metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(μ2-3-carb­­oxy­benzoato)bis­­(dipyrido[3,2-a;2′,3′-c]phenazine)bis­­(μ3-isophthalato)tricopper(II)]

aPharmaceutic College, Liaoning University, 110036 Shenyang, People's Republic of China
*Correspondence e-mail: cocowang845@126.com

(Received 8 February 2011; accepted 9 March 2011; online 15 March 2011)

In the title compound, [Cu3(C8H4O4)2(C8H5O4)2(C18H10N4)2]n, one CuII atom, located on an inversion center, is hexa­coordinated and shows a distorted octa­hedral coordination geometry, while the other CuII atom is penta­coordinated and exhibits a distorted square-pyramidal geometry. The CuII atoms are bridged by isophthalate and 3-carb­oxy­benzoate ligands, forming a chain structure along the b axis. Furthermore, the chains are linked by O—H⋯O hydrogen bonds, forming a layer parallel to the ab plane.

Related literature

For related structures, see: Han & Ma (2006[Han, Z.-B. & Ma, Y. (2006). Acta Cryst. E62, m2236-m2237.]); He & Han (2006[He, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2676-m2677.]); Han et al. (2009[Han, Z.-B., Ji, J.-W., An, H.-Y., Zhang, W., Han, G.-X., Zhang, G.-X. & Yang, L.-G. (2009). Dalton Trans. pp. 9807-9811.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3(C8H4O4)2(C8H5O4)2(C18H10N4)2]

  • Mr = 1413.68

  • Triclinic, [P \overline 1]

  • a = 10.6453 (12) Å

  • b = 11.6437 (13) Å

  • c = 12.3213 (14) Å

  • α = 103.186 (1)°

  • β = 93.712 (2)°

  • γ = 95.460 (2)°

  • V = 1474.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 293 K

  • 0.37 × 0.33 × 0.27 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.675, Tmax = 0.747

  • 7377 measured reflections

  • 5099 independent reflections

  • 4179 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.099

  • S = 1.05

  • 5099 reflections

  • 430 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O4i 0.82 1.74 2.545 (3) 165
Symmetry code: (i) -x-1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, several metal-organic complexes containing dipyridophenazine have been reported (Han & Ma, 2006; He & Han, 2006, Han et al., 2009). We report here a new one-dimensional copper(II) coordination polymer constructed by CuII ions, dipyridophenazine (dppz) and isophthalic acid (H2ip), (I).

Complex (I) exhibits a one-dimensional double-chain structure in which the asymmetric unit consists of one and a half CuII ions, one ip2-, one Hip- and one dppz ligand. Atom Cu1 is located on an inversion center and coordinated by six oxygen atoms, forming a slightly distorted octahedral geometry. On the other hand, atom Cu2 is coordinated by three oxygen atoms from two ip2- ligands and one Hip- ligand and two nitrogen atoms from a chelate dppz ligand to furnish a distorted square pyramidal geometry (Fig. 1). The carboxylate oxygen atoms via the syn-anti O,O'-bridges bridge three copper atoms (Cu1, Cu2 and Cu1i) to form a trinuclear [Cu3(ip)2(Hip)2(dppz)2] subunit, which are interconnected through the bridging ip2- to form an infinite one-dimensional double chain (Fig. 2). These chains are further linked via strong hydrogen bonds between Hip- and ip-2 ligands (Table 1), forming a layer structure.

Related literature top

For related structures, see: Han & Ma (2006); He & Han (2006); Han et al. (2009).

Experimental top

A mixture of CuNO3.3H2O (0.5 mmol, 0.121 g), dipyridophenazine (0.5 mmol, 0.141 g), H2ip (0.5 mmol, 0.083 g) and water (10 ml) in a 23 ml Teflon reactor was heated at 453 K for six days and then cooled to room temperature at a rate of 5 K h-1 (yield 42%). Analysis for C68H38Cu3N8 (found/calc): C 58.18(57.77), H 2.86(2.71), N 5.83%(7.93%).

Refinement top

The H atoms of the aromatic rings were placed at calculated positions in the riding model approximation (C—H 0.93 Å) with their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent atoms. The hydroxy H atom was placed at calculated positions in the riding model approximation (O—H 0.82 Å) with their temperature factors were set to 1.5 times those of the equivalent isotropic temperature factors of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms and the lattice water molecule have been omitted for clarity. [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y, -z + 1].
[Figure 2] Fig. 2. View of the one-dimensional double chain fragment of the title compound.
[Figure 3] Fig. 3. The layer structure.
[Figure 4] Fig. 4. Packing diagram.
Poly[bis(µ2-3-carboxybenzoato)bis(dipyrido[3,2-a;2',3'- c]phenazine)bis(µ3-isophthalato)tricopper(II)] top
Crystal data top
[Cu3(C8H4O4)2(C8H5O4)2(C18H10N4)2]Z = 1
Mr = 1413.68F(000) = 717
Triclinic, P1Dx = 1.592 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6453 (12) ÅCell parameters from 2406 reflections
b = 11.6437 (13) Åθ = 2.4–20.1°
c = 12.3213 (14) ŵ = 1.16 mm1
α = 103.186 (1)°T = 293 K
β = 93.712 (2)°Block, green
γ = 95.460 (2)°0.37 × 0.33 × 0.27 mm
V = 1474.3 (3) Å3
Data collection top
Bruker APEX area-detector
diffractometer
5099 independent reflections
Radiation source: fine-focus sealed tube4179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 912
Tmin = 0.675, Tmax = 0.747k = 1313
7377 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.1669P]
where P = (Fo2 + 2Fc2)/3
5099 reflections(Δ/σ)max = 0.001
430 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu3(C8H4O4)2(C8H5O4)2(C18H10N4)2]γ = 95.460 (2)°
Mr = 1413.68V = 1474.3 (3) Å3
Triclinic, P1Z = 1
a = 10.6453 (12) ÅMo Kα radiation
b = 11.6437 (13) ŵ = 1.16 mm1
c = 12.3213 (14) ÅT = 293 K
α = 103.186 (1)°0.37 × 0.33 × 0.27 mm
β = 93.712 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
5099 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4179 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.747Rint = 0.018
7377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
5099 reflectionsΔρmin = 0.31 e Å3
430 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.50000.02989 (13)
Cu20.16105 (3)0.28114 (3)0.30705 (3)0.03371 (12)
C10.3566 (3)0.4952 (3)0.3938 (2)0.0432 (7)
H1A0.31510.51190.45880.052*
C20.4679 (3)0.5651 (3)0.3878 (3)0.0529 (8)
H2A0.49890.62830.44730.063*
C30.5320 (3)0.5404 (3)0.2936 (3)0.0499 (8)
H3A0.60810.58490.28950.060*
C40.4814 (3)0.4478 (2)0.2042 (2)0.0386 (7)
C50.5409 (3)0.4150 (3)0.0987 (2)0.0416 (7)
C60.7044 (3)0.4393 (3)0.0073 (3)0.0559 (9)
C70.8200 (3)0.5009 (4)0.0229 (4)0.0724 (12)
H7A0.85910.56370.03350.087*
C80.8743 (4)0.4683 (5)0.1208 (4)0.0843 (15)
H8A0.94990.50990.13110.101*
C90.8181 (5)0.3737 (5)0.2055 (4)0.0913 (17)
H9A0.85760.35270.27120.110*
C100.7062 (4)0.3103 (4)0.1950 (3)0.0808 (13)
H10A0.67070.24610.25180.097*
C110.6448 (4)0.3455 (4)0.0940 (3)0.0617 (10)
C120.4789 (3)0.3224 (3)0.0094 (2)0.0444 (7)
C130.3556 (3)0.2621 (3)0.0214 (2)0.0417 (7)
C140.2839 (3)0.1781 (3)0.0637 (3)0.0550 (9)
H14A0.31260.15820.13450.066*
C150.1709 (4)0.1247 (3)0.0430 (3)0.0631 (10)
H15A0.12120.06990.10010.076*
C160.1307 (3)0.1528 (3)0.0647 (3)0.0484 (8)
H16A0.05550.11390.07910.058*
C170.3064 (3)0.2894 (2)0.1253 (2)0.0340 (6)
C180.3685 (3)0.3830 (2)0.2154 (2)0.0329 (6)
C190.0936 (3)0.3055 (2)0.5382 (2)0.0337 (6)
C200.1180 (3)0.1978 (2)0.5788 (2)0.0313 (6)
C210.2345 (3)0.1544 (3)0.5679 (2)0.0433 (7)
H21A0.29820.19430.53780.052*
C220.2564 (3)0.0524 (3)0.6013 (3)0.0540 (8)
H22A0.33560.02510.59650.065*
C230.1596 (3)0.0095 (3)0.6423 (3)0.0443 (7)
H23A0.17350.07960.66290.053*
C240.0425 (3)0.0324 (2)0.6525 (2)0.0315 (6)
C250.0231 (2)0.1374 (2)0.6232 (2)0.0302 (6)
H25A0.05410.16790.63320.036*
C260.0649 (3)0.0392 (2)0.6895 (2)0.0357 (6)
C270.1168 (3)0.3584 (2)0.3066 (2)0.0333 (6)
C280.2233 (2)0.2739 (2)0.2388 (2)0.0310 (6)
C290.2136 (3)0.2190 (3)0.1282 (2)0.0397 (7)
H29A0.14270.23930.09330.048*
C300.3081 (3)0.1344 (3)0.0692 (2)0.0473 (8)
H30A0.30100.09720.00510.057*
C310.4141 (3)0.1051 (3)0.1216 (2)0.0462 (8)
H31A0.47730.04710.08250.055*
C320.4265 (3)0.1611 (2)0.2310 (2)0.0343 (6)
C330.3325 (2)0.2459 (2)0.2893 (2)0.0322 (6)
H33A0.34150.28480.36270.039*
C340.5433 (3)0.1340 (3)0.2864 (3)0.0406 (7)
N10.3072 (2)0.40537 (19)0.31041 (18)0.0333 (5)
N20.1971 (2)0.23343 (19)0.14657 (18)0.0352 (5)
N30.6503 (2)0.4734 (2)0.0899 (2)0.0509 (7)
N40.5305 (3)0.2874 (2)0.0866 (2)0.0565 (8)
O10.1657 (2)0.33737 (16)0.46839 (15)0.0423 (5)
O20.00556 (19)0.36275 (15)0.57337 (16)0.0402 (5)
O30.0436 (2)0.14264 (17)0.69704 (17)0.0462 (5)
O40.1638 (2)0.00500 (19)0.7081 (2)0.0590 (6)
O50.01211 (18)0.36972 (17)0.26738 (16)0.0397 (5)
O60.14098 (18)0.41203 (17)0.40347 (16)0.0419 (5)
O70.6232 (2)0.0496 (2)0.22334 (19)0.0604 (6)
H7B0.68750.04140.25540.091*
O80.5632 (2)0.1898 (2)0.3764 (2)0.0778 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0317 (3)0.0222 (2)0.0369 (3)0.00111 (18)0.01068 (19)0.00878 (18)
Cu20.0394 (2)0.02654 (18)0.0388 (2)0.00076 (14)0.01725 (15)0.01257 (14)
C10.0505 (19)0.0445 (17)0.0344 (15)0.0025 (14)0.0111 (13)0.0101 (13)
C20.054 (2)0.0550 (19)0.0457 (18)0.0133 (16)0.0054 (15)0.0108 (15)
C30.0380 (18)0.056 (2)0.057 (2)0.0101 (15)0.0074 (15)0.0230 (16)
C40.0343 (16)0.0440 (16)0.0462 (16)0.0057 (13)0.0133 (13)0.0249 (14)
C50.0374 (17)0.0481 (17)0.0520 (18)0.0130 (14)0.0196 (14)0.0301 (15)
C60.047 (2)0.070 (2)0.075 (2)0.0265 (18)0.0321 (18)0.051 (2)
C70.048 (2)0.095 (3)0.107 (3)0.029 (2)0.041 (2)0.073 (3)
C80.066 (3)0.110 (4)0.119 (4)0.043 (3)0.058 (3)0.086 (3)
C90.094 (4)0.120 (4)0.108 (4)0.070 (3)0.081 (3)0.082 (3)
C100.092 (3)0.096 (3)0.084 (3)0.049 (3)0.062 (3)0.051 (2)
C110.065 (2)0.078 (3)0.071 (2)0.043 (2)0.048 (2)0.052 (2)
C120.0519 (19)0.0472 (18)0.0474 (17)0.0218 (15)0.0256 (15)0.0263 (14)
C130.0518 (19)0.0378 (16)0.0420 (16)0.0149 (14)0.0203 (14)0.0147 (13)
C140.072 (2)0.0530 (19)0.0407 (17)0.0107 (18)0.0217 (16)0.0071 (15)
C150.079 (3)0.055 (2)0.0470 (19)0.0061 (19)0.0105 (18)0.0009 (16)
C160.051 (2)0.0428 (17)0.0494 (18)0.0013 (15)0.0114 (15)0.0078 (14)
C170.0363 (15)0.0319 (14)0.0389 (15)0.0107 (12)0.0121 (12)0.0137 (12)
C180.0344 (15)0.0345 (14)0.0365 (14)0.0088 (12)0.0152 (12)0.0172 (12)
C190.0435 (17)0.0258 (13)0.0321 (14)0.0035 (12)0.0084 (12)0.0091 (11)
C200.0376 (16)0.0265 (13)0.0312 (13)0.0011 (11)0.0099 (11)0.0095 (11)
C210.0376 (17)0.0413 (16)0.0570 (18)0.0013 (13)0.0190 (14)0.0211 (14)
C220.0363 (18)0.055 (2)0.083 (2)0.0139 (15)0.0174 (16)0.0352 (18)
C230.0444 (18)0.0353 (15)0.0613 (19)0.0061 (14)0.0102 (15)0.0261 (14)
C240.0364 (15)0.0278 (13)0.0312 (13)0.0030 (12)0.0057 (11)0.0108 (11)
C250.0294 (14)0.0276 (13)0.0341 (14)0.0014 (11)0.0090 (11)0.0075 (11)
C260.0409 (17)0.0298 (14)0.0359 (15)0.0063 (13)0.0060 (12)0.0105 (11)
C270.0352 (16)0.0281 (13)0.0416 (15)0.0047 (12)0.0060 (12)0.0174 (12)
C280.0303 (14)0.0282 (13)0.0382 (14)0.0069 (11)0.0064 (11)0.0126 (11)
C290.0363 (16)0.0454 (16)0.0415 (16)0.0074 (13)0.0128 (13)0.0148 (13)
C300.0478 (19)0.0555 (19)0.0339 (15)0.0053 (16)0.0089 (13)0.0006 (14)
C310.0357 (17)0.0527 (19)0.0425 (17)0.0035 (14)0.0029 (13)0.0012 (14)
C320.0297 (15)0.0330 (14)0.0418 (15)0.0050 (12)0.0054 (12)0.0106 (12)
C330.0323 (15)0.0304 (13)0.0359 (14)0.0059 (12)0.0083 (12)0.0093 (11)
C340.0343 (16)0.0381 (16)0.0503 (18)0.0022 (13)0.0097 (13)0.0111 (14)
N10.0358 (13)0.0353 (12)0.0336 (12)0.0039 (10)0.0114 (10)0.0156 (10)
N20.0382 (14)0.0292 (12)0.0411 (13)0.0039 (10)0.0139 (11)0.0115 (10)
N30.0365 (14)0.0626 (17)0.0699 (18)0.0120 (13)0.0254 (13)0.0408 (14)
N40.0676 (19)0.0626 (18)0.0550 (16)0.0283 (15)0.0374 (15)0.0284 (14)
O10.0570 (13)0.0348 (10)0.0387 (11)0.0043 (9)0.0203 (10)0.0155 (9)
O20.0451 (12)0.0292 (10)0.0535 (12)0.0070 (9)0.0191 (10)0.0194 (9)
O30.0503 (13)0.0325 (11)0.0615 (13)0.0037 (9)0.0128 (10)0.0240 (9)
O40.0437 (14)0.0463 (13)0.0969 (18)0.0011 (11)0.0299 (12)0.0322 (12)
O50.0299 (11)0.0405 (11)0.0540 (12)0.0025 (9)0.0118 (9)0.0201 (9)
O60.0375 (11)0.0404 (11)0.0441 (11)0.0052 (9)0.0104 (9)0.0045 (9)
O70.0341 (12)0.0674 (15)0.0715 (15)0.0148 (11)0.0157 (11)0.0052 (12)
O80.0653 (17)0.0801 (18)0.0713 (17)0.0248 (14)0.0400 (14)0.0123 (14)
Geometric parameters (Å, º) top
Cu1—O6i1.9070 (19)C15—H15A0.9300
Cu1—O61.9070 (19)C16—N21.322 (4)
Cu1—O22.0112 (17)C16—H16A0.9300
Cu1—O2i2.0112 (17)C17—N21.349 (3)
Cu1—O12.690 (2)C17—C181.440 (4)
Cu1—O1i2.690 (2)C18—N11.362 (3)
Cu2—O3ii1.9334 (18)C19—O21.245 (3)
Cu2—O11.9417 (18)C19—O11.282 (3)
Cu2—N22.001 (2)C19—C201.491 (4)
Cu2—N12.013 (2)C20—C211.386 (4)
Cu2—O52.2750 (19)C20—C251.388 (3)
C1—N11.327 (4)C21—C221.378 (4)
C1—C21.389 (4)C21—H21A0.9300
C1—H1A0.9300C22—C231.388 (4)
C2—C31.372 (4)C22—H22A0.9300
C2—H2A0.9300C23—C241.385 (4)
C3—C41.392 (4)C23—H23A0.9300
C3—H3A0.9300C24—C251.381 (4)
C4—C181.388 (4)C24—C261.507 (3)
C4—C51.471 (4)C25—H25A0.9300
C5—N31.316 (4)C26—O41.227 (3)
C5—C121.428 (4)C26—O31.269 (3)
C6—N31.356 (4)C27—O51.250 (3)
C6—C111.409 (5)C27—O61.270 (3)
C6—C71.412 (5)C27—C281.497 (4)
C7—C81.362 (5)C28—C291.382 (4)
C7—H7A0.9300C28—C331.400 (3)
C8—C91.390 (7)C29—C301.379 (4)
C8—H8A0.9300C29—H29A0.9300
C9—C101.370 (6)C30—C311.388 (4)
C9—H9A0.9300C30—H30A0.9300
C10—C111.437 (4)C31—C321.377 (4)
C10—H10A0.9300C31—H31A0.9300
C11—N41.354 (5)C32—C331.374 (4)
C12—N41.331 (3)C32—C341.499 (4)
C12—C131.461 (4)C33—H33A0.9300
C13—C141.388 (4)C34—O81.193 (3)
C13—C171.396 (4)C34—O71.304 (3)
C14—C151.367 (4)O3—Cu2ii1.9334 (18)
C14—H14A0.9300O7—H7B0.8200
C15—C161.397 (4)
O6i—Cu1—O6180.0C15—C16—H16A119.2
O6i—Cu1—O291.80 (8)N2—C17—C13122.7 (3)
O6—Cu1—O288.20 (8)N2—C17—C18116.1 (2)
O6i—Cu1—O2i88.20 (8)C13—C17—C18121.1 (3)
O6—Cu1—O2i91.80 (8)N1—C18—C4122.7 (3)
O2—Cu1—O2i180.000 (1)N1—C18—C17115.4 (2)
O6i—Cu1—O180.47 (7)C4—C18—C17121.8 (2)
O6—Cu1—O199.53 (7)O2—C19—O1121.8 (2)
O2—Cu1—O153.69 (6)O2—C19—C20119.8 (2)
O2i—Cu1—O1126.31 (6)O1—C19—C20118.5 (2)
O6i—Cu1—O1i99.53 (7)C21—C20—C25119.5 (2)
O6—Cu1—O1i80.47 (7)C21—C20—C19119.9 (2)
O2—Cu1—O1i126.31 (6)C25—C20—C19120.5 (2)
O2i—Cu1—O1i53.69 (6)C22—C21—C20120.3 (3)
O1—Cu1—O1i180.0C22—C21—H21A119.8
O3ii—Cu2—O193.55 (8)C20—C21—H21A119.8
O3ii—Cu2—N295.69 (9)C21—C22—C23119.7 (3)
O1—Cu2—N2167.49 (9)C21—C22—H22A120.1
O3ii—Cu2—N1169.76 (9)C23—C22—H22A120.1
O1—Cu2—N187.94 (8)C24—C23—C22120.4 (3)
N2—Cu2—N181.48 (9)C24—C23—H23A119.8
O3ii—Cu2—O586.18 (8)C22—C23—H23A119.8
O1—Cu2—O595.63 (8)C25—C24—C23119.4 (2)
N2—Cu2—O593.38 (8)C25—C24—C26120.3 (2)
N1—Cu2—O5103.77 (8)C23—C24—C26120.2 (2)
N1—C1—C2122.5 (3)C24—C25—C20120.5 (2)
N1—C1—H1A118.8C24—C25—H25A119.8
C2—C1—H1A118.8C20—C25—H25A119.8
C3—C2—C1119.7 (3)O4—C26—O3126.0 (3)
C3—C2—H2A120.2O4—C26—C24118.7 (2)
C1—C2—H2A120.2O3—C26—C24115.3 (3)
C2—C3—C4119.0 (3)O5—C27—O6124.7 (3)
C2—C3—H3A120.5O5—C27—C28119.8 (2)
C4—C3—H3A120.5O6—C27—C28115.4 (2)
C18—C4—C3118.1 (3)C29—C28—C33119.2 (2)
C18—C4—C5118.3 (3)C29—C28—C27121.1 (2)
C3—C4—C5123.6 (3)C33—C28—C27119.6 (2)
N3—C5—C12122.1 (3)C30—C29—C28120.6 (3)
N3—C5—C4118.2 (3)C30—C29—H29A119.7
C12—C5—C4119.7 (3)C28—C29—H29A119.7
N3—C6—C11120.9 (3)C29—C30—C31119.4 (3)
N3—C6—C7119.5 (4)C29—C30—H30A120.3
C11—C6—C7119.6 (3)C31—C30—H30A120.3
C8—C7—C6120.0 (4)C32—C31—C30120.7 (3)
C8—C7—H7A120.0C32—C31—H31A119.6
C6—C7—H7A120.0C30—C31—H31A119.6
C7—C8—C9120.7 (4)C33—C32—C31119.8 (2)
C7—C8—H8A119.6C33—C32—C34119.2 (2)
C9—C8—H8A119.6C31—C32—C34121.0 (2)
C10—C9—C8121.9 (4)C32—C33—C28120.3 (2)
C10—C9—H9A119.0C32—C33—H33A119.9
C8—C9—H9A119.0C28—C33—H33A119.9
C9—C10—C11118.4 (5)O8—C34—O7124.1 (3)
C9—C10—H10A120.8O8—C34—C32122.6 (3)
C11—C10—H10A120.8O7—C34—C32113.1 (2)
N4—C11—C6122.4 (3)C1—N1—C18118.0 (2)
N4—C11—C10118.3 (4)C1—N1—Cu2129.29 (18)
C6—C11—C10119.3 (4)C18—N1—Cu2112.39 (17)
N4—C12—C5122.0 (3)C16—N2—C17119.0 (2)
N4—C12—C13117.7 (3)C16—N2—Cu2128.0 (2)
C5—C12—C13120.3 (2)C17—N2—Cu2113.01 (17)
C14—C13—C17117.3 (3)C5—N3—C6116.9 (3)
C14—C13—C12124.4 (3)C12—N4—C11115.7 (3)
C17—C13—C12118.3 (3)C19—O1—Cu2130.45 (18)
C15—C14—C13119.8 (3)C19—O1—Cu175.87 (16)
C15—C14—H14A120.1Cu2—O1—Cu1104.83 (8)
C13—C14—H14A120.1C19—O2—Cu1108.67 (16)
C14—C15—C16119.5 (3)C26—O3—Cu2ii129.9 (2)
C14—C15—H15A120.3C27—O5—Cu2125.75 (16)
C16—C15—H15A120.3C27—O6—Cu1116.10 (17)
N2—C16—C15121.6 (3)C34—O7—H7B109.5
N2—C16—H16A119.2
N1—C1—C2—C31.3 (5)C31—C32—C34—O74.1 (4)
C1—C2—C3—C42.1 (5)C2—C1—N1—C180.8 (4)
C2—C3—C4—C181.0 (4)C2—C1—N1—Cu2171.7 (2)
C2—C3—C4—C5179.0 (3)C4—C18—N1—C12.0 (4)
C18—C4—C5—N3177.4 (3)C17—C18—N1—C1176.3 (2)
C3—C4—C5—N32.6 (4)C4—C18—N1—Cu2171.7 (2)
C18—C4—C5—C123.1 (4)C17—C18—N1—Cu210.0 (3)
C3—C4—C5—C12176.9 (3)O3ii—Cu2—N1—C1109.2 (5)
N3—C6—C7—C8179.2 (3)O1—Cu2—N1—C110.6 (2)
C11—C6—C7—C81.0 (5)N2—Cu2—N1—C1176.2 (3)
C6—C7—C8—C90.9 (6)O5—Cu2—N1—C184.7 (3)
C7—C8—C9—C100.7 (6)O3ii—Cu2—N1—C1863.6 (5)
C8—C9—C10—C111.4 (6)O1—Cu2—N1—C18162.24 (18)
N3—C6—C11—N41.9 (5)N2—Cu2—N1—C1811.04 (18)
C7—C6—C11—N4176.2 (3)O5—Cu2—N1—C18102.46 (18)
N3—C6—C11—C10178.8 (3)C15—C16—N2—C170.2 (5)
C7—C6—C11—C103.1 (5)C15—C16—N2—Cu2176.8 (2)
C9—C10—C11—N4176.1 (3)C13—C17—N2—C162.9 (4)
C9—C10—C11—C63.2 (5)C18—C17—N2—C16175.0 (3)
N3—C5—C12—N42.3 (4)C13—C17—N2—Cu2174.2 (2)
C4—C5—C12—N4178.2 (3)C18—C17—N2—Cu27.8 (3)
N3—C5—C12—C13178.2 (3)O3ii—Cu2—N2—C1617.0 (3)
C4—C5—C12—C131.3 (4)O1—Cu2—N2—C16154.5 (3)
N4—C12—C13—C145.8 (4)N1—Cu2—N2—C16172.9 (3)
C5—C12—C13—C14174.6 (3)O5—Cu2—N2—C1669.5 (3)
N4—C12—C13—C17173.6 (3)O3ii—Cu2—N2—C17159.81 (18)
C5—C12—C13—C176.0 (4)O1—Cu2—N2—C1722.4 (5)
C17—C13—C14—C151.0 (5)N1—Cu2—N2—C1710.27 (18)
C12—C13—C14—C15178.4 (3)O5—Cu2—N2—C17113.69 (18)
C13—C14—C15—C161.9 (5)C12—C5—N3—C62.0 (4)
C14—C15—C16—N22.5 (5)C4—C5—N3—C6178.5 (3)
C14—C13—C17—N23.5 (4)C11—C6—N3—C50.0 (4)
C12—C13—C17—N2175.9 (2)C7—C6—N3—C5178.2 (3)
C14—C13—C17—C18174.3 (3)C5—C12—N4—C110.3 (4)
C12—C13—C17—C186.2 (4)C13—C12—N4—C11179.9 (3)
C3—C4—C18—N11.1 (4)C6—C11—N4—C121.7 (4)
C5—C4—C18—N1178.9 (2)C10—C11—N4—C12179.0 (3)
C3—C4—C18—C17177.0 (3)O2—C19—O1—Cu298.6 (3)
C5—C4—C18—C173.0 (4)C20—C19—O1—Cu282.2 (3)
N2—C17—C18—N11.6 (3)O2—C19—O1—Cu11.0 (2)
C13—C17—C18—N1176.4 (2)C20—C19—O1—Cu1179.8 (2)
N2—C17—C18—C4179.8 (2)O3ii—Cu2—O1—C1913.4 (3)
C13—C17—C18—C41.8 (4)N2—Cu2—O1—C19151.0 (3)
O2—C19—C20—C21160.8 (3)N1—Cu2—O1—C19176.7 (3)
O1—C19—C20—C2118.4 (4)O5—Cu2—O1—C1973.1 (2)
O2—C19—C20—C2521.9 (4)O3ii—Cu2—O1—Cu197.32 (8)
O1—C19—C20—C25158.9 (2)N2—Cu2—O1—Cu1125.1 (4)
C25—C20—C21—C220.3 (4)N1—Cu2—O1—Cu192.82 (8)
C19—C20—C21—C22177.6 (3)O5—Cu2—O1—Cu110.81 (7)
C20—C21—C22—C232.4 (5)O6i—Cu1—O1—C19100.00 (16)
C21—C22—C23—C241.8 (5)O6—Cu1—O1—C1980.00 (16)
C22—C23—C24—C250.9 (4)O2—Cu1—O1—C190.63 (15)
C22—C23—C24—C26175.8 (3)O2i—Cu1—O1—C19179.37 (15)
C23—C24—C25—C203.0 (4)O6i—Cu1—O1—Cu2131.28 (9)
C26—C24—C25—C20173.7 (2)O6—Cu1—O1—Cu248.72 (9)
C21—C20—C25—C242.4 (4)O2—Cu1—O1—Cu2129.35 (12)
C19—C20—C25—C24174.9 (2)O2i—Cu1—O1—Cu250.65 (12)
C25—C24—C26—O410.1 (4)O1—C19—O2—Cu11.3 (3)
C23—C24—C26—O4173.2 (3)C20—C19—O2—Cu1179.46 (19)
C25—C24—C26—O3169.0 (2)O6i—Cu1—O2—C1977.44 (19)
C23—C24—C26—O37.7 (4)O6—Cu1—O2—C19102.56 (19)
O5—C27—C28—C298.2 (4)O1—Cu1—O2—C190.66 (16)
O6—C27—C28—C29173.4 (2)O1i—Cu1—O2—C19179.34 (16)
O5—C27—C28—C33169.0 (2)O4—C26—O3—Cu2ii21.2 (4)
O6—C27—C28—C339.4 (3)C24—C26—O3—Cu2ii157.74 (18)
C33—C28—C29—C302.3 (4)O6—C27—O5—Cu279.0 (3)
C27—C28—C29—C30174.8 (3)C28—C27—O5—Cu299.2 (2)
C28—C29—C30—C310.4 (5)O3ii—Cu2—O5—C2739.4 (2)
C29—C30—C31—C321.1 (5)O1—Cu2—O5—C2753.8 (2)
C30—C31—C32—C330.7 (4)N2—Cu2—O5—C27134.8 (2)
C30—C31—C32—C34177.1 (3)N1—Cu2—O5—C27143.1 (2)
C31—C32—C33—C281.2 (4)O5—C27—O6—Cu18.0 (3)
C34—C32—C33—C28179.1 (2)C28—C27—O6—Cu1170.25 (16)
C29—C28—C33—C322.7 (4)O2—Cu1—O6—C2799.41 (19)
C27—C28—C33—C32174.5 (2)O2i—Cu1—O6—C2780.59 (19)
C33—C32—C34—O86.3 (5)O1—Cu1—O6—C2746.71 (19)
C31—C32—C34—O8171.6 (3)O1i—Cu1—O6—C27133.29 (19)
C33—C32—C34—O7178.1 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O4iii0.821.742.545 (3)165
Symmetry code: (iii) x1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu3(C8H4O4)2(C8H5O4)2(C18H10N4)2]
Mr1413.68
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.6453 (12), 11.6437 (13), 12.3213 (14)
α, β, γ (°)103.186 (1), 93.712 (2), 95.460 (2)
V3)1474.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.37 × 0.33 × 0.27
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.675, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
7377, 5099, 4179
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.099, 1.05
No. of reflections5099
No. of parameters430
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.31

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O4i0.821.742.545 (3)165
Symmetry code: (i) x1, y, z+1.
 

Acknowledgements

The authors thank the Program of the Foundation of Liaoning Province (L2010148) for support.

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, Z.-B., Ji, J.-W., An, H.-Y., Zhang, W., Han, G.-X., Zhang, G.-X. & Yang, L.-G. (2009). Dalton Trans. pp. 9807–9811.  Web of Science CSD CrossRef Google Scholar
First citationHan, Z.-B. & Ma, Y. (2006). Acta Cryst. E62, m2236–m2237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2676–m2677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds