (15)0.0395 (5)
O20.77541 (18)0.46119 (15)0.93769 (19)0.0547 (7)
O30.98264 (13)0.59879 (12)0.79452 (13)0.0308 (5)
O40.60599 (15)0.70975 (13)0.48043 (14)0.0380 (5)
O50.86434 (13)0.54279 (12)0.48832 (13)0.0321 (5)
O60.87367 (14)0.50643 (13)0.63467 (12)0.0326 (5)
H60.83500.53440.65460.049*
O70.64466 (15)0.46546 (15)0.38099 (14)0.0411 (6)
N10.73745 (16)0.58234 (14)0.69454 (15)0.0282 (5)
C10.6656 (2)0.57624 (17)0.62681 (18)0.0282 (6)
C20.5773 (2)0.58455 (18)0.6405 (2)0.0326 (7)
H20.52720.58020.59220.039*
C30.5630 (2)0.59941 (18)0.7260 (2)0.0340 (7)
H30.50290.60480.73690.041*
C40.6369 (2)0.60629 (18)0.79493 (19)0.0312 (6)
H40.62860.61690.85370.037*
C50.7238 (2)0.59743 (16)0.77669 (18)0.0274 (6)
C60.8084 (2)0.60758 (18)0.84914 (18)0.0297 (6)
H6A0.78840.61770.90680.036*
C70.86317 (19)0.68054 (18)0.82926 (18)0.0285 (6)
C80.8285 (2)0.76311 (19)0.84065 (19)0.0339 (7)
C90.8824 (2)0.83457 (19)0.8171 (2)0.0376 (7)
H9A0.92550.85230.87100.045*
H9B0.84020.88060.79780.045*
C100.9359 (2)0.81661 (19)0.7437 (2)0.0345 (7)
C110.9942 (2)0.74128 (18)0.7714 (2)0.0323 (6)
H11A1.02120.72280.72070.039*
H11B1.04470.75620.82060.039*
C120.9416 (2)0.67286 (17)0.80053 (18)0.0287 (6)
C130.8699 (2)0.8003 (2)0.6555 (2)0.0426 (8)
H13A0.83120.75330.66240.064*
H13B0.90470.78850.60900.064*
H13C0.83170.84860.63880.064*
C140.9966 (3)0.8890 (2)0.7313 (3)0.0466 (8)
H14A1.03020.87650.68410.070*
H14B1.03970.89940.78690.070*
H14C0.95880.93770.71500.070*
C150.9490 (2)0.53201 (17)0.83130 (18)0.0297 (6)
C161.0129 (2)0.46121 (19)0.8363 (2)0.0386 (7)
H16A1.06940.47440.87910.046*
H16B1.02930.45330.77740.046*
C170.9737 (2)0.38063 (18)0.86477 (19)0.0327 (7)
C180.9207 (3)0.3984 (2)0.9381 (2)0.0445 (8)
H18A0.89100.34740.95250.053*
H18B0.96380.41590.99220.053*
C190.8487 (2)0.4640 (2)0.9131 (2)0.0422 (8)
C200.8707 (2)0.53404 (18)0.8603 (2)0.0326 (7)
C210.9099 (3)0.3420 (2)0.7854 (2)0.0520 (9)
H21A0.88450.29120.80430.078*
H21B0.94410.32990.73850.078*
H21C0.86040.38010.76270.078*
C221.0509 (3)0.3204 (2)0.9000 (3)0.0536 (9)
H22A1.02510.26960.91840.080*
H22B1.09180.34470.95100.080*
H22C1.08500.30840.85300.080*
C230.68419 (19)0.55711 (18)0.53536 (18)0.0285 (6)
H230.62330.55210.49520.034*
C240.73411 (19)0.62459 (17)0.49690 (17)0.0281 (6)
C250.6849 (2)0.70053 (18)0.47057 (18)0.0309 (6)
C260.7338 (2)0.76777 (19)0.4303 (2)0.0378 (7)
H26A0.76850.80160.47880.045*
H26B0.68800.80350.39360.045*
C270.7992 (2)0.7355 (2)0.3726 (2)0.0379 (7)
C280.8633 (2)0.6738 (2)0.4273 (2)0.0362 (7)
H28A0.89760.64480.38760.043*
H28B0.90780.70380.47210.043*
C290.8159 (2)0.61251 (18)0.47347 (18)0.0305 (6)
C300.7455 (2)0.6935 (2)0.2894 (2)0.0445 (8)
H30A0.78780.67250.25340.067*
H30B0.70410.73310.25460.067*
H30C0.71010.64810.30710.067*
C310.8551 (3)0.8054 (2)0.3445 (3)0.0561 (10)
H31A0.89590.78390.30710.084*
H31B0.89110.83130.39740.084*
H31C0.81410.84600.31080.084*
C320.83760 (19)0.48220 (18)0.54872 (17)0.0285 (6)
C330.8842 (2)0.40358 (18)0.53108 (18)0.0309 (6)
H33A0.87930.36470.57940.037*
H33B0.94960.41540.53500.037*
C340.8488 (2)0.36018 (19)0.44159 (19)0.0327 (7)
C350.7443 (2)0.35343 (19)0.42789 (19)0.0334 (7)
H35A0.72020.33180.36770.040*
H35B0.72800.31430.47160.040*
C360.70108 (19)0.43421 (19)0.43842 (18)0.0304 (6)
C370.73304 (19)0.47546 (17)0.52916 (18)0.0274 (6)
H370.71600.43830.57510.033*
C380.8758 (2)0.4055 (2)0.36336 (19)0.0386 (7)
H38A0.94220.41050.37310.058*
H38B0.84830.46020.35840.058*
H38C0.85400.37490.30840.058*
C390.8886 (2)0.2740 (2)0.4475 (2)0.0439 (8)
H39A0.95510.27720.45700.066*
H39B0.86540.24460.39220.066*
H39C0.87070.24490.49740.066*
O80.6847 (5)0.5515 (5)1.0826 (5)0.096 (2)0.50
H80.71210.57381.04600.144*0.50
C400.6036 (6)0.5124 (5)1.0356 (7)0.074 (3)0.50
H40A0.57500.47901.07660.089*0.50
H40B0.61770.47650.98800.089*0.50
C410.5423 (5)0.5800 (5)0.9973 (5)0.064 (2)0.50
H41A0.48300.57321.01440.096*0.50
H41B0.53450.57890.93240.096*0.50
H41C0.56900.63241.01970.096*0.50
O1W0.6247 (9)0.5082 (11)1.0029 (9)0.078 (4)0.25
H1W10.66240.49180.97270.117*0.25
H1W20.65070.50831.05660.117*0.25
O2W0.7207 (11)0.5105 (9)1.1478 (11)0.091 (4)0.25
H2W10.75660.49441.11550.137*0.25
H2W20.67070.52101.11440.137*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0376 (12)0.0404 (12)0.0439 (13)0.0042 (10)0.0165 (10)0.0086 (10)
O20.0532 (16)0.0476 (14)0.0728 (18)0.0005 (12)0.0356 (14)0.0096 (13)
O30.0303 (11)0.0325 (11)0.0312 (10)0.0032 (9)0.0101 (8)0.0008 (8)
O40.0400 (13)0.0392 (12)0.0359 (12)0.0082 (10)0.0104 (10)0.0027 (9)
O50.0295 (11)0.0369 (11)0.0309 (10)0.0003 (9)0.0087 (8)0.0005 (9)
O60.0322 (11)0.0419 (12)0.0230 (10)0.0057 (9)0.0033 (8)0.0079 (8)
O70.0338 (12)0.0557 (14)0.0305 (11)0.0056 (10)0.0020 (9)0.0054 (10)
N10.0300 (13)0.0304 (12)0.0259 (12)0.0014 (10)0.0095 (10)0.0014 (9)
C10.0305 (15)0.0270 (14)0.0289 (14)0.0005 (12)0.0107 (12)0.0019 (11)
C20.0323 (15)0.0357 (16)0.0304 (15)0.0005 (13)0.0079 (12)0.0008 (12)
C30.0291 (15)0.0375 (16)0.0386 (16)0.0042 (13)0.0148 (13)0.0001 (13)
C40.0325 (16)0.0337 (15)0.0300 (14)0.0002 (13)0.0127 (12)0.0031 (12)
C50.0322 (15)0.0236 (13)0.0282 (14)0.0004 (11)0.0105 (12)0.0022 (11)
C60.0318 (15)0.0341 (15)0.0255 (13)0.0005 (12)0.0118 (12)0.0038 (11)
C70.0304 (15)0.0314 (15)0.0244 (13)0.0020 (12)0.0070 (11)0.0045 (11)
C80.0360 (16)0.0387 (17)0.0268 (14)0.0025 (14)0.0058 (12)0.0078 (12)
C90.0413 (18)0.0320 (16)0.0399 (17)0.0016 (14)0.0084 (14)0.0076 (13)
C100.0361 (17)0.0331 (16)0.0351 (16)0.0007 (13)0.0087 (13)0.0029 (13)
C110.0288 (15)0.0347 (16)0.0334 (15)0.0034 (13)0.0059 (12)0.0039 (12)
C120.0322 (15)0.0309 (15)0.0228 (13)0.0010 (12)0.0049 (11)0.0026 (11)
C130.047 (2)0.0476 (19)0.0332 (16)0.0042 (16)0.0072 (14)0.0022 (14)
C140.047 (2)0.0356 (17)0.062 (2)0.0022 (15)0.0220 (17)0.0054 (16)
C150.0332 (15)0.0315 (15)0.0255 (13)0.0003 (12)0.0084 (12)0.0034 (11)
C160.0405 (18)0.0355 (17)0.0430 (17)0.0058 (14)0.0159 (14)0.0005 (14)
C170.0374 (16)0.0311 (15)0.0286 (14)0.0028 (13)0.0041 (12)0.0017 (12)
C180.050 (2)0.0440 (19)0.0396 (18)0.0028 (16)0.0101 (15)0.0018 (15)
C190.0433 (19)0.0430 (19)0.0413 (18)0.0036 (15)0.0108 (15)0.0030 (15)
C200.0329 (16)0.0305 (15)0.0364 (16)0.0007 (13)0.0118 (13)0.0018 (12)
C210.064 (2)0.044 (2)0.047 (2)0.0032 (18)0.0071 (18)0.0043 (16)
C220.058 (2)0.048 (2)0.053 (2)0.0054 (18)0.0094 (18)0.0054 (17)
C230.0258 (14)0.0355 (15)0.0254 (13)0.0010 (12)0.0080 (11)0.0003 (11)
C240.0298 (15)0.0315 (15)0.0233 (13)0.0018 (12)0.0059 (11)0.0009 (11)
C250.0357 (17)0.0342 (16)0.0229 (13)0.0003 (13)0.0055 (12)0.0026 (11)
C260.0424 (18)0.0342 (16)0.0344 (16)0.0017 (14)0.0017 (14)0.0023 (13)
C270.0355 (17)0.0427 (18)0.0340 (16)0.0074 (14)0.0034 (13)0.0069 (13)
C280.0330 (16)0.0424 (18)0.0330 (15)0.0071 (14)0.0058 (13)0.0008 (13)
C290.0296 (15)0.0346 (15)0.0256 (13)0.0023 (13)0.0011 (11)0.0004 (12)
C300.0446 (19)0.061 (2)0.0281 (15)0.0014 (17)0.0065 (14)0.0048 (15)
C310.057 (2)0.054 (2)0.058 (2)0.0138 (19)0.0138 (19)0.0176 (18)
C320.0297 (15)0.0347 (15)0.0209 (13)0.0004 (12)0.0046 (11)0.0006 (11)
C330.0315 (15)0.0360 (16)0.0248 (13)0.0033 (13)0.0042 (11)0.0033 (12)
C340.0328 (16)0.0399 (17)0.0253 (14)0.0025 (13)0.0052 (12)0.0075 (12)
C350.0348 (16)0.0392 (17)0.0258 (14)0.0024 (13)0.0051 (12)0.0079 (12)
C360.0252 (14)0.0397 (16)0.0274 (14)0.0057 (13)0.0081 (12)0.0025 (12)
C370.0281 (14)0.0316 (14)0.0243 (13)0.0001 (12)0.0092 (11)0.0000 (11)
C380.0388 (17)0.053 (2)0.0253 (14)0.0007 (15)0.0095 (13)0.0090 (13)
C390.049 (2)0.0436 (19)0.0370 (17)0.0084 (16)0.0018 (15)0.0129 (14)
O80.125 (6)0.082 (5)0.095 (5)0.025 (4)0.055 (5)0.013 (4)
C400.081 (7)0.077 (6)0.071 (6)0.019 (5)0.033 (5)0.012 (5)
C410.080 (5)0.059 (4)0.060 (4)0.014 (4)0.035 (4)0.014 (4)
O1W0.047 (6)0.141 (9)0.055 (6)0.037 (6)0.034 (5)0.035 (6)
O2W0.105 (8)0.077 (7)0.091 (8)0.021 (6)0.016 (7)0.007 (6)
Geometric parameters (Å, º) top
O1—C81.226 (4)C21—H21C0.9800
O2—C191.228 (4)C22—H22A0.9800
O3—C151.369 (3)C22—H22B0.9800
O3—C121.369 (3)C22—H22C0.9800
O4—C251.230 (4)C23—C241.514 (4)
O5—C291.346 (4)C23—C371.533 (4)
O5—C321.464 (3)C23—H231.0000
O6—C321.383 (3)C24—C291.356 (4)
O6—H60.8400C24—C251.460 (4)
O7—C361.210 (4)C25—C261.516 (4)
N1—C51.338 (3)C26—C271.535 (5)
N1—C11.347 (4)C26—H26A0.9900
C1—C21.385 (4)C26—H26B0.9900
C1—C231.514 (4)C27—C311.527 (5)
C2—C31.391 (4)C27—C281.527 (4)
C2—H20.9500C27—C301.533 (5)
C3—C41.380 (4)C28—C291.484 (4)
C3—H30.9500C28—H28A0.9900
C4—C51.390 (4)C28—H28B0.9900
C4—H40.9500C30—H30A0.9800
C5—C61.525 (4)C30—H30B0.9800
C6—C201.511 (4)C30—H30C0.9800
C6—C71.511 (4)C31—H31A0.9800
C6—H6A1.0000C31—H31B0.9800
C7—C121.337 (4)C31—H31C0.9800
C7—C81.468 (4)C32—C331.511 (4)
C8—C91.502 (5)C32—C371.540 (4)
C9—C101.531 (4)C33—C341.545 (4)
C9—H9A0.9900C33—H33A0.9900
C9—H9B0.9900C33—H33B0.9900
C10—C111.521 (4)C34—C391.524 (4)
C10—C141.526 (5)C34—C381.529 (4)
C10—C131.538 (4)C34—C351.543 (4)
C11—C121.486 (4)C35—C361.492 (4)
C11—H11A0.9900C35—H35A0.9900
C11—H11B0.9900C35—H35B0.9900
C13—H13A0.9800C36—C371.538 (4)
C13—H13B0.9800C37—H371.0000
C13—H13C0.9800C38—H38A0.9800
C14—H14A0.9800C38—H38B0.9800
C14—H14B0.9800C38—H38C0.9800
C14—H14C0.9800C39—H39A0.9800
C15—C201.332 (4)C39—H39B0.9800
C15—C161.495 (4)C39—H39C0.9800
C16—C171.539 (4)O8—C401.437 (5)
C16—H16A0.9900O8—H80.8400
C16—H16B0.9900C40—C411.482 (5)
C17—C181.525 (4)C40—H40A0.9900
C17—C211.531 (5)C40—H40B0.9900
C17—C221.536 (5)C41—H41A0.9800
C18—C191.516 (5)C41—H41B0.9800
C18—H18A0.9900C41—H41C0.9800
C18—H18B0.9900O1W—H1W10.8400
C19—C201.475 (4)O1W—H1W20.8401
C21—H21A0.9800O2W—H2W10.8399
C21—H21B0.9800O2W—H2W20.8399
C15—O3—C12118.1 (2)H22A—C22—H22C109.5
C29—O5—C32118.4 (2)H22B—C22—H22C109.5
C32—O6—H6109.5C24—C23—C1113.8 (2)
C5—N1—C1119.7 (2)C24—C23—C37109.4 (2)
N1—C1—C2121.3 (3)C1—C23—C37114.3 (2)
N1—C1—C23117.9 (2)C24—C23—H23106.2
C2—C1—C23120.8 (3)C1—C23—H23106.2
C1—C2—C3119.1 (3)C37—C23—H23106.2
C1—C2—H2120.5C29—C24—C25118.9 (3)
C3—C2—H2120.5C29—C24—C23122.4 (3)
C4—C3—C2119.3 (3)C25—C24—C23117.8 (2)
C4—C3—H3120.3O4—C25—C24121.1 (3)
C2—C3—H3120.3O4—C25—C26120.8 (3)
C3—C4—C5118.8 (3)C24—C25—C26118.2 (3)
C3—C4—H4120.6C25—C26—C27113.4 (3)
C5—C4—H4120.6C25—C26—H26A108.9
N1—C5—C4121.9 (3)C27—C26—H26A108.9
N1—C5—C6116.8 (2)C25—C26—H26B108.9
C4—C5—C6121.3 (2)C27—C26—H26B108.9
C20—C6—C7107.6 (2)H26A—C26—H26B107.7
C20—C6—C5113.9 (2)C31—C27—C28109.2 (3)
C7—C6—C5110.2 (2)C31—C27—C30109.1 (3)
C20—C6—H6A108.3C28—C27—C30109.6 (3)
C7—C6—H6A108.3C31—C27—C26110.6 (3)
C5—C6—H6A108.3C28—C27—C26108.2 (2)
C12—C7—C8118.6 (3)C30—C27—C26110.0 (3)
C12—C7—C6122.5 (3)C29—C28—C27113.6 (3)
C8—C7—C6118.9 (2)C29—C28—H28A108.8
O1—C8—C7121.0 (3)C27—C28—H28A108.8
O1—C8—C9121.1 (3)C29—C28—H28B108.8
C7—C8—C9117.9 (3)C27—C28—H28B108.8
C8—C9—C10114.2 (2)H28A—C28—H28B107.7
C8—C9—H9A108.7O5—C29—C24124.3 (3)
C10—C9—H9A108.7O5—C29—C28111.1 (3)
C8—C9—H9B108.7C24—C29—C28124.6 (3)
C10—C9—H9B108.7C27—C30—H30A109.5
H9A—C9—H9B107.6C27—C30—H30B109.5
C11—C10—C14109.8 (3)H30A—C30—H30B109.5
C11—C10—C9107.7 (3)C27—C30—H30C109.5
C14—C10—C9110.6 (3)H30A—C30—H30C109.5
C11—C10—C13110.0 (3)H30B—C30—H30C109.5
C14—C10—C13108.8 (3)C27—C31—H31A109.5
C9—C10—C13110.0 (3)C27—C31—H31B109.5
C12—C11—C10112.6 (2)H31A—C31—H31B109.5
C12—C11—H11A109.1C27—C31—H31C109.5
C10—C11—H11A109.1H31A—C31—H31C109.5
C12—C11—H11B109.1H31B—C31—H31C109.5
C10—C11—H11B109.1O6—C32—O5107.8 (2)
H11A—C11—H11B107.8O6—C32—C33107.8 (2)
C7—C12—O3122.7 (3)O5—C32—C33105.7 (2)
C7—C12—C11125.4 (3)O6—C32—C37113.7 (2)
O3—C12—C11112.0 (2)O5—C32—C37108.5 (2)
C10—C13—H13A109.5C33—C32—C37113.0 (2)
C10—C13—H13B109.5C32—C33—C34117.3 (2)
H13A—C13—H13B109.5C32—C33—H33A108.0
C10—C13—H13C109.5C34—C33—H33A108.0
H13A—C13—H13C109.5C32—C33—H33B108.0
H13B—C13—H13C109.5C34—C33—H33B108.0
C10—C14—H14A109.5H33A—C33—H33B107.2
C10—C14—H14B109.5C39—C34—C38109.6 (3)
H14A—C14—H14B109.5C39—C34—C35108.4 (3)
C10—C14—H14C109.5C38—C34—C35110.0 (2)
H14A—C14—H14C109.5C39—C34—C33107.9 (2)
H14B—C14—H14C109.5C38—C34—C33112.2 (3)
C20—C15—O3122.4 (3)C35—C34—C33108.6 (2)
C20—C15—C16126.8 (3)C36—C35—C34111.8 (2)
O3—C15—C16110.8 (2)C36—C35—H35A109.3
C15—C16—C17113.6 (3)C34—C35—H35A109.3
C15—C16—H16A108.8C36—C35—H35B109.3
C17—C16—H16A108.8C34—C35—H35B109.3
C15—C16—H16B108.8H35A—C35—H35B107.9
C17—C16—H16B108.8O7—C36—C35123.4 (3)
H16A—C16—H16B107.7O7—C36—C37121.7 (3)
C18—C17—C21109.4 (3)C35—C36—C37114.8 (2)
C18—C17—C22109.0 (3)C23—C37—C36111.6 (2)
C21—C17—C22109.1 (3)C23—C37—C32113.9 (2)
C18—C17—C16109.1 (3)C36—C37—C32109.6 (2)
C21—C17—C16109.9 (3)C23—C37—H37107.1
C22—C17—C16110.2 (3)C36—C37—H37107.1
C19—C18—C17113.2 (3)C32—C37—H37107.1
C19—C18—H18A108.9C34—C38—H38A109.5
C17—C18—H18A108.9C34—C38—H38B109.5
C19—C18—H18B108.9H38A—C38—H38B109.5
C17—C18—H18B108.9C34—C38—H38C109.5
H18A—C18—H18B107.8H38A—C38—H38C109.5
O2—C19—C20120.3 (3)H38B—C38—H38C109.5
O2—C19—C18121.9 (3)C34—C39—H39A109.5
C20—C19—C18117.7 (3)C34—C39—H39B109.5
C15—C20—C19117.9 (3)H39A—C39—H39B109.5
C15—C20—C6123.1 (3)C34—C39—H39C109.5
C19—C20—C6118.7 (3)H39A—C39—H39C109.5
C17—C21—H21A109.5H39B—C39—H39C109.5
C17—C21—H21B109.5O8—C40—C41105.4 (6)
H21A—C21—H21B109.5O8—C40—H40A110.7
C17—C21—H21C109.5C41—C40—H40A110.7
H21A—C21—H21C109.5O8—C40—H40B110.7
H21B—C21—H21C109.5C41—C40—H40B110.7
C17—C22—H22A109.5H40A—C40—H40B108.8
C17—C22—H22B109.5H1W1—O1W—H1W2108.0
H22A—C22—H22B109.5H2W1—O2W—H2W2107.4
C17—C22—H22C109.5
C5—N1—C1—C20.6 (4)C5—C6—C20—C15104.6 (3)
C5—N1—C1—C23178.6 (2)C7—C6—C20—C19156.1 (3)
N1—C1—C2—C30.1 (4)C5—C6—C20—C1981.4 (3)
C23—C1—C2—C3177.9 (3)N1—C1—C23—C2466.5 (3)
C1—C2—C3—C40.6 (4)C2—C1—C23—C24115.5 (3)
C2—C3—C4—C50.5 (4)N1—C1—C23—C3760.2 (3)
C1—N1—C5—C40.7 (4)C2—C1—C23—C37117.8 (3)
C1—N1—C5—C6177.1 (2)C1—C23—C24—C29120.8 (3)
C3—C4—C5—N10.1 (4)C37—C23—C24—C298.4 (4)
C3—C4—C5—C6177.6 (3)C1—C23—C24—C2569.8 (3)
N1—C5—C6—C2058.6 (3)C37—C23—C24—C25161.0 (2)
C4—C5—C6—C20123.5 (3)C29—C24—C25—O4170.7 (3)
N1—C5—C6—C762.4 (3)C23—C24—C25—O41.0 (4)
C4—C5—C6—C7115.4 (3)C29—C24—C25—C269.0 (4)
C20—C6—C7—C1218.4 (4)C23—C24—C25—C26178.8 (2)
C5—C6—C7—C12106.3 (3)O4—C25—C26—C27144.9 (3)
C20—C6—C7—C8162.5 (2)C24—C25—C26—C2734.8 (4)
C5—C6—C7—C872.8 (3)C25—C26—C27—C31172.5 (3)
C12—C7—C8—O1176.5 (3)C25—C26—C27—C2852.9 (3)
C6—C7—C8—O14.3 (4)C25—C26—C27—C3066.9 (3)
C12—C7—C8—C91.5 (4)C31—C27—C28—C29168.2 (3)
C6—C7—C8—C9177.7 (3)C30—C27—C28—C2972.3 (3)
O1—C8—C9—C10152.5 (3)C26—C27—C28—C2947.7 (4)
C7—C8—C9—C1029.5 (4)C32—O5—C29—C2413.0 (4)
C8—C9—C10—C1153.7 (3)C32—O5—C29—C28167.7 (2)
C8—C9—C10—C14173.7 (3)C25—C24—C29—O5175.0 (2)
C8—C9—C10—C1366.2 (3)C23—C24—C29—O55.7 (4)
C14—C10—C11—C12169.5 (3)C25—C24—C29—C284.3 (4)
C9—C10—C11—C1249.0 (3)C23—C24—C29—C28173.6 (3)
C13—C10—C11—C1270.8 (3)C27—C28—C29—O5154.0 (3)
C8—C7—C12—O3174.8 (2)C27—C28—C29—C2425.4 (4)
C6—C7—C12—O36.1 (4)C29—O5—C32—O681.2 (3)
C8—C7—C12—C115.4 (4)C29—O5—C32—C33163.7 (2)
C6—C7—C12—C11173.7 (3)C29—O5—C32—C3742.3 (3)
C15—O3—C12—C79.6 (4)O6—C32—C33—C34174.6 (2)
C15—O3—C12—C11170.6 (2)O5—C32—C33—C3470.4 (3)
C10—C11—C12—C721.8 (4)C37—C32—C33—C3448.1 (3)
C10—C11—C12—O3158.0 (2)C32—C33—C34—C39166.4 (3)
C12—O3—C15—C2010.3 (4)C32—C33—C34—C3872.7 (3)
C12—O3—C15—C16167.7 (2)C32—C33—C34—C3549.1 (3)
C20—C15—C16—C1710.2 (5)C39—C34—C35—C36169.2 (2)
O3—C15—C16—C17171.9 (2)C38—C34—C35—C3670.9 (3)
C15—C16—C17—C1840.3 (4)C33—C34—C35—C3652.2 (3)
C15—C16—C17—C2179.7 (3)C34—C35—C36—O7122.1 (3)
C15—C16—C17—C22160.0 (3)C34—C35—C36—C3758.4 (3)
C21—C17—C18—C1966.7 (4)C24—C23—C37—C3685.7 (3)
C22—C17—C18—C19174.1 (3)C1—C23—C37—C36145.3 (2)
C16—C17—C18—C1953.7 (4)C24—C23—C37—C3239.0 (3)
C17—C18—C19—O2144.4 (3)C1—C23—C37—C3289.9 (3)
C17—C18—C19—C2037.8 (4)O7—C36—C37—C230.6 (4)
O3—C15—C20—C19169.2 (3)C35—C36—C37—C23178.8 (2)
C16—C15—C20—C198.4 (5)O7—C36—C37—C32126.5 (3)
O3—C15—C20—C64.9 (5)C35—C36—C37—C3254.1 (3)
C16—C15—C20—C6177.5 (3)O6—C32—C37—C2364.0 (3)
O2—C19—C20—C15176.4 (3)O5—C32—C37—C2355.9 (3)
C18—C19—C20—C155.7 (4)C33—C32—C37—C23172.8 (2)
O2—C19—C20—C69.3 (5)O6—C32—C37—C36170.2 (2)
C18—C19—C20—C6168.6 (3)O5—C32—C37—C3669.9 (3)
C7—C6—C20—C1517.9 (4)C33—C32—C37—C3646.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N10.841.862.695 (3)171

Experimental details

Crystal data
Chemical formulaC39H47NO7·0.5C2H6O·0.5H2O
Mr673.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)14.9739 (5), 16.3416 (4), 15.3412 (4)
β (°) 101.113 (3)
V3)3683.56 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.983, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
32212, 8332, 5349
Rint0.056
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.247, 0.99
No. of reflections8332
No. of parameters472
No. of restraints33
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.43

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N10.841.862.695 (3)171
 

Acknowledgements

We thank Manchester Metropolitian University, Baku State University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationRao, X.-P., Wu, Y., Song, Z.-Q. & Shang, S.-B. (2009). J. Chem. Crystallogr. 39, 500–503.  CrossRef CAS Google Scholar
First citationReddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o850-o851
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds