organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-5-phen­­oxy-3-tri­fluoro­methyl-1H-pyrazole-4-carbaldehyde oxime

aState Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
*Correspondence e-mail: daihong_2001@yahoo.com.cn

(Received 13 February 2011; accepted 27 February 2011; online 5 March 2011)

In the title compound, C12H10F3N3O2, the dihedral angle between the phenyl and pyrazole rings is 96.6 (3)°. In the crystal, pairs of O—H⋯N hydrogen bonds link the mol­ecules, forming inversion dimers. Weak inter­molecular C—H⋯F hydrogen bonds are also observed.

Related literature

For the biological activity of pyrazole-4-carbaldehyde oxime ether derivatives, see: Hamaguchi et al. (1995[Hamaguchi, H., Kajihara, O. & Katoh, M. (1995). J. Pestic. Sci. 20, 173-175.]); Motoba et al. (1992[Motoba, K., Suzuki, T. & Uchida, M. (1992). Pestic. Biochem. Physiol. 43, 37-44.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10F3N3O2

  • Mr = 285.23

  • Monoclinic, P 21 /c

  • a = 7.5221 (15) Å

  • b = 18.282 (4) Å

  • c = 9.1002 (18) Å

  • β = 90.58 (3)°

  • V = 1251.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 113 K

  • 0.24 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.968, Tmax = 0.981

  • 7050 measured reflections

  • 2185 independent reflections

  • 1910 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.06

  • 2185 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯F1i 0.93 2.54 3.147 (2) 123
O2—H2⋯N3ii 0.82 2.11 2.819 (2) 145
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The pyrazole oxime unit plays an important role in many biologically active compounds. A large number of pyrazole oxime derivatives are well acknowledged to possess fungicidal, insecticidal, and acaricidal activities (Hamaguchi et al., 1995). For example, fenpyroximate, a commercial acaricide, has been widely used for the control of mites on many crops (Motoba et al., 1992).

The title compound, (I), is an important intermediate for agrochemicals and drugs. It contains two planes, the pyrazole ring (N2/N1/C2–C4) and the phenyl ring (C5–C10) (Fig. 1). The dihedral angle between the phenyl ring and the pyrazole ring is 96.6 (3)°. In the crystal structure, the molecules are linked by intermolecular C—H···F and O—H···N hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For the biological activity of pyrazole-4-carbaldehyde oxime ether derivatives, see: Hamaguchi et al. (1995); Motoba et al. (1992).

Experimental top

To a stirred solution of hydroxylamine hydrochloride (7.5 mmol) and potassium hydroxide (10 mmol) in ethanol (30 ml), was added 1-methyl-3-(trifluoromethyl)-5-phenoxy-1H-pyrazole-4-carbaldehyde (5 mmol) at room temperature. The resulting mixture was heated to reflux for 3 h. The reaction mixture was poured into water (150 ml) and extracted with ethyl acetate (3 × 40 ml). The organic layer was washed with saturated brine (3 × 20 ml), and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, then the residue was recrystallized from ethyl acetate to give colourless crystals.

Refinement top

All H atoms were placed in calculated positions, with O—H = 0.82 Å, C—H = 0.93 or 0.96 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, methylC).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed along the a axis, with hydrogen bonds drawn as dashed lines.
1-Methyl-5-phenoxy-3-trifluoromethyl-1H-pyrazole-4-carbaldehyde oxime top
Crystal data top
C12H10F3N3O2F(000) = 584
Mr = 285.23Dx = 1.514 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3687 reflections
a = 7.5221 (15) Åθ = 2.2–27.9°
b = 18.282 (4) ŵ = 0.14 mm1
c = 9.1002 (18) ÅT = 113 K
β = 90.58 (3)°Monoclinic, colourless
V = 1251.4 (4) Å30.24 × 0.16 × 0.14 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2185 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.968, Tmax = 0.981k = 2121
7050 measured reflectionsl = 710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.3152P]
where P = (Fo2 + 2Fc2)/3
2185 reflections(Δ/σ)max = 0.002
183 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C12H10F3N3O2V = 1251.4 (4) Å3
Mr = 285.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5221 (15) ŵ = 0.14 mm1
b = 18.282 (4) ÅT = 113 K
c = 9.1002 (18) Å0.24 × 0.16 × 0.14 mm
β = 90.58 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2185 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1910 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.981Rint = 0.030
7050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
2185 reflectionsΔρmin = 0.24 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.51229 (15)0.68729 (6)0.18505 (12)0.0482 (3)
F20.78938 (15)0.68491 (7)0.24060 (12)0.0473 (3)
F30.65809 (15)0.58843 (5)0.16378 (11)0.0372 (3)
O10.36787 (14)0.56226 (6)0.71364 (11)0.0222 (3)
O20.02826 (15)0.51556 (7)0.32441 (12)0.0296 (3)
H20.05600.49640.36610.044*
N10.70823 (17)0.64542 (7)0.51151 (15)0.0248 (3)
N20.62765 (17)0.62190 (7)0.63485 (14)0.0228 (3)
N30.15547 (16)0.53763 (7)0.42921 (14)0.0220 (3)
C10.6393 (2)0.64718 (9)0.24941 (18)0.0242 (4)
C20.59492 (19)0.62818 (8)0.40404 (17)0.0203 (3)
C30.43940 (19)0.59357 (8)0.45480 (16)0.0184 (3)
C40.46821 (19)0.59138 (8)0.60477 (16)0.0189 (3)
C50.26932 (19)0.61152 (8)0.79966 (16)0.0190 (3)
C60.1903 (2)0.58217 (9)0.92258 (16)0.0217 (3)
H60.20440.53290.94550.026*
C70.0894 (2)0.62741 (9)1.01145 (16)0.0242 (4)
H70.03460.60831.09410.029*
C80.0696 (2)0.70110 (9)0.97772 (17)0.0237 (4)
H80.00270.73141.03780.028*
C90.1506 (2)0.72911 (8)0.85367 (18)0.0244 (4)
H90.13770.77840.83090.029*
C100.2506 (2)0.68442 (8)0.76298 (17)0.0216 (3)
H100.30400.70320.67930.026*
C110.2899 (2)0.56673 (8)0.36830 (16)0.0201 (3)
H110.29220.57090.26650.024*
C120.7152 (2)0.62954 (10)0.77800 (19)0.0334 (4)
H12A0.66830.67150.82780.050*
H12B0.84070.63560.76460.050*
H12C0.69400.58650.83560.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0497 (7)0.0564 (7)0.0389 (6)0.0268 (6)0.0204 (5)0.0248 (5)
F20.0449 (7)0.0558 (7)0.0417 (7)0.0275 (5)0.0218 (5)0.0041 (5)
F30.0598 (7)0.0258 (5)0.0262 (5)0.0001 (5)0.0137 (5)0.0028 (4)
O10.0292 (6)0.0187 (5)0.0188 (6)0.0001 (4)0.0072 (5)0.0010 (4)
O20.0249 (6)0.0424 (7)0.0216 (6)0.0154 (5)0.0038 (5)0.0028 (5)
N10.0202 (7)0.0250 (7)0.0294 (7)0.0026 (5)0.0054 (6)0.0023 (6)
N20.0210 (7)0.0247 (7)0.0227 (7)0.0007 (5)0.0001 (5)0.0020 (5)
N30.0208 (7)0.0241 (7)0.0210 (7)0.0045 (5)0.0018 (5)0.0003 (5)
C10.0220 (8)0.0214 (8)0.0293 (8)0.0004 (6)0.0094 (7)0.0001 (7)
C20.0186 (7)0.0174 (7)0.0251 (8)0.0001 (6)0.0059 (6)0.0011 (6)
C30.0184 (7)0.0171 (7)0.0196 (8)0.0006 (6)0.0046 (6)0.0006 (6)
C40.0196 (7)0.0169 (7)0.0204 (8)0.0005 (6)0.0033 (6)0.0001 (6)
C50.0187 (7)0.0222 (8)0.0162 (7)0.0012 (6)0.0012 (6)0.0027 (6)
C60.0238 (8)0.0228 (8)0.0186 (8)0.0015 (6)0.0007 (6)0.0035 (6)
C70.0223 (8)0.0346 (9)0.0158 (7)0.0019 (7)0.0016 (6)0.0022 (7)
C80.0204 (8)0.0313 (9)0.0194 (8)0.0002 (6)0.0008 (6)0.0061 (7)
C90.0260 (8)0.0199 (8)0.0274 (9)0.0018 (6)0.0011 (7)0.0007 (6)
C100.0239 (8)0.0227 (8)0.0183 (8)0.0033 (6)0.0026 (6)0.0021 (6)
C110.0226 (8)0.0211 (7)0.0167 (7)0.0022 (6)0.0028 (6)0.0016 (6)
C120.0325 (9)0.0381 (10)0.0295 (9)0.0027 (8)0.0106 (7)0.0037 (8)
Geometric parameters (Å, º) top
F1—C11.3350 (19)C5—C61.381 (2)
F2—C11.3260 (19)C5—C101.381 (2)
F3—C11.3354 (19)C6—C71.388 (2)
O1—C41.3601 (18)C6—H60.9300
O1—C51.4089 (18)C7—C81.389 (2)
O2—N31.4034 (17)C7—H70.9300
O2—H20.8200C8—C91.386 (2)
N1—C21.329 (2)C8—H80.9300
N1—N21.3512 (19)C9—C101.388 (2)
N2—C41.348 (2)C9—H90.9300
N2—C121.460 (2)C10—H100.9300
N3—C111.274 (2)C11—H110.9300
C1—C21.491 (2)C12—H12A0.9600
C2—C31.412 (2)C12—H12B0.9600
C3—C41.380 (2)C12—H12C0.9600
C3—C111.452 (2)
C4—O1—C5116.97 (11)C5—C6—C7118.88 (14)
N3—O2—H2109.5C5—C6—H6120.6
C2—N1—N2104.25 (12)C7—C6—H6120.6
C4—N2—N1111.62 (13)C6—C7—C8120.46 (14)
C4—N2—C12127.78 (14)C6—C7—H7119.8
N1—N2—C12120.58 (13)C8—C7—H7119.8
C11—N3—O2111.28 (12)C9—C8—C7119.43 (15)
F2—C1—F1107.08 (14)C9—C8—H8120.3
F2—C1—F3106.74 (13)C7—C8—H8120.3
F1—C1—F3105.38 (14)C8—C9—C10120.79 (15)
F2—C1—C2112.16 (14)C8—C9—H9119.6
F1—C1—C2112.09 (13)C10—C9—H9119.6
F3—C1—C2112.92 (13)C5—C10—C9118.60 (14)
N1—C2—C3113.14 (14)C5—C10—H10120.7
N1—C2—C1119.44 (13)C9—C10—H10120.7
C3—C2—C1127.41 (14)N3—C11—C3121.26 (14)
C4—C3—C2102.36 (13)N3—C11—H11119.4
C4—C3—C11129.75 (14)C3—C11—H11119.4
C2—C3—C11127.89 (14)N2—C12—H12A109.5
N2—C4—O1120.87 (13)N2—C12—H12B109.5
N2—C4—C3108.62 (13)H12A—C12—H12B109.5
O1—C4—C3130.46 (13)N2—C12—H12C109.5
C6—C5—C10121.83 (14)H12A—C12—H12C109.5
C6—C5—O1115.79 (13)H12B—C12—H12C109.5
C10—C5—O1122.38 (13)
C2—N1—N2—C40.42 (16)C5—O1—C4—C3103.49 (18)
C2—N1—N2—C12178.30 (14)C2—C3—C4—N20.38 (16)
N2—N1—C2—C30.17 (17)C11—C3—C4—N2178.89 (15)
N2—N1—C2—C1179.17 (13)C2—C3—C4—O1177.58 (14)
F2—C1—C2—N14.1 (2)C11—C3—C4—O11.7 (3)
F1—C1—C2—N1124.64 (15)C4—O1—C5—C6170.60 (13)
F3—C1—C2—N1116.52 (16)C4—O1—C5—C1010.2 (2)
F2—C1—C2—C3174.70 (14)C10—C5—C6—C70.0 (2)
F1—C1—C2—C354.2 (2)O1—C5—C6—C7179.25 (12)
F3—C1—C2—C364.6 (2)C5—C6—C7—C80.5 (2)
N1—C2—C3—C40.13 (17)C6—C7—C8—C90.5 (2)
C1—C2—C3—C4178.78 (15)C7—C8—C9—C100.1 (2)
N1—C2—C3—C11179.16 (14)C6—C5—C10—C90.6 (2)
C1—C2—C3—C111.9 (3)O1—C5—C10—C9179.76 (13)
N1—N2—C4—O1178.05 (12)C8—C9—C10—C50.6 (2)
C12—N2—C4—O10.6 (2)O2—N3—C11—C3179.74 (13)
N1—N2—C4—C30.52 (17)C4—C3—C11—N32.3 (3)
C12—N2—C4—C3178.08 (15)C2—C3—C11—N3178.62 (15)
C5—O1—C4—N279.59 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···F1i0.932.543.147 (2)123
O2—H2···N3ii0.822.112.819 (2)145
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H10F3N3O2
Mr285.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)7.5221 (15), 18.282 (4), 9.1002 (18)
β (°) 90.58 (3)
V3)1251.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.24 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
7050, 2185, 1910
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.06
No. of reflections2185
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···F1i0.932.543.147 (2)123
O2—H2···N3ii0.822.112.819 (2)145
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant No. 20772068), the Science and Technology Projects Fund of Nantong City (grant Nos. K2010016, AS2010005), the Science Foundation of Nantong University (grant Nos. 09Z010, 09C001) and the Scientific Research Foundation for Talent Introduction of Nantong University.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHamaguchi, H., Kajihara, O. & Katoh, M. (1995). J. Pestic. Sci. 20, 173–175.  CrossRef CAS Google Scholar
First citationMotoba, K., Suzuki, T. & Uchida, M. (1992). Pestic. Biochem. Physiol. 43, 37–44.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds