organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­propan-2-aminium 3,4,5,6-tetra­bromo-2-(meth­­oxy­carbon­yl)benzoate methanol monosolvate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ljwfu@163.com

(Received 18 January 2011; accepted 6 March 2011; online 12 March 2011)

In the crystal structure of the title compound, C4H12N+·C9H3Br4O4·CH4O, inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the components into columns stacked along the b axis. Between the columns, short Br⋯O contacts [3.122 (4) Å] and C—H⋯O hydrogen bonds are observed.

Related literature

For related structures, see: Li (2011[Li, J. (2011). Acta Cryst. E67, o200.]); Liang (2008[Liang, Z.-P. (2008). Acta Cryst. E64, o2416.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N+·C9H3Br4O4·CH4O

  • Mr = 600.94

  • Monoclinic, P 21 /c

  • a = 12.3832 (11) Å

  • b = 8.4001 (6) Å

  • c = 20.6394 (18) Å

  • β = 107.316 (1)°

  • V = 2049.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.88 mm−1

  • T = 298 K

  • 0.39 × 0.30 × 0.24 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.149, Tmax = 0.254

  • 9926 measured reflections

  • 3597 independent reflections

  • 2071 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.072

  • S = 1.06

  • 3597 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.89 1.91 2.775 (6) 162
N1—H1B⋯O3 0.89 2.03 2.916 (6) 177
N1—H1C⋯O5ii 0.89 1.96 2.837 (6) 168
O5—H5⋯O3 0.82 1.91 2.723 (6) 168
C13—H13C⋯O2iii 0.96 2.58 3.491 (8) 158
C20—H20B⋯O2iv 0.96 2.57 3.449 (8) 153
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4,5,6,7-Tetrabromo-2-ethylisoindoline-1,3-dione is an important flame retardant. 2-(Methoxycarbonyl)-3,4,5,6-tetrabromobenzoic acid is the intermediate of the flame retardant.

In this paper, the structure of the title compound is reported (Fig. 1). The bond lengths and angles agree with those in the similar compounds (Liang, 2008; Li, 2011). The crystal structure is stabilized by N—H···O hydrogen bonds between the 2-methylpropan-2-aminium cation and the 2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate anion, and by O—H···O and N—H···O hydrogen bonds between methanol, 2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate and 2-methylpropan-2-aminium (Table 1 and Fig. 2).

Related literature top

For related structures, see: Li (2011); Liang (2008).

Experimental top

A mixture of 4,5,6,7-tetrabromoisobenzofuran-1,3-dione (4.64 g, 0.01 mol) and methanol (15 ml) was refluxed for 0.5 h. Ethanamine (0.73 g, 0.01 mol) was then added to the above solution, being mixed round for 10 min at room temperature. The solution was kept at room temperature for 5 d. Natural evaporation gave colourless single crystals of the title compound suitable for X-ray analysis.

Refinement top

H atoms were initially located in a difference map and then refined in a riding model, with C—H = 0.96 Å, N—H = 0.89 Å and O—H = 0.82 Å, and with Uiso(H) = 1.5Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids.
[Figure 2] Fig. 2. A packing diagram, viewed along the b axis.
2-Methylpropan-2-aminium 3,4,5,6-tetrabromo-2-(methoxycarbonyl)benzoate methanol monosolvate top
Crystal data top
C4H12N+·C9H3Br4O4·CH4OF(000) = 1160
Mr = 600.94Dx = 1.947 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1758 reflections
a = 12.3832 (11) Åθ = 2.6–22.7°
b = 8.4001 (6) ŵ = 7.88 mm1
c = 20.6394 (18) ÅT = 298 K
β = 107.316 (1)°Block, colorless
V = 2049.6 (3) Å30.39 × 0.30 × 0.24 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3597 independent reflections
Radiation source: fine-focus sealed tube2071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1414
Tmin = 0.149, Tmax = 0.254k = 96
9926 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0138P)2]
where P = (Fo2 + 2Fc2)/3
3597 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C4H12N+·C9H3Br4O4·CH4OV = 2049.6 (3) Å3
Mr = 600.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3832 (11) ŵ = 7.88 mm1
b = 8.4001 (6) ÅT = 298 K
c = 20.6394 (18) Å0.39 × 0.30 × 0.24 mm
β = 107.316 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3597 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2071 reflections with I > 2σ(I)
Tmin = 0.149, Tmax = 0.254Rint = 0.062
9926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.06Δρmax = 0.45 e Å3
3597 reflectionsΔρmin = 0.52 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11686 (5)0.40889 (8)0.47788 (3)0.0564 (2)
Br20.33036 (5)0.29201 (9)0.60590 (3)0.0532 (2)
Br30.57304 (5)0.20168 (9)0.58025 (3)0.0570 (2)
Br40.59859 (5)0.23055 (9)0.42537 (4)0.0631 (2)
N10.0325 (3)0.4861 (5)0.1881 (2)0.0428 (13)
H1A0.05990.58330.17610.064*
H1B0.02930.49280.22360.064*
H1C0.08440.42760.19910.064*
O10.4384 (3)0.4674 (5)0.31058 (19)0.0504 (11)
O20.3379 (3)0.2489 (5)0.2725 (2)0.0465 (11)
O30.1746 (3)0.5145 (5)0.3009 (2)0.0463 (11)
O40.0805 (3)0.3093 (5)0.32508 (19)0.0477 (11)
O50.2206 (3)0.8283 (5)0.2893 (2)0.0663 (13)
H50.21580.73140.29230.100*
C10.3789 (4)0.3409 (7)0.3164 (3)0.0317 (15)
C20.1642 (5)0.3974 (8)0.3359 (3)0.0337 (14)
C30.3692 (4)0.3273 (6)0.3878 (3)0.0329 (14)
C40.2644 (4)0.3585 (6)0.3973 (3)0.0291 (14)
C50.2554 (4)0.3503 (6)0.4636 (3)0.0326 (15)
C60.3464 (4)0.3065 (6)0.5185 (3)0.0360 (14)
C70.4492 (4)0.2690 (7)0.5079 (3)0.0374 (15)
C80.4596 (4)0.2806 (7)0.4422 (3)0.0378 (15)
C90.0030 (5)0.4086 (7)0.1290 (3)0.0405 (15)
C100.1117 (5)0.4006 (8)0.0699 (3)0.070 (2)
H10A0.14020.50630.05810.105*
H10B0.16700.33870.08290.105*
H10C0.09620.35180.03150.105*
C110.0415 (5)0.2446 (7)0.1526 (3)0.0512 (18)
H11A0.01660.18360.16300.077*
H11B0.10560.25360.19240.077*
H11C0.06400.19240.11720.077*
C120.0869 (5)0.5111 (7)0.1136 (3)0.068 (2)
H12A0.15260.51470.15270.102*
H12B0.05810.61690.10250.102*
H12C0.10710.46660.07600.102*
C130.2318 (6)0.8673 (8)0.2255 (4)0.081 (2)
H13A0.16150.84800.19110.122*
H13B0.29000.80290.21680.122*
H13C0.25170.97770.22500.122*
C200.4511 (5)0.4985 (8)0.2440 (3)0.063 (2)
H20A0.48840.41010.23050.094*
H20B0.49530.59320.24580.094*
H20C0.37780.51290.21170.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0443 (4)0.0832 (6)0.0473 (4)0.0174 (4)0.0219 (3)0.0091 (4)
Br20.0511 (4)0.0766 (5)0.0321 (4)0.0041 (4)0.0125 (3)0.0065 (4)
Br30.0408 (4)0.0761 (5)0.0448 (4)0.0081 (4)0.0018 (3)0.0065 (4)
Br40.0361 (4)0.0945 (6)0.0611 (5)0.0116 (4)0.0181 (3)0.0003 (4)
N10.039 (3)0.048 (3)0.039 (3)0.005 (3)0.008 (2)0.000 (3)
O10.055 (3)0.059 (3)0.041 (3)0.028 (2)0.020 (2)0.006 (2)
O20.057 (3)0.045 (3)0.040 (3)0.009 (2)0.017 (2)0.014 (2)
O30.049 (2)0.038 (3)0.047 (3)0.001 (2)0.008 (2)0.019 (2)
O40.037 (2)0.048 (3)0.051 (3)0.013 (2)0.003 (2)0.004 (2)
O50.060 (3)0.047 (3)0.087 (4)0.002 (2)0.014 (3)0.004 (3)
C10.022 (3)0.020 (4)0.048 (4)0.002 (3)0.001 (3)0.007 (3)
C20.040 (4)0.034 (4)0.028 (4)0.003 (3)0.010 (3)0.006 (3)
C30.036 (3)0.026 (4)0.035 (4)0.007 (3)0.009 (3)0.005 (3)
C40.026 (3)0.019 (3)0.039 (4)0.005 (2)0.006 (3)0.005 (3)
C50.030 (3)0.035 (4)0.032 (4)0.001 (3)0.008 (3)0.006 (3)
C60.032 (3)0.033 (4)0.039 (4)0.004 (3)0.005 (3)0.006 (3)
C70.031 (3)0.039 (4)0.033 (4)0.005 (3)0.004 (3)0.000 (3)
C80.031 (3)0.041 (4)0.041 (4)0.002 (3)0.009 (3)0.001 (3)
C90.048 (4)0.038 (4)0.037 (4)0.009 (3)0.014 (3)0.000 (3)
C100.065 (4)0.100 (6)0.032 (4)0.005 (4)0.004 (4)0.002 (4)
C110.063 (4)0.049 (5)0.044 (4)0.004 (4)0.019 (3)0.009 (3)
C120.082 (5)0.060 (5)0.074 (5)0.004 (4)0.043 (4)0.008 (4)
C130.102 (6)0.056 (6)0.100 (7)0.015 (4)0.051 (5)0.001 (5)
C200.076 (4)0.071 (5)0.050 (5)0.023 (4)0.033 (4)0.001 (4)
Geometric parameters (Å, º) top
Br1—C51.891 (5)C6—C71.390 (7)
Br2—C61.878 (5)C7—C81.403 (7)
Br3—C71.881 (5)C9—C111.509 (7)
Br4—C81.901 (5)C9—C121.514 (7)
N1—C91.520 (6)C9—C101.526 (7)
N1—H1A0.8900C10—H10A0.9600
N1—H1B0.8900C10—H10B0.9600
N1—H1C0.8900C10—H10C0.9600
O1—C11.318 (6)C11—H11A0.9600
O1—C201.452 (6)C11—H11B0.9600
O2—C11.185 (6)C11—H11C0.9600
O3—C21.250 (6)C12—H12A0.9600
O4—C21.239 (6)C12—H12B0.9600
O5—C131.402 (7)C12—H12C0.9600
O5—H50.8200C13—H13A0.9600
C1—C31.517 (7)C13—H13B0.9600
C2—C41.521 (7)C13—H13C0.9600
C3—C81.386 (7)C20—H20A0.9600
C3—C41.394 (6)C20—H20B0.9600
C4—C51.407 (7)C20—H20C0.9600
C5—C61.389 (6)
C9—N1—H1A109.5C12—C9—N1107.0 (5)
C9—N1—H1B109.5C11—C9—C10111.6 (5)
H1A—N1—H1B109.5C12—C9—C10112.7 (5)
C9—N1—H1C109.5N1—C9—C10107.1 (4)
H1A—N1—H1C109.5C9—C10—H10A109.5
H1B—N1—H1C109.5C9—C10—H10B109.5
C1—O1—C20116.9 (5)H10A—C10—H10B109.5
C13—O5—H5109.5C9—C10—H10C109.5
O2—C1—O1125.4 (6)H10A—C10—H10C109.5
O2—C1—C3123.6 (5)H10B—C10—H10C109.5
O1—C1—C3111.0 (5)C9—C11—H11A109.5
O4—C2—O3126.2 (5)C9—C11—H11B109.5
O4—C2—C4116.9 (5)H11A—C11—H11B109.5
O3—C2—C4116.8 (5)C9—C11—H11C109.5
C8—C3—C4120.1 (5)H11A—C11—H11C109.5
C8—C3—C1122.0 (5)H11B—C11—H11C109.5
C4—C3—C1117.9 (5)C9—C12—H12A109.5
C3—C4—C5118.3 (5)C9—C12—H12B109.5
C3—C4—C2119.1 (5)H12A—C12—H12B109.5
C5—C4—C2122.6 (5)C9—C12—H12C109.5
C6—C5—C4121.8 (5)H12A—C12—H12C109.5
C6—C5—Br1119.7 (4)H12B—C12—H12C109.5
C4—C5—Br1118.5 (4)O5—C13—H13A109.5
C5—C6—C7119.4 (5)O5—C13—H13B109.5
C5—C6—Br2120.6 (4)H13A—C13—H13B109.5
C7—C6—Br2120.0 (4)O5—C13—H13C109.5
C6—C7—C8119.2 (5)H13A—C13—H13C109.5
C6—C7—Br3120.8 (4)H13B—C13—H13C109.5
C8—C7—Br3120.0 (4)O1—C20—H20A109.5
C3—C8—C7121.2 (5)O1—C20—H20B109.5
C3—C8—Br4118.1 (4)H20A—C20—H20B109.5
C7—C8—Br4120.6 (4)O1—C20—H20C109.5
C11—C9—C12111.5 (5)H20A—C20—H20C109.5
C11—C9—N1106.6 (4)H20B—C20—H20C109.5
C20—O1—C1—O22.2 (8)C2—C4—C5—Br15.9 (7)
C20—O1—C1—C3177.8 (4)C4—C5—C6—C70.3 (8)
O2—C1—C3—C8106.6 (7)Br1—C5—C6—C7177.8 (4)
O1—C1—C3—C873.4 (6)C4—C5—C6—Br2178.5 (4)
O2—C1—C3—C471.4 (7)Br1—C5—C6—Br24.0 (6)
O1—C1—C3—C4108.6 (5)C5—C6—C7—C81.8 (8)
C8—C3—C4—C53.7 (8)Br2—C6—C7—C8180.0 (4)
C1—C3—C4—C5178.3 (5)C5—C6—C7—Br3177.7 (4)
C8—C3—C4—C2175.4 (5)Br2—C6—C7—Br30.5 (7)
C1—C3—C4—C22.6 (7)C4—C3—C8—C72.2 (8)
O4—C2—C4—C3121.4 (6)C1—C3—C8—C7179.8 (5)
O3—C2—C4—C357.9 (7)C4—C3—C8—Br4177.3 (4)
O4—C2—C4—C557.7 (7)C1—C3—C8—Br40.7 (7)
O3—C2—C4—C5123.0 (6)C6—C7—C8—C30.5 (9)
C3—C4—C5—C62.5 (8)Br3—C7—C8—C3178.9 (4)
C2—C4—C5—C6176.6 (5)C6—C7—C8—Br4180.0 (4)
C3—C4—C5—Br1175.0 (4)Br3—C7—C8—Br40.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.891.912.775 (6)162
N1—H1B···O30.892.032.916 (6)177
N1—H1C···O5ii0.891.962.837 (6)168
O5—H5···O30.821.912.723 (6)168
C13—H13C···O2iii0.962.583.491 (8)158
C20—H20B···O2iv0.962.573.449 (8)153
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H12N+·C9H3Br4O4·CH4O
Mr600.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.3832 (11), 8.4001 (6), 20.6394 (18)
β (°) 107.316 (1)
V3)2049.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.88
Crystal size (mm)0.39 × 0.30 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.149, 0.254
No. of measured, independent and
observed [I > 2σ(I)] reflections
9926, 3597, 2071
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.072, 1.06
No. of reflections3597
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.52

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.891.912.775 (6)162
N1—H1B···O30.892.032.916 (6)177
N1—H1C···O5ii0.891.962.837 (6)168
O5—H5···O30.821.912.723 (6)168
C13—H13C···O2iii0.962.583.491 (8)158
C20—H20B···O2iv0.962.573.449 (8)153
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation, China (ZR2009BL027).

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. (2011). Acta Cryst. E67, o200.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiang, Z.-P. (2008). Acta Cryst. E64, o2416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds