metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m427-m428

[μ-1,6-Bis(di­phenyl­arsan­yl)hexa­ne]bis­­[chloridogold(I)]

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 28 February 2011; accepted 7 March 2011; online 12 March 2011)

In the title compound, [Au2Cl2(C30H32As2)], each Au atom is coordinated by As and Cl atoms in an approximately linear geometry. In the crystal, mol­ecules are linked into two-dimensional networks parallel to the ac plane via inter­molecular C—H⋯Cl inter­actions. One of the phenyl rings is disordered over two positions, with site occupancies of 0.518 (8) and 0.482 (8).

Related literature

For general background and applications of diphenyl­arsino derivatives, see: Hill et al. (1983[Hill, W. E., Minahan, D. M. A. & McAuliffe, C. A. (1983). Inorg. Chem. 22, 3382-3387.]). For general background and applications of gold(I) complexes, see: Parish & Cottrill (1987[Parish, R. & Cottrill, S. M. (1987). Gold Bull. 20, 3-12.]); Tiekink (2002[Tiekink, E. R. T. (2002). Crit. Rev. Oncol. Hematol. 42, 225-248.]). For the synthesis of (CH3)2SAuCl, see: Francis (1901[Francis, C. P. (1901). J. Am. Chem. Soc. 23, 250-258.]). For the synthesis of 1,6-bis­(diphenyl­arsino)hexane, see: Shawkataly et al. (2009[Shawkataly, O. bin, Khan, I. A., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2591-o2592.]). For a closely related structure, see: Shawkataly et al. (2010[Shawkataly, O. bin, Tariq, A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m1535-m1536.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Au2Cl2(C30H32As2)]

  • Mr = 1007.23

  • Triclinic, [P \overline 1]

  • a = 9.4881 (3) Å

  • b = 11.0350 (4) Å

  • c = 15.5254 (5) Å

  • α = 69.723 (1)°

  • β = 83.959 (1)°

  • γ = 79.814 (1)°

  • V = 1499.06 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 12.16 mm−1

  • T = 100 K

  • 0.37 × 0.22 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.094, Tmax = 0.407

  • 23816 measured reflections

  • 7451 independent reflections

  • 6817 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.088

  • S = 1.09

  • 7451 reflections

  • 371 parameters

  • H-atom parameters constrained

  • Δρmax = 2.52 e Å−3

  • Δρmin = −3.00 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au1—Cl1 2.3043 (10)
Au1—As1 2.3411 (4)
Au2—Cl2 2.3005 (10)
Au2—As2 2.3398 (5)
Cl1—Au1—As1 174.77 (3)
Cl2—Au2—As2 175.14 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯Cl2i 0.97 2.79 3.754 (5) 172
C18—H18A⋯Cl1ii 0.97 2.80 3.701 (5) 155
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Comment top

Gold and gold complexes have been used for medicinal purposes over a long period of time (Parish & Cottrill, 1987; Tiekink, 2002). 1,6-Bis(diphenylarsino)hexane has been used for trans chelation in transition metal complexes (Hill et al., 1983). A search of the November 2010 release of the Cambridge Structural Database (Allen, 2002) revealed no such gold (I) complexes containing the above ligand has been reported. Herein, we report the crystal structure of the title complex (Ph)2As(CH2)6As(Ph)2Au2Cl2 (Fig. 1).

The As1—Au1—Cl1 is almost linear with an angle of 174.77 (3)° and As2—Au2—Cl2 with an angle of 175.14 (3)°. The four substituted phenyl rings on both arsines C1—C6/C7—C12, C19—C24/C25,C26B—C30B and C19—C24/C25,C26A—C30A are inclined to one another, with dihedral angles of 69.1 (4), 85.9 (4) and 73.4 (4)°, respectively.

In the crystal packing, (Fig. 2), the molecules are linked into two-dimensional networks parallel to the (010) plane via intermolecular C17—H17B···Cl2 and C18—H18A···Cl1 interactions (Table 2).

Related literature top

For general background and applications of diphenylarsino derivatives, see: Hill et al. (1983). For general background to and applications of gold(I) complexes, see: Parish & Cottrill (1987); Tiekink (2002). For the synthesis of (CH3)2SAuCl, see: Francis (1901). For the synthesis of 1,6-bis(diphenylarsino)hexane, see: Shawkataly et al. (2009). For a closely related structure, see: Shawkataly et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

(Ph)2As(CH2)6As(Ph)2AuCl was prepared by mixing equimolar quantities of Me2SAuCl, obtained as per conventional method (Francis, 1901) and (Ph)2As(CH2)6As(Ph)2, synthesized according to related literature (Shawkataly et al., 2009) in CH2Cl2 held at room temperature. The solution was stirred for 2 h, and white crystalline solid was recovered after the removal of solvent under vacuum. The colourless plate-like crystals were obtained in 90% yield by solvent/solvent diffusion of dichloromethane/methanol at 10 °C after 2 days (m.p. 203 °C).

Refinement top

All atoms are positioned geometrically (C—H = 0.93 or 0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). One out of four phenyl rings is disordered over two positions with refined site-occupancies of 0.518 (8):0.482 (8). The maximum and minimum residual electron density peaks were located 0.84 and 0.86 Å, respectively, from atom Au1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with 30% probability ellipsoid for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Intermolecular interactions are shown as dashed lines.
[µ-1,6-Bis(diphenylarsanyl)hexane]bis[chloridogold(I)] top
Crystal data top
[Au2Cl2(C30H32As2)]Z = 2
Mr = 1007.23F(000) = 940
Triclinic, P1Dx = 2.231 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4881 (3) ÅCell parameters from 9948 reflections
b = 11.0350 (4) Åθ = 3.2–35.1°
c = 15.5254 (5) ŵ = 12.16 mm1
α = 69.723 (1)°T = 100 K
β = 83.959 (1)°Plate, colourless
γ = 79.814 (1)°0.37 × 0.22 × 0.09 mm
V = 1499.06 (9) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7451 independent reflections
Radiation source: fine-focus sealed tube6817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.094, Tmax = 0.407k = 1414
23816 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.921P]
where P = (Fo2 + 2Fc2)/3
7451 reflections(Δ/σ)max = 0.001
371 parametersΔρmax = 2.52 e Å3
0 restraintsΔρmin = 3.00 e Å3
Crystal data top
[Au2Cl2(C30H32As2)]γ = 79.814 (1)°
Mr = 1007.23V = 1499.06 (9) Å3
Triclinic, P1Z = 2
a = 9.4881 (3) ÅMo Kα radiation
b = 11.0350 (4) ŵ = 12.16 mm1
c = 15.5254 (5) ÅT = 100 K
α = 69.723 (1)°0.37 × 0.22 × 0.09 mm
β = 83.959 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7451 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6817 reflections with I > 2σ(I)
Tmin = 0.094, Tmax = 0.407Rint = 0.027
23816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.09Δρmax = 2.52 e Å3
7451 reflectionsΔρmin = 3.00 e Å3
371 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10.293305 (16)0.506581 (14)0.244387 (10)0.02413 (6)
Au20.485482 (16)0.400959 (15)0.158348 (11)0.02685 (6)
As10.35104 (4)0.28305 (4)0.16352 (3)0.02363 (9)
As20.29128 (5)0.36296 (4)0.26530 (3)0.02696 (10)
Cl10.22329 (12)0.72149 (10)0.33185 (7)0.0304 (2)
Cl20.67793 (11)0.42021 (11)0.05371 (7)0.0313 (2)
C10.5539 (4)0.2189 (4)0.1582 (3)0.0287 (8)
C20.6304 (4)0.2508 (4)0.0994 (3)0.0295 (8)
H2A0.58320.29550.06120.035*
C30.7788 (5)0.2148 (6)0.0986 (4)0.0404 (11)
H3A0.83090.23500.05920.048*
C40.8488 (5)0.1492 (7)0.1559 (5)0.0505 (15)
H4A0.94810.12720.15600.061*
C50.7712 (6)0.1161 (7)0.2133 (5)0.0550 (16)
H5A0.81840.06970.25050.066*
C60.6239 (5)0.1517 (6)0.2155 (4)0.0438 (12)
H6A0.57220.13100.25480.053*
C70.2716 (4)0.1765 (4)0.2167 (3)0.0273 (8)
C80.1984 (5)0.2365 (5)0.2958 (3)0.0323 (9)
H8A0.18720.32700.32280.039*
C90.1405 (5)0.1616 (5)0.3361 (4)0.0399 (11)
H9A0.09090.20200.38970.048*
C100.1578 (5)0.0266 (5)0.2953 (4)0.0375 (11)
H10A0.12020.02340.32210.045*
C110.2301 (5)0.0338 (5)0.2156 (4)0.0347 (10)
H11A0.24040.12420.18860.042*
C120.2882 (4)0.0404 (4)0.1750 (3)0.0301 (8)
H12A0.33720.00010.12110.036*
C130.2832 (4)0.2282 (4)0.0364 (3)0.0278 (8)
H13A0.30470.13390.00980.033*
H13B0.33230.26610.00250.033*
C140.1221 (5)0.2710 (5)0.0280 (3)0.0342 (10)
H14A0.07620.24920.07250.041*
H14B0.10370.36520.04360.041*
C150.0537 (5)0.2088 (6)0.0675 (3)0.0415 (12)
H15A0.04890.23830.06550.050*
H15B0.06850.11480.08160.050*
C160.1099 (5)0.2384 (5)0.1452 (3)0.0336 (9)
H16A0.06320.19210.20300.040*
H16B0.21200.20710.14900.040*
C170.0834 (5)0.3838 (5)0.1310 (3)0.0355 (10)
H17A0.01340.41900.11090.043*
H17B0.14880.42660.08200.043*
C180.1019 (5)0.4173 (5)0.2160 (3)0.0331 (9)
H18A0.03340.37750.26380.040*
H18B0.07810.51120.20120.040*
C190.3067 (5)0.1805 (4)0.3382 (3)0.0279 (8)
C200.1897 (5)0.1239 (5)0.3893 (3)0.0334 (9)
H20A0.09960.17410.38740.040*
C210.2088 (5)0.0067 (5)0.4425 (3)0.0359 (10)
H21A0.13070.04490.47490.043*
C220.3447 (5)0.0821 (5)0.4480 (3)0.0341 (9)
H22A0.35710.16950.48510.041*
C230.4612 (5)0.0265 (5)0.3983 (3)0.0333 (9)
H23A0.55160.07650.40190.040*
C240.4421 (5)0.1041 (4)0.3432 (3)0.0316 (9)
H24A0.51990.14110.30920.038*
C250.2720 (8)0.4463 (5)0.3575 (3)0.0541 (17)
C26A0.3553 (10)0.5057 (11)0.3781 (8)0.037 (2)0.482 (8)
