organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o764-o765

(E)-1-(2-Methyl-4-phenyl­quinolin-3-yl)-3-phenyl­prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 20 February 2011; accepted 24 February 2011; online 2 March 2011)

In the title compound, C25H19NO, the quinoline ring system is approximately planar, with a maximum deviation of 0.32 (1) Å, and forms dihedral angles of 80.74 (3) and 81.71 (4)° with the two phenyl rings. In the crystal. mol­ecules are stacked along the b axis by way of a C—H⋯π inter­action and a weak ππ inter­action between the pyridine and phenyl rings with a centroid–centroid distance of 3.6924 (5) Å.

Related literature

For background to and the biological activity of quinoline derivatives, see: Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1988)[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]; Maguire et al. (1994[Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129-2137.]); Chen et al. (2001[Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2377.]). For the biological activity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Loh, Fun, Sarveswari et al. (2010[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o91-o92.]); Loh, Fun, Viji et al. (2010[Loh, W.-S., Fun, H.-K., Viji, A. J., Sarveswari, S. & Vijayakumar, V. (2010). Acta Cryst. E66, o1321.]); Shahani et al. (2010[Shahani, T., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Ragavan, R. V. (2010). Acta Cryst. E66, o374.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C25H19NO

  • Mr = 349.41

  • Monoclinic, P 21 /c

  • a = 10.5830 (5) Å

  • b = 10.2189 (5) Å

  • c = 18.4509 (7) Å

  • β = 114.147 (2)°

  • V = 1820.80 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.57 × 0.48 × 0.35 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.973

  • 27166 measured reflections

  • 6509 independent reflections

  • 5734 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.05

  • 6509 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C20–C25 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACg3i 0.93 2.72 3.5265 (10) 146
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and found to have attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Chen et al., 2001). The chalcones are open chain flavonoids, possessed a variety of biological activities, including antioxidant, anti-inflammation, antimicrobial, antiprotozoal, antiulcer, as well as other properties (Dimmock et al., 1999). In continuation of our interest in the synthesis of chalcone derivatives (Loh, Fun, Sarveswari et al. (2010); Loh, Fun, Viji et al. (2010); Shahani et al., 2010), herein we report another new chalcone.

In the title compound (Fig. 1), the quinoline ring system (C7–C13/N1/C14/C15) is aproximately planar with a maximum deviation of 0.32 (1) Å at atom C15 and forms dihedral angles of 80.74 (3) and 81.71 (4)° with the C1–C6 and C20–C25 phenyl rings, respectively. Bond lengths (Allen et al., 1987) and angles are within the normal ranges.

There are no significant intermolecular hydrogen bonds observed in the crystal packing (Fig. 2). The molecules are stacked along the b axis by way of a C–H···π interaction (Table 1) which involves the phenyl ring (C20–C25) and a weak aromatic ππ interaction between the pyridine (N1/C13/C8/C7/C15/C14; centroid Cg1) and phenyl (C8–C13; centroid Cg2) rings with a separation of Cg1···Cg2 being 3.6924 (5) Å.

Related literature top

For background to and the biological activity of quinoline derivatives, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988); Maguire et al. (1994); Chen et al. (2001). For the biological activity of chalcones, see: Dimmock et al. (1999). For bond-length data, see: Allen et al. (1987). For related structures, see: Loh, Fun, Sarveswari et al. (2010); Loh, Fun, Viji et al. (2010); Shahani et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3-acetyl-2-methyl-4-phenylquinoline (2.6 g, 0.01 M) and benzaldehyde (1.06 g, 0.01 M) and a catalytic amount of KOH in 40 ml of distilled ethanol was stirred for about 12 h. The resulting mixture was concentrated to remove ethanol and then poured onto ice and neutralized with distilled acetic acid. The resultant solid was filtered, dried and purified by column chromatography using 1:1 mixture of ethylacetate and petroleum ether. Recrystallization was done in (8:4) petroleum ether, acetone mixture (m.p.: 422–423 K, yield: 82%).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis.
(E)-1-(2-Methyl-4-phenylquinolin-3-yl)-3-phenylprop-2-en-1-one top
Crystal data top
C25H19NOF(000) = 736
Mr = 349.41Dx = 1.275 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9875 reflections
a = 10.5830 (5) Åθ = 2.9–35.1°
b = 10.2189 (5) ŵ = 0.08 mm1
c = 18.4509 (7) ÅT = 100 K
β = 114.147 (2)°Block, colourless
V = 1820.80 (14) Å30.57 × 0.48 × 0.35 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
6509 independent reflections
Radiation source: fine-focus sealed tube5734 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 32.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.957, Tmax = 0.973k = 1515
27166 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.5003P]
where P = (Fo2 + 2Fc2)/3
6509 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C25H19NOV = 1820.80 (14) Å3
Mr = 349.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5830 (5) ŵ = 0.08 mm1
b = 10.2189 (5) ÅT = 100 K
c = 18.4509 (7) Å0.57 × 0.48 × 0.35 mm
β = 114.147 (2)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
6509 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5734 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.973Rint = 0.024
27166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.05Δρmax = 0.45 e Å3
6509 reflectionsΔρmin = 0.17 e Å3
245 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08254 (7)0.61008 (7)0.74003 (4)0.02139 (13)
N10.08585 (7)0.73133 (7)0.97579 (4)0.01550 (13)
C10.41109 (8)0.42498 (8)0.90617 (5)0.01661 (14)
H1A0.46210.50040.92720.020*
C20.47170 (8)0.32137 (9)0.88288 (5)0.01897 (15)
H2A0.56350.32730.88950.023*
C30.39571 (9)0.20934 (8)0.84990 (5)0.01841 (15)
H3A0.43610.14060.83400.022*
C40.25883 (9)0.20050 (8)0.84073 (5)0.01956 (15)
H4A0.20730.12600.81820.023*
C50.19882 (8)0.30296 (8)0.86519 (5)0.01787 (15)
H5A0.10770.29590.85960.021*
C60.27412 (8)0.41613 (7)0.89806 (4)0.01322 (13)
C70.20915 (7)0.52474 (7)0.92505 (4)0.01297 (13)
C80.19789 (7)0.51611 (7)0.99939 (5)0.01355 (13)
C90.24715 (8)0.40797 (8)1.05160 (5)0.01717 (14)
H9A0.28600.33671.03690.021*
C100.23797 (9)0.40762 (9)1.12373 (5)0.02067 (16)
H10A0.27050.33611.15750.025*
C110.17939 (9)0.51514 (9)1.14689 (5)0.02056 (16)
H11A0.17370.51431.19590.025*
C120.13073 (8)0.62094 (8)1.09741 (5)0.01782 (15)
H12A0.09270.69161.11320.021*
C130.13791 (7)0.62353 (7)1.02254 (5)0.01411 (13)
C140.09416 (8)0.73623 (7)0.90660 (5)0.01470 (14)
C150.15863 (7)0.63547 (7)0.87976 (4)0.01344 (13)
C160.02989 (9)0.85248 (8)0.85478 (5)0.02108 (16)
H16A0.00190.91520.88410.032*
H16B0.04950.82480.80890.032*
H16C0.09620.89180.83830.032*
C170.17065 (8)0.65370 (7)0.80187 (5)0.01473 (14)
C180.28930 (8)0.72866 (8)0.80195 (5)0.01588 (14)
H18A0.29860.73880.75430.019*
C190.38512 (8)0.78330 (7)0.86795 (5)0.01505 (14)
H19A0.37470.76920.91500.018*
C200.50375 (8)0.86236 (7)0.87345 (5)0.01548 (14)
C210.59080 (9)0.91308 (8)0.94763 (5)0.01973 (15)
H21A0.57240.89540.99180.024*
C220.70455 (9)0.98962 (9)0.95593 (6)0.02567 (19)
H22A0.76131.02351.00540.031*
C230.73351 (10)1.01549 (9)0.89041 (7)0.02676 (19)
H23A0.80941.06690.89590.032*
C240.64859 (10)0.96426 (9)0.81659 (6)0.02460 (18)
H24A0.66860.98070.77280.030*
C250.53413 (9)0.88875 (8)0.80779 (5)0.01951 (15)
H25A0.47740.85560.75810.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0222 (3)0.0224 (3)0.0164 (3)0.0036 (2)0.0046 (2)0.0036 (2)
N10.0142 (3)0.0149 (3)0.0177 (3)0.0010 (2)0.0069 (2)0.0011 (2)
C10.0147 (3)0.0170 (3)0.0190 (3)0.0005 (2)0.0079 (3)0.0020 (3)
C20.0164 (3)0.0214 (4)0.0209 (4)0.0032 (3)0.0095 (3)0.0004 (3)
C30.0228 (4)0.0170 (3)0.0172 (3)0.0055 (3)0.0099 (3)0.0002 (3)
C40.0227 (4)0.0153 (3)0.0216 (4)0.0007 (3)0.0100 (3)0.0044 (3)
C50.0163 (3)0.0165 (3)0.0216 (4)0.0016 (3)0.0085 (3)0.0045 (3)
C60.0141 (3)0.0129 (3)0.0133 (3)0.0012 (2)0.0063 (2)0.0000 (2)
C70.0123 (3)0.0124 (3)0.0147 (3)0.0005 (2)0.0059 (2)0.0013 (2)
C80.0128 (3)0.0130 (3)0.0154 (3)0.0009 (2)0.0064 (2)0.0007 (2)
C90.0201 (3)0.0146 (3)0.0174 (3)0.0008 (3)0.0083 (3)0.0013 (3)
C100.0257 (4)0.0188 (4)0.0178 (4)0.0002 (3)0.0093 (3)0.0028 (3)
C110.0243 (4)0.0231 (4)0.0171 (3)0.0025 (3)0.0114 (3)0.0006 (3)
C120.0184 (3)0.0198 (3)0.0182 (3)0.0017 (3)0.0106 (3)0.0027 (3)
C130.0125 (3)0.0145 (3)0.0162 (3)0.0010 (2)0.0068 (2)0.0016 (2)
C140.0139 (3)0.0130 (3)0.0165 (3)0.0007 (2)0.0054 (2)0.0008 (2)
C150.0131 (3)0.0127 (3)0.0146 (3)0.0005 (2)0.0057 (2)0.0008 (2)
C160.0247 (4)0.0167 (3)0.0204 (4)0.0068 (3)0.0077 (3)0.0025 (3)
C170.0165 (3)0.0125 (3)0.0148 (3)0.0011 (2)0.0061 (3)0.0000 (2)
C180.0188 (3)0.0154 (3)0.0144 (3)0.0010 (2)0.0078 (3)0.0007 (2)
C190.0166 (3)0.0146 (3)0.0150 (3)0.0001 (2)0.0075 (3)0.0007 (2)
C200.0163 (3)0.0130 (3)0.0180 (3)0.0005 (2)0.0078 (3)0.0006 (2)
C210.0189 (3)0.0182 (3)0.0204 (4)0.0008 (3)0.0064 (3)0.0012 (3)
C220.0199 (4)0.0217 (4)0.0310 (5)0.0037 (3)0.0060 (3)0.0046 (3)
C230.0211 (4)0.0192 (4)0.0429 (6)0.0039 (3)0.0161 (4)0.0020 (4)
C240.0265 (4)0.0203 (4)0.0351 (5)0.0021 (3)0.0209 (4)0.0006 (3)
C250.0228 (4)0.0178 (3)0.0220 (4)0.0016 (3)0.0133 (3)0.0005 (3)
Geometric parameters (Å, º) top
O1—C171.2244 (10)C12—C131.4143 (11)
N1—C141.3159 (10)C12—H12A0.9300
N1—C131.3683 (10)C14—C151.4309 (10)
C1—C21.3939 (11)C14—C161.5020 (11)
C1—C61.3980 (10)C15—C171.5054 (11)
C1—H1A0.9300C16—H16A0.9600
C2—C31.3882 (12)C16—H16B0.9600
C2—H2A0.9300C16—H16C0.9600
C3—C41.3910 (12)C17—C181.4704 (11)
C3—H3A0.9300C18—C191.3464 (11)
C4—C51.3920 (11)C18—H18A0.9300
C4—H4A0.9300C19—C201.4611 (11)
C5—C61.3946 (11)C19—H19A0.9300
C5—H5A0.9300C20—C211.3997 (12)
C6—C71.4942 (10)C20—C251.4009 (11)
C7—C151.3781 (10)C21—C221.3905 (12)
C7—C81.4272 (11)C21—H21A0.9300
C8—C91.4178 (11)C22—C231.3887 (15)
C8—C131.4186 (10)C22—H22A0.9300
C9—C101.3734 (12)C23—C241.3912 (15)
C9—H9A0.9300C23—H23A0.9300
C10—C111.4110 (13)C24—C251.3886 (12)
C10—H10A0.9300C24—H24A0.9300
C11—C121.3723 (12)C25—H25A0.9300
C11—H11A0.9300
C14—N1—C13118.22 (7)N1—C14—C15122.61 (7)
C2—C1—C6120.38 (7)N1—C14—C16117.07 (7)
C2—C1—H1A119.8C15—C14—C16120.31 (7)
C6—C1—H1A119.8C7—C15—C14120.18 (7)
C3—C2—C1120.29 (7)C7—C15—C17121.14 (7)
C3—C2—H2A119.9C14—C15—C17118.68 (6)
C1—C2—H2A119.9C14—C16—H16A109.5
C2—C3—C4119.64 (7)C14—C16—H16B109.5
C2—C3—H3A120.2H16A—C16—H16B109.5
C4—C3—H3A120.2C14—C16—H16C109.5
C3—C4—C5120.16 (8)H16A—C16—H16C109.5
C3—C4—H4A119.9H16B—C16—H16C109.5
C5—C4—H4A119.9O1—C17—C18121.00 (7)
C4—C5—C6120.62 (7)O1—C17—C15121.00 (7)
C4—C5—H5A119.7C18—C17—C15117.98 (6)
C6—C5—H5A119.7C19—C18—C17122.95 (7)
C5—C6—C1118.89 (7)C19—C18—H18A118.5
C5—C6—C7120.13 (7)C17—C18—H18A118.5
C1—C6—C7120.97 (7)C18—C19—C20126.87 (7)
C15—C7—C8117.99 (7)C18—C19—H19A116.6
C15—C7—C6121.67 (7)C20—C19—H19A116.6
C8—C7—C6120.34 (6)C21—C20—C25118.83 (7)
C9—C8—C13118.94 (7)C21—C20—C19118.42 (7)
C9—C8—C7123.30 (7)C25—C20—C19122.75 (7)
C13—C8—C7117.72 (7)C22—C21—C20120.66 (8)
C10—C9—C8120.55 (7)C22—C21—H21A119.7
C10—C9—H9A119.7C20—C21—H21A119.7
C8—C9—H9A119.7C23—C22—C21120.04 (9)
C9—C10—C11120.36 (8)C23—C22—H22A120.0
C9—C10—H10A119.8C21—C22—H22A120.0
C11—C10—H10A119.8C22—C23—C24119.77 (8)
C12—C11—C10120.25 (8)C22—C23—H23A120.1
C12—C11—H11A119.9C24—C23—H23A120.1
C10—C11—H11A119.9C25—C24—C23120.45 (9)
C11—C12—C13120.61 (8)C25—C24—H24A119.8
C11—C12—H12A119.7C23—C24—H24A119.8
C13—C12—H12A119.7C24—C25—C20120.25 (8)
N1—C13—C12117.53 (7)C24—C25—H25A119.9
N1—C13—C8123.19 (7)C20—C25—H25A119.9
C12—C13—C8119.28 (7)
C6—C1—C2—C31.30 (13)C7—C8—C13—C12177.19 (7)
C1—C2—C3—C40.49 (13)C13—N1—C14—C151.81 (11)
C2—C3—C4—C50.60 (13)C13—N1—C14—C16177.03 (7)
C3—C4—C5—C60.90 (13)C8—C7—C15—C141.49 (11)
C4—C5—C6—C10.10 (12)C6—C7—C15—C14178.55 (7)
C4—C5—C6—C7179.22 (8)C8—C7—C15—C17178.10 (6)
C2—C1—C6—C51.00 (12)C6—C7—C15—C171.87 (11)
C2—C1—C6—C7178.11 (7)N1—C14—C15—C73.21 (11)
C5—C6—C7—C15101.19 (9)C16—C14—C15—C7175.58 (7)
C1—C6—C7—C1579.71 (10)N1—C14—C15—C17176.38 (7)
C5—C6—C7—C878.85 (10)C16—C14—C15—C174.83 (11)
C1—C6—C7—C8100.25 (9)C7—C15—C17—O186.75 (10)
C15—C7—C8—C9179.35 (7)C14—C15—C17—O193.66 (9)
C6—C7—C8—C90.62 (11)C7—C15—C17—C1894.95 (9)
C15—C7—C8—C131.28 (10)C14—C15—C17—C1884.63 (9)
C6—C7—C8—C13178.68 (6)O1—C17—C18—C19176.95 (8)
C13—C8—C9—C100.51 (12)C15—C17—C18—C191.35 (11)
C7—C8—C9—C10177.53 (7)C17—C18—C19—C20178.06 (7)
C8—C9—C10—C110.06 (13)C18—C19—C20—C21178.74 (8)
C9—C10—C11—C120.17 (13)C18—C19—C20—C251.61 (13)
C10—C11—C12—C130.30 (13)C25—C20—C21—C220.75 (12)
C14—N1—C13—C12178.75 (7)C19—C20—C21—C22179.58 (8)
C14—N1—C13—C81.20 (11)C20—C21—C22—C230.58 (14)
C11—C12—C13—N1179.18 (8)C21—C22—C23—C240.19 (14)
C11—C12—C13—C80.87 (12)C22—C23—C24—C250.78 (14)
C9—C8—C13—N1179.09 (7)C23—C24—C25—C200.60 (14)
C7—C8—C13—N12.76 (11)C21—C20—C25—C240.16 (12)
C9—C8—C13—C120.96 (11)C19—C20—C25—C24179.82 (8)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C20–C25 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg3i0.932.723.5265 (10)146
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC25H19NO
Mr349.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.5830 (5), 10.2189 (5), 18.4509 (7)
β (°) 114.147 (2)
V3)1820.80 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.57 × 0.48 × 0.35
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.957, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
27166, 6509, 5734
Rint0.024
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.05
No. of reflections6509
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C20–C25 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg3i0.932.723.5265 (10)146
Symmetry code: (i) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks Malaysian Government and USM for the award of a Research Fellowship. VV is grateful to the DST–India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o91–o92.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Fun, H.-K., Viji, A. J., Sarveswari, S. & Vijayakumar, V. (2010). Acta Cryst. E66, o1321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129–2137.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationShahani, T., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Ragavan, R. V. (2010). Acta Cryst. E66, o374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o764-o765
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds