metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[(2-furylmeth­yl)imino­meth­yl]-5-meth­­oxy­phenolato-κ2N,O}zinc(II)

aCollege of Health Science, Wuhan Institute of Physical Education, Wuhan 430079, People's Republic of China
*Correspondence e-mail: lichunyan2009@yahoo.com.cn

(Received 21 January 2011; accepted 28 March 2011; online 31 March 2011)

In the title complex, [Zn(C13H12NO3)2], the ZnII ion is located on a twofold rotation axis and is coordinated by two bidentate Schiff base ligands in a distorted tetra­hedral environment. The complex mol­ecules are stacked in columns along the b axis through C—H⋯O hydrogen bonds.

Related literature

For the biological activity and applications of Zn(II) complexes, see: Csaszar et al. (1985[Csaszar, J., Morvay, J. & Herczeg, O. (1985). Acta Phys. Chem. 31, 717-722.]); Greener et al. (1996[Greener, B., Moore, M. H. & Walton, P. H. (1996). J. Chem. Soc. Chem. Commun. pp. 27-28.]); Gultneh et al. (1996[Gultneh, Y., Ahvazi, B., Blaise, D., Butcher, R. J. & Jasinski, J. (1996). Inorg. Chim. Acta, 241, 31-38.]); Aoki & Kimura (2004[Aoki, S. & Kimura, E. (2004). Chem. Rev. 104, 769-788.]). For applications of furfuryl­amine derivatives, see: Camejo et al. (1992[Camejo, J. J., Marrero, R., Gonzalez, C., Dominguez, J. A. & Castro, I. S. D. (1992). Cana. Azucar. 26, 47-52.]); Ledovskikh & Camejo (1993[Ledovskikh, V. M. & Camejo, J. J. (1993). Zashch. Met. 29, 597-603.]). For a related structure, see; Cai et al. (2010[Cai, Y., Wang, W., Qin, X., Li, Y. & Chen, W. (2010). Z. Kristallogr. New Cryst. Struct. 225, 365-366.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C13H12NO3)2]

  • Mr = 525.84

  • Monoclinic, C 2/c

  • a = 27.210 (4) Å

  • b = 5.2244 (7) Å

  • c = 19.007 (3) Å

  • β = 119.507 (2)°

  • V = 2351.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 298 K

  • 0.32 × 0.20 × 0.13 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.722, Tmax = 0.871

  • 6855 measured reflections

  • 2303 independent reflections

  • 2062 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.128

  • S = 1.01

  • 2303 reflections

  • 160 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.97 2.32 3.292 (6) 177
Symmetry code: (i) [-x, y-1, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Zinc(II) complexes with the chelate ligands are extensively investigated as models for the active site of carbonic anhydrase and other hydrolytically active enzymes (Greener et al., 1996; Gultneh et al., 1996). Zinc(II) complexes are also studied on the role of zinc(II) structural properties in protein folding (Aoki & Kimura, 2004). Interestingly, zinc(II) complexes are becoming important in pharmaceutical, dye, plastic industries and for liquid crystal technology (Csaszar et al., 1985). In addition, the furfuryl amine and its derivatives are widely used as bioactive antibacterial agents and as steel corrosion inhibitors in recent research (Ledovskikh & Camejo, 1993; Camejo et al., 1992). By taking the biological importance of furfurylamine into account, we designed the title complex containing nitrogen-oxygen donor atoms coordinated with zinc(II).

The title complex reported here is the mononuclear zinc(II) complex of Schiff-base ligand, derived from the condensation of 4-methoxysalicylaldehyde and furfuryl amine (Fig. 1). The zinc(II) atom has a distorted tetrahedral coordination formed by two N atoms and two O atoms from two Schiff-base ligands. The bond distances of Zn—O and Zn—N are 1.925 (3) and 1.984 (3) Å, respectively. The dihedral angle between the coordination planes (N1/Zn1/O1 and N1A/Zn1A/O1A) is 87.24 (8)° (symmetry code A: - x, y, 1/2 - z), which is slightly larger than that of 84.43 (6)° between the corresponding coordination planes around zinc(II) atom observed in the similar Schiff base zinc(II) complex, bis(3,5-dibromo-N-benzylsalicylaldiminato-N,O)zinc(II) (Cai et al., 2010). The O1—Zn1—O1 angle is 109.27 (18)° and the N1—Zn1—N1 angle is 120.08 (18)°. The other angles subtended at the Zn(II) ion in (ZnN2O2) is in the range of 96.69 (11)–117.49 (12)°.

In the crystal structure, the molecules are linked via intermolecular C—H···O hydrogen bonds forming a column along the b axis (Fig. 2).

Related literature top

For the biological activity and applications of Zn(II) complexes, see: Csaszar et al. (1985); Greener et al. (1996); Gultneh et al. (1996); Aoki & Kimura (2004). For applications of furfurylamine derivatives, see: Camejo et al. (1992); Ledovskikh & Camejo (1993). For a related structure, see; Cai et al. (2010).

Experimental top

4-Methoxysalicylaldehyde (304 mg, 2 mmol) and furfurylamine (194 mg, 2 mmol) were dissolved in an aqueous methanol solution (25 mL).The mixture was stirred at room temperature for 1 h to give a clear yellow solution, which was added to a solutionof Zn(NO3)2.6H2O (298 mg, 1 mmol) in methanol (10 mL). The mixture was stirred for 30 min at room temperature to give a yellow solution and then filtered. The yellow single crystals suitable for X-ray analysis were obtained by slowly evaporating the above filtrate at room temperature. The crystals were isolated and dried in a vacuum desiccator containing anhydrous CaCl2, in about 71% yield. Anal. Calcd for C26H24ZnN2O6: C 59.38, H 4.60, N 5.33%. Found: C 59.20, H 4.73 N, 5.30%.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rigid bond restraint was applied for atoms C11 and C12.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. The suffix A corresponds to symmetry code - x, y, 1/2 - z.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed along the b axis.
Bis{2-[(2-furylmethyl)iminomethyl]-5-methoxyphenolato- κ2N,O}zinc(II) top
Crystal data top
[Zn(C13H12NO3)2]F(000) = 1088
Mr = 525.84Dx = 1.485 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2246 reflections
a = 27.210 (4) Åθ = 2.5–23.7°
b = 5.2244 (7) ŵ = 1.09 mm1
c = 19.007 (3) ÅT = 298 K
β = 119.507 (2)°Block, yellow
V = 2351.5 (5) Å30.32 × 0.20 × 0.13 mm
Z = 4
Data collection top
Bruker SMART CCD area detector
diffractometer
2303 independent reflections
Radiation source: fine-focus sealed tube2062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3333
Tmin = 0.722, Tmax = 0.871k = 66
6855 measured reflectionsl = 2320
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0784P)2 + 2.4971P]
where P = (Fo2 + 2Fc2)/3
2303 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.64 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
[Zn(C13H12NO3)2]V = 2351.5 (5) Å3
Mr = 525.84Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.210 (4) ŵ = 1.09 mm1
b = 5.2244 (7) ÅT = 298 K
c = 19.007 (3) Å0.32 × 0.20 × 0.13 mm
β = 119.507 (2)°
Data collection top
Bruker SMART CCD area detector
diffractometer
2303 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2062 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 0.871Rint = 0.026
6855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.128H-atom parameters constrained
S = 1.01Δρmax = 0.64 e Å3
2303 reflectionsΔρmin = 0.31 e Å3
160 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.78566 (12)0.25000.0427 (3)
N10.02638 (12)0.5960 (6)0.18435 (18)0.0394 (7)
O10.06578 (11)0.9989 (6)0.30670 (18)0.0549 (7)
O20.24426 (12)1.3537 (7)0.3745 (2)0.0665 (9)
O30.03914 (17)0.7542 (6)0.0242 (2)0.0729 (10)
C10.11535 (15)0.8329 (7)0.2413 (2)0.0403 (8)
C20.10942 (14)1.0010 (7)0.2954 (2)0.0402 (8)
C30.15270 (16)1.1795 (8)0.3399 (3)0.0465 (9)
H30.14901.29180.37500.056*
C40.20061 (16)1.1895 (8)0.3319 (3)0.0489 (9)
C50.20638 (16)1.0283 (9)0.2781 (3)0.0550 (10)
H50.23821.03850.27200.066*
C60.16505 (16)0.8560 (9)0.2348 (3)0.0505 (10)
H60.16940.74830.19930.061*
C70.2397 (2)1.5304 (9)0.4279 (3)0.0675 (13)
H7A0.20801.64110.39760.101*
H7B0.27361.63090.45450.101*
H7C0.23451.43860.46750.101*
C80.07515 (15)0.6467 (7)0.1911 (2)0.0417 (8)
H80.08510.54910.15910.050*
C90.00946 (17)0.4112 (8)0.1224 (2)0.0508 (9)
H9A0.02600.29430.14460.061*
H9B0.01340.31180.10610.061*
C100.05497 (17)0.5418 (8)0.0510 (2)0.0517 (10)
C110.1095 (2)0.4911 (15)0.0025 (3)0.0929 (17)
H110.13030.35630.00650.111*
C120.1294 (3)0.6947 (16)0.0583 (4)0.102 (2)
H120.16610.71570.10070.123*
C130.0861 (3)0.8419 (15)0.0423 (3)0.103 (2)
H130.08740.98550.07210.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0333 (4)0.0510 (4)0.0525 (4)0.0000.0278 (3)0.000
N10.0346 (15)0.0452 (16)0.0426 (16)0.0013 (13)0.0222 (13)0.0020 (13)
O10.0396 (15)0.0674 (18)0.0709 (18)0.0102 (13)0.0372 (14)0.0200 (15)
O20.0414 (16)0.070 (2)0.083 (2)0.0157 (14)0.0268 (16)0.0085 (18)
O30.079 (2)0.070 (2)0.064 (2)0.0066 (17)0.0316 (19)0.0094 (16)
C10.0326 (18)0.047 (2)0.045 (2)0.0031 (15)0.0226 (16)0.0047 (16)
C20.0301 (17)0.0457 (19)0.047 (2)0.0029 (14)0.0205 (15)0.0023 (16)
C30.038 (2)0.047 (2)0.054 (2)0.0002 (16)0.0232 (18)0.0007 (17)
C40.0342 (19)0.052 (2)0.056 (2)0.0027 (16)0.0188 (18)0.0068 (18)
C50.0336 (19)0.074 (3)0.066 (3)0.0003 (18)0.0304 (19)0.005 (2)
C60.037 (2)0.065 (3)0.057 (2)0.0034 (18)0.0289 (18)0.002 (2)
C70.059 (3)0.060 (3)0.068 (3)0.018 (2)0.019 (2)0.003 (2)
C80.0398 (19)0.047 (2)0.044 (2)0.0051 (15)0.0252 (17)0.0000 (16)
C90.052 (2)0.045 (2)0.060 (2)0.0084 (18)0.031 (2)0.0046 (19)
C100.043 (2)0.065 (3)0.050 (2)0.0058 (18)0.0245 (18)0.014 (2)
C110.050 (3)0.155 (5)0.079 (3)0.021 (3)0.036 (3)0.049 (3)
C120.064 (4)0.167 (7)0.056 (3)0.042 (4)0.015 (3)0.015 (3)
C130.119 (6)0.113 (5)0.055 (3)0.052 (5)0.027 (4)0.014 (3)
Geometric parameters (Å, º) top
Zn1—O1i1.925 (3)C4—C51.391 (6)
Zn1—O11.925 (3)C5—C61.357 (6)
Zn1—N11.984 (3)C5—H50.9300
Zn1—N1i1.984 (3)C6—H60.9300
N1—C81.296 (4)C7—H7A0.9600
N1—C91.463 (5)C7—H7B0.9600
O1—C21.306 (4)C7—H7C0.9600
O2—C41.362 (5)C8—H80.9300
O2—C71.422 (6)C9—C101.479 (6)
O3—C131.360 (7)C9—H9A0.9700
O3—C101.375 (5)C9—H9B0.9700
C1—C21.422 (5)C10—C111.332 (6)
C1—C61.422 (5)C11—C121.465 (10)
C1—C81.423 (5)C11—H110.9300
C2—C31.411 (5)C12—C131.311 (11)
C3—C41.386 (6)C12—H120.9300
C3—H30.9300C13—H130.9300
O1i—Zn1—O1109.27 (18)C1—C6—H6118.6
O1i—Zn1—N1117.49 (12)O2—C7—H7A109.5
O1—Zn1—N196.69 (11)O2—C7—H7B109.5
O1i—Zn1—N1i96.69 (11)H7A—C7—H7B109.5
O1—Zn1—N1i117.49 (12)O2—C7—H7C109.5
N1—Zn1—N1i120.08 (18)H7A—C7—H7C109.5
C8—N1—C9117.3 (3)H7B—C7—H7C109.5
C8—N1—Zn1120.4 (3)N1—C8—C1128.1 (3)
C9—N1—Zn1122.1 (2)N1—C8—H8115.9
C2—O1—Zn1125.6 (2)C1—C8—H8115.9
C4—O2—C7118.4 (3)N1—C9—C10111.1 (3)
C13—O3—C10107.1 (5)N1—C9—H9A109.4
C2—C1—C6117.5 (3)C10—C9—H9A109.4
C2—C1—C8125.7 (3)N1—C9—H9B109.4
C6—C1—C8116.7 (3)C10—C9—H9B109.4
O1—C2—C3117.7 (3)H9A—C9—H9B108.0
O1—C2—C1123.4 (3)C11—C10—O3110.5 (5)
C3—C2—C1118.9 (3)C11—C10—C9133.4 (5)
C4—C3—C2120.8 (4)O3—C10—C9116.0 (4)
C4—C3—H3119.6C10—C11—C12104.7 (6)
C2—C3—H3119.6C10—C11—H11127.6
O2—C4—C3123.4 (4)C12—C11—H11127.6
O2—C4—C5115.9 (4)C13—C12—C11107.5 (5)
C3—C4—C5120.7 (4)C13—C12—H12126.2
C6—C5—C4119.2 (3)C11—C12—H12126.2
C6—C5—H5120.4C12—C13—O3110.1 (7)
C4—C5—H5120.4C12—C13—H13124.9
C5—C6—C1122.9 (4)O3—C13—H13124.9
C5—C6—H6118.6
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1ii0.972.323.292 (6)177
Symmetry code: (ii) x, y1, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C13H12NO3)2]
Mr525.84
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)27.210 (4), 5.2244 (7), 19.007 (3)
β (°) 119.507 (2)
V3)2351.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.32 × 0.20 × 0.13
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.722, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
6855, 2303, 2062
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.01
No. of reflections2303
No. of parameters160
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.31

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT (Bruker, 2000, SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.972.323.292 (6)177
Symmetry code: (i) x, y1, z+1/2.
 

Acknowledgements

This work was supported by the Education Office of Hubei Province (D20104104).

References

First citationAoki, S. & Kimura, E. (2004). Chem. Rev. 104, 769–788.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, Y., Wang, W., Qin, X., Li, Y. & Chen, W. (2010). Z. Kristallogr. New Cryst. Struct. 225, 365–366.  CAS Google Scholar
First citationCamejo, J. J., Marrero, R., Gonzalez, C., Dominguez, J. A. & Castro, I. S. D. (1992). Cana. Azucar. 26, 47–52.  CAS Google Scholar
First citationCsaszar, J., Morvay, J. & Herczeg, O. (1985). Acta Phys. Chem. 31, 717–722.  CAS Google Scholar
First citationGreener, B., Moore, M. H. & Walton, P. H. (1996). J. Chem. Soc. Chem. Commun. pp. 27–28.  CrossRef Google Scholar
First citationGultneh, Y., Ahvazi, B., Blaise, D., Butcher, R. J. & Jasinski, J. (1996). Inorg. Chim. Acta, 241, 31–38.  CrossRef CAS Google Scholar
First citationLedovskikh, V. M. & Camejo, J. J. (1993). Zashch. Met. 29, 597–603.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds