organic compounds
2-Methyl-4-phenyl-3,4-dihydroquinazoline
aUniversity of Jyväskylä, Department of Chemistry, PO Box 35, FIN-40014 Jyväskylä, Finland, and bUniversity of Technology and Life Sciences, Department of Chemistry, Seminaryjna 3, PL-85-326 Bydgoszcz, Poland
*Correspondence e-mail: arto.m.valkonen@jyu.fi
The title compound, C15H14N2, was formed during the lithiation of 2-methylquinazoline with phenyllithium followed by hydrolysis of the intermediate lithium 2-methyl-4-phenyl-4H-quinazolin-3-ide. NMR spectra as well as single-crystal X-ray structural data indicate that the reaction product to have the same structure in chloroform solution as in the crystalline state. The phenyl substituent is twisted out of the plane of the 3,4-dihydroquinazoline ring system by 86.47 (7)°. In the crystal, intermolecular N—H⋯N interactions connect the molecules into infinite chains.
Related literature
For organolithium compounds and lithiation, see: Gawinecki et al. (2006); Kolehmainen et al. (2000); Wakefield (1976); Armarego (1967). For previous characterizations of the title compound, see: Suri et al. (1993). For related structures, see: Rajnikant et al. (2002).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Bruker, 2008); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae, et al., 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811009664/im2274sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811009664/im2274Isup2.hkl
A solution of 2-methyl-quinazoline (10.09 g, 0.07 mol) in absolute ethyl ether (100 ml) was added dropwise with stirring to a solution of phenyllithium [obtained by a standard method starting from freshly distilled bromobenzene (15.70 g, 0.1 mol), absolute ethyl ether (0.5 L) and lithium (2.80 g, 0.4 mol)]. The reaction mixture was stirred at room temperature for additional 2 h and the reaction was quenched by addition of water (0.5 L). The organic layer was combined with the ether extracts of the water layer, dried (K2CO3) and evaporated to dryness. The crude solid product was recrystallized from ethanol to give white crystals (51%) melting at 168–170 °C [lit. mp 168–170 °C (Suri et al., 1993)]. 1H NMR (CDCl3): δ (p.p.m.) = 7.26–7.34 (m, 5H, H12—H16), 7.13 (dd, 1H, H7), 7.02 (d, 1H, H8), 6.90 (dd, 1H, H6), 6.71 (d, 1H, H5), 5.67 (s, 1H, H4), 2.02 (s, 3H, CH3). 13C NMR (CDCl3): δ (p.p.m.) = 153.9 (C2), 145.3 (C11), 140.6 (C9), 128.1 (C7), 127.8 (C14), 128.7 (C13, C15), 127.3 (C12, C16), 126.7 (C5), 124.1 (C6), 123.3 (C10), 58.1 (C4), 22.5 (C17).
Suitable single crystals for X-ray diffraction were obtained by very slow evaporation of analytical sample from NMR-tube, where CDCl3 was used as a solvent.
In the absence of significant anomalous disperson effects, Friedel pairs were averaged. All H atoms were visible in electron density maps, but were calculated at their idealized positions and allowed to ride on their parent atoms at C—H distances of 0.95 Å (aromatic), 0.98 Å (methyl), 1.00 Å (methine), and N—H distance of 0.88 Å, with Uiso(H) of 1.2 times Ueq(C,N) or 1.5 times Ueq(C) (methyl).
Data collection: COLLECT (Bruker, 2008); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae, et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C15H14N2 | Dx = 1.243 Mg m−3 |
Mr = 222.28 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P31 | Cell parameters from 3635 reflections |
Hall symbol: P 31 | θ = 0.4–28.3° |
a = 9.5600 (4) Å | µ = 0.07 mm−1 |
c = 11.2569 (5) Å | T = 123 K |
V = 890.97 (7) Å3 | Long plate, colourless |
Z = 3 | 0.35 × 0.13 × 0.12 mm |
F(000) = 354 |
Bruker–Nonius KappaCCD with APEXII detector diffractometer | 1215 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.068 |
Graphite monochromator | θmax = 28.2°, θmin = 2.5° |
Detector resolution: 9 pixels mm-1 | h = −12→12 |
ϕ and ω scans | k = −12→12 |
6729 measured reflections | l = −12→14 |
1468 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0321P)2 + 0.2356P] where P = (Fo2 + 2Fc2)/3 |
1468 reflections | (Δ/σ)max < 0.001 |
155 parameters | Δρmax = 0.19 e Å−3 |
1 restraint | Δρmin = −0.19 e Å−3 |
C15H14N2 | Z = 3 |
Mr = 222.28 | Mo Kα radiation |
Trigonal, P31 | µ = 0.07 mm−1 |
a = 9.5600 (4) Å | T = 123 K |
c = 11.2569 (5) Å | 0.35 × 0.13 × 0.12 mm |
V = 890.97 (7) Å3 |
Bruker–Nonius KappaCCD with APEXII detector diffractometer | 1215 reflections with I > 2σ(I) |
6729 measured reflections | Rint = 0.068 |
1468 independent reflections |
R[F2 > 2σ(F2)] = 0.046 | 1 restraint |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.19 e Å−3 |
1468 reflections | Δρmin = −0.19 e Å−3 |
155 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | −0.1844 (3) | 0.2606 (3) | 0.0291 (2) | 0.0332 (5) | |
N3 | −0.1137 (3) | 0.4459 (3) | 0.1862 (2) | 0.0308 (5) | |
H3 | −0.1520 | 0.4742 | 0.2470 | 0.037* | |
C2 | −0.2197 (3) | 0.3278 (3) | 0.1150 (2) | 0.0277 (6) | |
C4 | 0.0619 (3) | 0.5311 (3) | 0.1691 (2) | 0.0266 (6) | |
H4 | 0.1125 | 0.5233 | 0.2447 | 0.032* | |
C5 | 0.2646 (3) | 0.4997 (4) | 0.0469 (3) | 0.0339 (7) | |
H5 | 0.3474 | 0.5863 | 0.0910 | 0.041* | |
C6 | 0.3061 (4) | 0.4266 (4) | −0.0421 (3) | 0.0379 (7) | |
H6 | 0.4165 | 0.4634 | −0.0591 | 0.045* | |
C7 | 0.1854 (4) | 0.2994 (4) | −0.1060 (3) | 0.0362 (7) | |
H7 | 0.2129 | 0.2484 | −0.1667 | 0.043* | |
C8 | 0.0256 (4) | 0.2473 (3) | −0.0813 (2) | 0.0327 (6) | |
H8 | −0.0563 | 0.1604 | −0.1258 | 0.039* | |
C9 | −0.0184 (3) | 0.3198 (3) | 0.0081 (2) | 0.0281 (6) | |
C10 | 0.1033 (3) | 0.4480 (3) | 0.0727 (2) | 0.0264 (6) | |
C11 | 0.1197 (3) | 0.7087 (3) | 0.1459 (2) | 0.0257 (6) | |
C12 | 0.1080 (3) | 0.7642 (3) | 0.0349 (2) | 0.0295 (6) | |
H12 | 0.0722 | 0.6927 | −0.0311 | 0.035* | |
C13 | 0.1485 (3) | 0.9247 (3) | 0.0197 (3) | 0.0341 (7) | |
H13 | 0.1425 | 0.9627 | −0.0570 | 0.041* | |
C14 | 0.1977 (3) | 1.0291 (4) | 0.1157 (3) | 0.0351 (7) | |
H14 | 0.2219 | 1.1376 | 0.1055 | 0.042* | |
C15 | 0.2112 (3) | 0.9745 (3) | 0.2266 (3) | 0.0337 (6) | |
H15 | 0.2470 | 1.0461 | 0.2925 | 0.040* | |
C16 | 0.1724 (3) | 0.8150 (3) | 0.2415 (2) | 0.0287 (6) | |
H16 | 0.1820 | 0.7781 | 0.3178 | 0.034* | |
C17 | −0.3942 (3) | 0.2713 (4) | 0.1398 (3) | 0.0384 (7) | |
H17A | −0.4623 | 0.1767 | 0.0907 | 0.058* | |
H17B | −0.4170 | 0.3581 | 0.1211 | 0.058* | |
H17C | −0.4172 | 0.2424 | 0.2239 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0291 (12) | 0.0346 (13) | 0.0338 (13) | 0.0144 (11) | −0.0030 (10) | −0.0035 (11) |
N3 | 0.0272 (12) | 0.0290 (12) | 0.0297 (12) | 0.0090 (10) | 0.0067 (10) | −0.0042 (10) |
C2 | 0.0270 (14) | 0.0274 (14) | 0.0282 (14) | 0.0131 (12) | 0.0016 (11) | 0.0043 (11) |
C4 | 0.0253 (13) | 0.0249 (13) | 0.0282 (14) | 0.0114 (11) | −0.0007 (11) | 0.0003 (11) |
C5 | 0.0275 (14) | 0.0318 (15) | 0.0395 (17) | 0.0126 (12) | 0.0032 (12) | −0.0008 (12) |
C6 | 0.0352 (16) | 0.0366 (16) | 0.0451 (18) | 0.0204 (14) | 0.0136 (14) | 0.0069 (14) |
C7 | 0.0548 (19) | 0.0348 (16) | 0.0307 (15) | 0.0313 (15) | 0.0137 (14) | 0.0080 (13) |
C8 | 0.0410 (16) | 0.0273 (14) | 0.0308 (15) | 0.0179 (13) | 0.0017 (13) | −0.0010 (12) |
C9 | 0.0329 (15) | 0.0278 (13) | 0.0264 (13) | 0.0174 (12) | −0.0015 (12) | 0.0014 (11) |
C10 | 0.0276 (13) | 0.0230 (13) | 0.0279 (14) | 0.0122 (11) | 0.0036 (11) | 0.0032 (11) |
C11 | 0.0196 (12) | 0.0264 (13) | 0.0309 (15) | 0.0113 (11) | 0.0030 (10) | 0.0009 (11) |
C12 | 0.0266 (14) | 0.0333 (15) | 0.0297 (14) | 0.0158 (12) | −0.0011 (12) | −0.0010 (12) |
C13 | 0.0306 (15) | 0.0352 (16) | 0.0378 (16) | 0.0175 (13) | 0.0008 (12) | 0.0069 (13) |
C14 | 0.0277 (15) | 0.0271 (14) | 0.0511 (18) | 0.0141 (12) | 0.0046 (13) | 0.0047 (13) |
C15 | 0.0278 (15) | 0.0312 (15) | 0.0416 (16) | 0.0142 (12) | −0.0011 (12) | −0.0073 (13) |
C16 | 0.0253 (13) | 0.0306 (14) | 0.0298 (15) | 0.0137 (12) | −0.0021 (11) | −0.0030 (11) |
C17 | 0.0282 (16) | 0.0404 (17) | 0.0404 (17) | 0.0125 (13) | −0.0001 (13) | −0.0014 (13) |
N1—C2 | 1.296 (4) | C8—H8 | 0.9500 |
N1—C9 | 1.413 (3) | C9—C10 | 1.401 (4) |
N3—C2 | 1.341 (4) | C11—C12 | 1.384 (4) |
N3—C4 | 1.467 (3) | C11—C16 | 1.390 (4) |
N3—H3 | 0.8800 | C12—C13 | 1.392 (4) |
C2—C17 | 1.500 (4) | C12—H12 | 0.9500 |
C4—C10 | 1.509 (4) | C13—C14 | 1.384 (4) |
C4—C11 | 1.523 (3) | C13—H13 | 0.9500 |
C4—H4 | 1.0000 | C14—C15 | 1.384 (4) |
C5—C6 | 1.388 (4) | C14—H14 | 0.9500 |
C5—C10 | 1.394 (4) | C15—C16 | 1.387 (4) |
C5—H5 | 0.9500 | C15—H15 | 0.9500 |
C6—C7 | 1.387 (5) | C16—H16 | 0.9500 |
C6—H6 | 0.9500 | C17—H17A | 0.9800 |
C7—C8 | 1.378 (4) | C17—H17B | 0.9800 |
C7—H7 | 0.9500 | C17—H17C | 0.9800 |
C8—C9 | 1.400 (4) | ||
C2—N1—C9 | 116.5 (2) | C5—C10—C9 | 119.3 (2) |
C2—N3—C4 | 124.2 (2) | C5—C10—C4 | 119.9 (2) |
C2—N3—H3 | 117.9 | C9—C10—C4 | 120.8 (2) |
C4—N3—H3 | 117.9 | C12—C11—C16 | 119.2 (2) |
N1—C2—N3 | 126.1 (2) | C12—C11—C4 | 121.9 (2) |
N1—C2—C17 | 118.6 (2) | C16—C11—C4 | 118.6 (2) |
N3—C2—C17 | 115.3 (2) | C11—C12—C13 | 120.2 (3) |
N3—C4—C10 | 109.3 (2) | C11—C12—H12 | 119.9 |
N3—C4—C11 | 108.5 (2) | C13—C12—H12 | 119.9 |
C10—C4—C11 | 114.8 (2) | C14—C13—C12 | 120.4 (3) |
N3—C4—H4 | 108.0 | C14—C13—H13 | 119.8 |
C10—C4—H4 | 108.0 | C12—C13—H13 | 119.8 |
C11—C4—H4 | 108.0 | C15—C14—C13 | 119.6 (3) |
C6—C5—C10 | 121.1 (3) | C15—C14—H14 | 120.2 |
C6—C5—H5 | 119.5 | C13—C14—H14 | 120.2 |
C10—C5—H5 | 119.5 | C14—C15—C16 | 120.0 (3) |
C7—C6—C5 | 119.6 (3) | C14—C15—H15 | 120.0 |
C7—C6—H6 | 120.2 | C16—C15—H15 | 120.0 |
C5—C6—H6 | 120.2 | C15—C16—C11 | 120.6 (3) |
C8—C7—C6 | 119.9 (3) | C15—C16—H16 | 119.7 |
C8—C7—H7 | 120.0 | C11—C16—H16 | 119.7 |
C6—C7—H7 | 120.0 | C2—C17—H17A | 109.5 |
C7—C8—C9 | 121.3 (3) | C2—C17—H17B | 109.5 |
C7—C8—H8 | 119.4 | H17A—C17—H17B | 109.5 |
C9—C8—H8 | 119.4 | C2—C17—H17C | 109.5 |
C8—C9—C10 | 118.9 (2) | H17A—C17—H17C | 109.5 |
C8—C9—N1 | 118.5 (3) | H17B—C17—H17C | 109.5 |
C10—C9—N1 | 122.6 (2) | ||
C9—N1—C2—N3 | −1.0 (4) | N1—C9—C10—C4 | −0.4 (4) |
C9—N1—C2—C17 | 179.0 (3) | N3—C4—C10—C5 | −175.0 (2) |
C4—N3—C2—N1 | 7.2 (4) | C11—C4—C10—C5 | 62.8 (3) |
C4—N3—C2—C17 | −172.8 (3) | N3—C4—C10—C9 | 5.4 (3) |
C2—N3—C4—C10 | −8.7 (4) | C11—C4—C10—C9 | −116.8 (3) |
C2—N3—C4—C11 | 117.2 (3) | N3—C4—C11—C12 | −81.0 (3) |
C10—C5—C6—C7 | −0.4 (4) | C10—C4—C11—C12 | 41.6 (3) |
C5—C6—C7—C8 | 0.4 (4) | N3—C4—C11—C16 | 93.3 (3) |
C6—C7—C8—C9 | −0.3 (4) | C10—C4—C11—C16 | −144.1 (2) |
C7—C8—C9—C10 | 0.2 (4) | C16—C11—C12—C13 | −0.1 (4) |
C7—C8—C9—N1 | −179.9 (2) | C4—C11—C12—C13 | 174.2 (2) |
C2—N1—C9—C8 | 177.9 (3) | C11—C12—C13—C14 | −1.3 (4) |
C2—N1—C9—C10 | −2.3 (4) | C12—C13—C14—C15 | 2.0 (4) |
C6—C5—C10—C9 | 0.3 (4) | C13—C14—C15—C16 | −1.3 (4) |
C6—C5—C10—C4 | −179.3 (3) | C14—C15—C16—C11 | −0.1 (4) |
C8—C9—C10—C5 | −0.2 (4) | C12—C11—C16—C15 | 0.8 (4) |
N1—C9—C10—C5 | 179.9 (2) | C4—C11—C16—C15 | −173.7 (2) |
C8—C9—C10—C4 | 179.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···N1i | 0.88 | 2.04 | 2.908 (3) | 169 |
Symmetry code: (i) −y, x−y+1, z+1/3. |
Experimental details
Crystal data | |
Chemical formula | C15H14N2 |
Mr | 222.28 |
Crystal system, space group | Trigonal, P31 |
Temperature (K) | 123 |
a, c (Å) | 9.5600 (4), 11.2569 (5) |
V (Å3) | 890.97 (7) |
Z | 3 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.35 × 0.13 × 0.12 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD with APEXII detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6729, 1468, 1215 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.095, 1.06 |
No. of reflections | 1468 |
No. of parameters | 155 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.19 |
Computer programs: COLLECT (Bruker, 2008), DENZO-SMN (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae, et al., 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···N1i | 0.88 | 2.04 | 2.908 (3) | 169 |
Symmetry code: (i) −y, x−y+1, z+1/3. |
Acknowledgements
Academy Professor Kari Rissanen and the Academy of Finland (project No. 212588 for KR) are gratefully acknowledged for funding. Dr Katri Laihia is thanked for characterization of the NMR spectra.
References
Armarego, W. L. F. (1967). The Chemistry of Heterocyclic Compounds, Fused Pyrimidines, Part I, Quinazolines, edited by D. J. Brown, p. 35. New York: Interscience. Google Scholar
Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gawinecki, R., Kolehmainen, E., Loghmani-Khouzani, H., Ośmiałowski, B., Lovász, T. & Rosa, P. (2006). Eur. J. Org. Chem. pp. 2817–2824. CrossRef Google Scholar
Kolehmainen, E., Ośmiałowski, B., Krygowski, T. M., Kauppinen, R., Nissinen, M. & Gawinecki, R. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1259–1266. CSD CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rajnikant, Gupta, V. K., Suri, O. P. & Lal, M. (2002). Indian J. Pure Appl. Phys. 40, 59–61. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suri, K. A., Satti, N. K., Mahajan, B., Suri, O. P. & Dhar, K. L. (1993). Indian J. Chem. Sect. B, 32, 1171–1172. Google Scholar
Wakefield, B. J. (1976). The Chemistry of Organolithium Compounds, pp. 26, 32, 112, 138, 190. Oxford: Pergamon Press. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Addition of phenyllithium to 2-methylquinazoline takes place exclusively at the 3,4-position (neither 2-methyl-2-phenyl-1,2-dihydroquinazoline nor 2-methyl-4-phenyl-1,4-dihydroquinazoline were detected in the reaction mixture). Susceptibility of quinazolines to undergo the nucleophilic addition to their 3,4-double bonds has been reported earlier (Suri et al., 1993). It is also known that 4-substituted 3,4-dihydroquinazolines can be generated from quinazolines when treated with organometallic compounds (Armarego, 1967). Furthermore, low susceptibility of 2-methyl group to lithiation precludes 2-methylquinazoline to be used as a starting material in syntheses of the important Cexo-substituted 2-methylquinazolines (Wakefield, 1976; Kolehmainen et al., 2000; Gawinecki et al., 2006).
In crystalline state the title compound shows the 3,4-dihydroquinazoline moiety to be planar (Fig. 1). The phenyl substituent is twisted out of plane of the moiety by 86.47 (7) °, which is rather close to the twist (79.3 (1) °) found in 2-methyl-4-phenyl-3,4-dihydroquinazolinium chloride (Rajnikant et al., 2002). Intermolecular N3—H···N1 hydrogen bonds (-y, x-y + 1, z + 1/3 direction) define the supramolecular structure and connect the molecules to infinite helical chains (Fig. 2). Unfortunately, no reliable determination of the absolute structure (or handedness of helix) is possible by X-ray crystallography.