H26A0.44470.50760.34710.044*0.482 (8)
C27A0.3295 (14)0.5701 (13)0.4428 (11)0.043 (3)0.482 (8)
H27A0.40240.60610.45610.052*0.482 (8)
C28A0.1990 (16)0.5802 (10)0.4860 (7)0.039 (3)0.482 (8)
H28A0.18370.62300.52900.047*0.482 (8)
C29A0.0882 (11)0.5285 (10)0.4680 (7)0.036 (2)0.482 (8)
H29A0.00090.53550.49880.043*0.482 (8)
C30A0.1120 (10)0.4651 (10)0.4023 (7)0.033 (2)0.482 (8)
H30A0.03770.43480.38520.039*0.482 (8)
C26B0.2438 (11)0.5670 (9)0.3417 (7)0.036 (2)0.518 (8)
H26B0.22530.62100.28170.043*0.518 (8)
C27B0.2385 (13)0.6253 (10)0.4094 (7)0.042 (2)0.518 (8)
H27B0.19750.71200.39870.050*0.518 (8)
C28B0.2962 (14)0.5497 (11)0.4922 (9)0.036 (2)0.518 (8)
H28B0.29540.58680.53770.044*0.518 (8)
C29B0.3554 (10)0.4201 (10)0.5098 (6)0.037 (2)0.518 (8)
H29B0.39490.37150.56610.044*0.518 (8)
C30B0.3556 (10)0.3630 (10)0.4433 (6)0.034 (2)0.518 (8)
H30B0.40340.27930.45000.041*0.518 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02936 (9)0.02235 (9)0.02283 (9)0.00656 (6)0.00161 (6)0.00885 (7)
Au20.02824 (9)0.02498 (10)0.02712 (10)0.00824 (6)0.00585 (6)0.00511 (7)
As10.02404 (18)0.02315 (19)0.0253 (2)0.00406 (14)0.00259 (14)0.00946 (16)
As20.0350 (2)0.0243 (2)0.0226 (2)0.00871 (16)0.00427 (16)0.00620 (16)
Cl10.0411 (5)0.0226 (4)0.0278 (5)0.0079 (4)0.0033 (4)0.0069 (4)
Cl20.0305 (5)0.0361 (5)0.0298 (5)0.0092 (4)0.0030 (4)0.0116 (4)
C10.0263 (18)0.029 (2)0.034 (2)0.0034 (15)0.0032 (16)0.0150 (18)
C20.0275 (19)0.032 (2)0.032 (2)0.0032 (16)0.0029 (16)0.0142 (18)
C30.029 (2)0.053 (3)0.050 (3)0.011 (2)0.0064 (19)0.026 (3)
C40.024 (2)0.069 (4)0.075 (4)0.004 (2)0.006 (2)0.046 (3)
C50.035 (2)0.080 (4)0.072 (4)0.003 (3)0.004 (2)0.058 (4)
C60.033 (2)0.061 (3)0.053 (3)0.007 (2)0.002 (2)0.039 (3)
C70.0267 (18)0.0243 (19)0.035 (2)0.0064 (15)0.0007 (15)0.0135 (17)
C80.033 (2)0.027 (2)0.040 (2)0.0030 (16)0.0113 (18)0.0135 (19)
C90.040 (2)0.040 (3)0.048 (3)0.002 (2)0.013 (2)0.024 (2)
C100.030 (2)0.039 (3)0.055 (3)0.0072 (18)0.0001 (19)0.030 (2)
C110.036 (2)0.026 (2)0.046 (3)0.0090 (17)0.0064 (19)0.016 (2)
C120.0281 (19)0.028 (2)0.036 (2)0.0052 (16)0.0008 (16)0.0132 (18)
C130.0281 (19)0.028 (2)0.024 (2)0.0030 (15)0.0063 (15)0.0047 (16)
C140.0244 (19)0.053 (3)0.024 (2)0.0065 (18)0.0038 (15)0.010 (2)
C150.036 (2)0.065 (3)0.027 (2)0.022 (2)0.0001 (18)0.013 (2)
C160.037 (2)0.039 (2)0.024 (2)0.0124 (19)0.0035 (16)0.0068 (18)
C170.030 (2)0.043 (3)0.029 (2)0.0099 (18)0.0066 (17)0.002 (2)
C180.031 (2)0.031 (2)0.032 (2)0.0022 (16)0.0019 (17)0.0061 (18)
C190.037 (2)0.025 (2)0.0221 (19)0.0090 (16)0.0050 (16)0.0045 (16)
C200.031 (2)0.031 (2)0.035 (2)0.0039 (17)0.0010 (17)0.0074 (19)
C210.038 (2)0.034 (2)0.033 (2)0.0120 (19)0.0027 (18)0.0069 (19)
C220.046 (3)0.027 (2)0.026 (2)0.0081 (18)0.0031 (18)0.0048 (18)
C230.036 (2)0.030 (2)0.033 (2)0.0034 (17)0.0032 (17)0.0093 (19)
C240.035 (2)0.029 (2)0.031 (2)0.0092 (17)0.0030 (17)0.0068 (18)
C250.113 (5)0.034 (3)0.022 (2)0.035 (3)0.002 (3)0.008 (2)
C26A0.029 (4)0.040 (5)0.048 (6)0.006 (4)0.003 (4)0.023 (5)
C27A0.040 (6)0.052 (7)0.049 (8)0.008 (6)0.006 (6)0.030 (7)
C28A0.060 (8)0.033 (5)0.028 (5)0.008 (5)0.000 (5)0.015 (4)
C29A0.036 (5)0.038 (5)0.031 (5)0.001 (4)0.001 (4)0.010 (4)
C30A0.033 (4)0.039 (5)0.031 (5)0.007 (4)0.003 (4)0.018 (4)
C26B0.049 (5)0.030 (4)0.029 (4)0.006 (4)0.006 (4)0.010 (4)
C27B0.057 (7)0.035 (5)0.041 (6)0.010 (5)0.004 (5)0.023 (4)
C28B0.040 (6)0.049 (6)0.031 (6)0.013 (5)0.004 (5)0.025 (5)
C29B0.042 (5)0.044 (5)0.026 (4)0.012 (4)0.002 (3)0.010 (4)
C30B0.036 (4)0.035 (5)0.031 (4)0.004 (4)0.005 (3)0.011 (4)
Geometric parameters (Å, º) top
Au1—Cl12.3043 (10)C16—C171.520 (7)
Au1—As12.3411 (4)C16—H16A0.9700
Au2—Cl22.3005 (10)C16—H16B0.9700
Au2—As22.3398 (5)C17—C181.524 (7)
As1—C131.929 (4)C17—H17A0.9700
As1—C11.930 (4)C17—H17B0.9700
As1—C71.937 (4)C18—H18A0.9700
As2—C191.925 (4)C18—H18B0.9700
As2—C251.931 (5)C19—C241.400 (6)
As2—C181.940 (4)C19—C201.403 (6)
C1—C21.392 (6)C20—C211.380 (7)
C1—C61.394 (6)C20—H20A0.9300
C2—C31.393 (6)C21—C221.399 (7)
C2—H2A0.9300C21—H21A0.9300
C3—C41.382 (8)C22—C231.387 (7)
C3—H3A0.9300C22—H22A0.9300
C4—C51.390 (7)C23—C241.388 (7)
C4—H4A0.9300C23—H23A0.9300
C5—C61.384 (7)C24—H24A0.9300
C5—H5A0.9300C25—C26A1.240 (11)
C6—H6A0.9300C25—C26B1.251 (11)
C7—C81.373 (6)C25—C30B1.537 (11)
C7—C121.400 (6)C25—C30A1.611 (12)
C8—C91.402 (6)C26A—C27A1.398 (16)
C8—H8A0.9300C26A—H26A0.9300
C9—C101.389 (8)C27A—C28A1.351 (18)
C9—H9A0.9300C27A—H27A0.9300
C10—C111.374 (8)C28A—C29A1.375 (16)
C10—H10A0.9300C28A—H28A0.9300
C11—C121.401 (6)C29A—C30A1.404 (13)
C11—H11A0.9300C29A—H29A0.9300
C12—H12A0.9300C30A—H30A0.9300
C13—C141.524 (6)C26B—C27B1.403 (12)
C13—H13A0.9700C26B—H26B0.9300
C13—H13B0.9700C27B—C28B1.376 (17)
C14—C151.530 (6)C27B—H27B0.9300
C14—H14A0.9700C28B—C29B1.383 (16)
C14—H14B0.9700C28B—H28B0.9300
C15—C161.523 (6)C29B—C30B1.383 (13)
C15—H15A0.9700C29B—H29B0.9300
C15—H15B0.9700C30B—H30B0.9300
Cl1—Au1—As1174.77 (3)C15—C16—H16B109.2
Cl2—Au2—As2175.14 (3)H16A—C16—H16B107.9
C13—As1—C1103.67 (19)C16—C17—C18114.4 (4)
C13—As1—C7104.75 (18)C16—C17—H17A108.7
C1—As1—C7105.48 (17)C18—C17—H17A108.7
C13—As1—Au1115.15 (13)C16—C17—H17B108.7
C1—As1—Au1114.54 (14)C18—C17—H17B108.7
C7—As1—Au1112.21 (14)H17A—C17—H17B107.6
C19—As2—C25102.5 (2)C17—C18—As2115.9 (3)
C19—As2—C18107.7 (2)C17—C18—H18A108.3
C25—As2—C18101.2 (3)As2—C18—H18A108.3
C19—As2—Au2110.57 (14)C17—C18—H18B108.3
C25—As2—Au2117.1 (2)As2—C18—H18B108.3
C18—As2—Au2116.39 (14)H18A—C18—H18B107.4
C2—C1—C6120.8 (4)C24—C19—C20119.4 (4)
C2—C1—As1117.3 (3)C24—C19—As2118.0 (3)
C6—C1—As1121.8 (3)C20—C19—As2122.6 (3)
C1—C2—C3119.1 (4)C21—C20—C19119.7 (4)
C1—C2—H2A120.5C21—C20—H20A120.1
C3—C2—H2A120.5C19—C20—H20A120.1
C4—C3—C2120.4 (4)C20—C21—C22120.5 (4)
C4—C3—H3A119.8C20—C21—H21A119.7
C2—C3—H3A119.8C22—C21—H21A119.7
C3—C4—C5120.1 (5)C23—C22—C21120.1 (4)
C3—C4—H4A120.0C23—C22—H22A120.0
C5—C4—H4A120.0C21—C22—H22A120.0
C6—C5—C4120.3 (5)C22—C23—C24119.7 (4)
C6—C5—H5A119.8C22—C23—H23A120.2
C4—C5—H5A119.8C24—C23—H23A120.2
C5—C6—C1119.3 (4)C23—C24—C19120.6 (4)
C5—C6—H6A120.3C23—C24—H24A119.7
C1—C6—H6A120.3C19—C24—H24A119.7
C8—C7—C12120.5 (4)C26A—C25—C26B59.0 (7)
C8—C7—As1118.9 (3)C26A—C25—C30B66.8 (7)
C12—C7—As1120.6 (3)C26B—C25—C30B117.9 (7)
C7—C8—C9120.1 (4)C26A—C25—C30A113.6 (7)
C7—C8—H8A120.0C26B—C25—C30A76.6 (7)
C9—C8—H8A120.0C30B—C25—C30A101.0 (6)
C10—C9—C8119.5 (5)C26A—C25—As2130.7 (7)
C10—C9—H9A120.2C26B—C25—As2124.9 (6)
C8—C9—H9A120.2C30B—C25—As2112.5 (5)
C11—C10—C9120.6 (4)C30A—C25—As2114.6 (5)
C11—C10—H10A119.7C25—C26A—C27A127.1 (10)
C9—C10—H10A119.7C25—C26A—H26A116.5
C10—C11—C12120.2 (5)C27A—C26A—H26A116.5
C10—C11—H11A119.9C28A—C27A—C26A120.3 (10)
C12—C11—H11A119.9C28A—C27A—H27A119.9
C7—C12—C11119.1 (4)C26A—C27A—H27A119.9
C7—C12—H12A120.5C27A—C28A—C29A121.6 (9)
C11—C12—H12A120.5C27A—C28A—H28A119.2
C14—C13—As1110.6 (3)C29A—C28A—H28A119.2
C14—C13—H13A109.5C28A—C29A—C30A118.7 (9)
As1—C13—H13A109.5C28A—C29A—H29A120.6
C14—C13—H13B109.5C30A—C29A—H29A120.6
As1—C13—H13B109.5C29A—C30A—C25118.1 (8)
H13A—C13—H13B108.1C29A—C30A—H30A121.0
C13—C14—C15114.2 (4)C25—C30A—H30A121.0
C13—C14—H14A108.7C25—C26B—C27B123.6 (9)
C15—C14—H14A108.7C25—C26B—H26B118.2
C13—C14—H14B108.7C27B—C26B—H26B118.2
C15—C14—H14B108.7C28B—C27B—C26B117.6 (10)
H14A—C14—H14B107.6C28B—C27B—H27B121.2
C16—C15—C14115.4 (4)C26B—C27B—H27B121.2
C16—C15—H15A108.4C27B—C28B—C29B122.0 (10)
C14—C15—H15A108.4C27B—C28B—H28B119.0
C16—C15—H15B108.4C29B—C28B—H28B119.0
C14—C15—H15B108.4C30B—C29B—C28B119.7 (9)
H15A—C15—H15B107.5C30B—C29B—H29B120.2
C17—C16—C15111.8 (4)C28B—C29B—H29B120.2
C17—C16—H16A109.2C29B—C30B—C25116.0 (8)
C15—C16—H16A109.2C29B—C30B—H30B122.0
C17—C16—H16B109.2C25—C30B—H30B122.0
C13—As1—C1—C251.8 (4)C24—C19—C20—C211.1 (7)
C7—As1—C1—C2161.6 (4)As2—C19—C20—C21178.0 (4)
Au1—As1—C1—C274.5 (4)C19—C20—C21—C222.0 (7)
C13—As1—C1—C6132.9 (5)C20—C21—C22—C231.4 (7)
C7—As1—C1—C623.0 (5)C21—C22—C23—C240.1 (7)
Au1—As1—C1—C6100.9 (4)C22—C23—C24—C190.8 (7)
C6—C1—C2—C30.1 (8)C20—C19—C24—C230.2 (7)
As1—C1—C2—C3175.2 (4)As2—C19—C24—C23176.8 (3)
C1—C2—C3—C40.5 (8)C19—As2—C25—C26A111.1 (9)
C2—C3—C4—C51.5 (10)C18—As2—C25—C26A137.7 (9)
C3—C4—C5—C61.9 (12)Au2—As2—C25—C26A10.1 (9)
C4—C5—C6—C11.2 (11)C19—As2—C25—C26B172.1 (8)
C2—C1—C6—C50.3 (9)C18—As2—C25—C26B60.9 (8)
As1—C1—C6—C5175.4 (5)Au2—As2—C25—C26B66.7 (9)
C13—As1—C7—C8128.8 (4)C19—As2—C25—C30B33.0 (6)
C1—As1—C7—C8122.1 (4)C18—As2—C25—C30B144.2 (5)
Au1—As1—C7—C83.2 (4)Au2—As2—C25—C30B88.2 (5)
C13—As1—C7—C1251.0 (4)C19—As2—C25—C30A81.7 (6)
C1—As1—C7—C1258.0 (4)C18—As2—C25—C30A29.6 (6)
Au1—As1—C7—C12176.6 (3)Au2—As2—C25—C30A157.2 (5)
C12—C7—C8—C90.5 (7)C26B—C25—C26A—C27A64.7 (13)
As1—C7—C8—C9179.6 (4)C30B—C25—C26A—C27A83.6 (14)
C7—C8—C9—C100.0 (7)C30A—C25—C26A—C27A8.7 (16)
C8—C9—C10—C110.5 (8)As2—C25—C26A—C27A176.0 (10)
C9—C10—C11—C120.5 (7)C25—C26A—C27A—C28A5 (2)
C8—C7—C12—C110.5 (6)C26A—C27A—C28A—C29A0 (2)
As1—C7—C12—C11179.6 (3)C27A—C28A—C29A—C30A0.6 (18)
C10—C11—C12—C70.0 (7)C28A—C29A—C30A—C254.8 (15)
C1—As1—C13—C14179.7 (3)C26A—C25—C30A—C29A8.6 (13)
C7—As1—C13—C1469.3 (4)C26B—C25—C30A—C29A55.6 (10)
Au1—As1—C13—C1454.4 (3)C30B—C25—C30A—C29A60.7 (10)
As1—C13—C14—C15168.3 (3)As2—C25—C30A—C29A178.1 (7)
C13—C14—C15—C1660.8 (7)C26A—C25—C26B—C27B55.6 (11)
C14—C15—C16—C1761.3 (6)C30B—C25—C26B—C27B22.5 (14)
C15—C16—C17—C18165.4 (4)C30A—C25—C26B—C27B73.0 (11)
C16—C17—C18—As261.0 (5)As2—C25—C26B—C27B176.2 (8)
C19—As2—C18—C1780.8 (4)C25—C26B—C27B—C28B14.1 (17)
C25—As2—C18—C17172.0 (4)C26B—C27B—C28B—C29B1.1 (18)
Au2—As2—C18—C1744.0 (4)C27B—C28B—C29B—C30B0.9 (17)
C25—As2—C19—C24104.7 (4)C28B—C29B—C30B—C257.1 (13)
C18—As2—C19—C24149.0 (3)C26A—C25—C30B—C29B49.4 (9)
Au2—As2—C19—C2420.8 (4)C26B—C25—C30B—C29B18.8 (12)
C25—As2—C19—C2072.2 (4)C30A—C25—C30B—C29B61.8 (9)
C18—As2—C19—C2034.1 (4)As2—C25—C30B—C29B175.6 (6)
Au2—As2—C19—C20162.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···Cl2i0.972.793.754 (5)172
C18—H18A···Cl1ii0.972.803.701 (5)155
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Au2Cl2(C30H32As2)]
Mr1007.23
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.4881 (3), 11.0350 (4), 15.5254 (5)
α, β, γ (°)69.723 (1), 83.959 (1), 79.814 (1)
V3)1499.06 (9)
Z2
Radiation typeMo Kα
µ (mm1)12.16
Crystal size (mm)0.37 × 0.22 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.094, 0.407
No. of measured, independent and
observed [I > 2σ(I)] reflections
23816, 7451, 6817
Rint0.027
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.09
No. of reflections7451
No. of parameters371
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.52, 3.00

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Au1—Cl12.3043 (10)Au2—Cl22.3005 (10)
Au1—As12.3411 (4)Au2—As22.3398 (5)
Cl1—Au1—As1174.77 (3)Cl2—Au2—As2175.14 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···Cl2i0.972.793.754 (5)172
C18—H18A···Cl1ii0.972.803.701 (5)155
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: B-6034-2009.

§Thomson Reuters ResearcherID: E-3180-2011.

Thomson Reuters ResearcherID: A-5523-2009.

‡‡Thomson Reuters ResearcherID: A-3651-2009.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the University Research Grant 1001/PJJAUH/811115. AT is grateful to USM for a post-doctoral Fellowship. IAK is grateful to USM for a Visiting Research Fellowship and to Gokhale Centenary College, Ankola, India, for study leave. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrancis, C. P. (1901). J. Am. Chem. Soc. 23, 250–258.  Google Scholar
First citationHill, W. E., Minahan, D. M. A. & McAuliffe, C. A. (1983). Inorg. Chem. 22, 3382–3387.  CrossRef CAS Web of Science Google Scholar
First citationParish, R. & Cottrill, S. M. (1987). Gold Bull. 20, 3–12.  CrossRef CAS Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2591–o2592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Tariq, A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m1535–m1536.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2002). Crit. Rev. Oncol. Hematol. 42, 225–248.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m427-m428
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds