metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m477-m478

(Di-2-pyridyl­amine-κ2N,N′)[hydro­tris­­(3,5-di­phenyl­pyrazol-1-yl-κN2)borato]nickel(II) bromide di­chloro­methane monosolvate

aMolecular Technology Research Unit, School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand, and bDepartment of Chemistry, Faculty of Science, University of Sheffield, Brook Hill, Sheffield S3 7HF, England
*Correspondence e-mail: hdavid@wu.ac.th

(Received 14 March 2011; accepted 18 March 2011; online 23 March 2011)

In the title compound, [Ni(C45H34BN6)(C10H9N3)]Br·CH2Cl2, the NiII atom is five-coordinated by the tridentate hydro­tris­(3,5-diphenyl­pyrazol­yl)borate ligand and a bidentate di-2-pyridyl­amine ligand in a distorted square-pyramidal geometry. In the crystal, inter­molecular N—H⋯Br and C—H⋯Br hydrogen bonds link the Ni complex cations and the Br ions, forming a chain along the c axis.

Related literature

For related structures of NiII complexes with substituted tris­(pyrazol­yl)borate ligands, see: Harding et al. (2007[Harding, D. J., Harding, P., Adams, H. & Tuntulani, T. (2007). Inorg. Chim. Acta, 360, 3335-3340.], 2010[Harding, D. J., Harding, P., Kivnang, J. & Adams, H. (2010). Transition Met. Chem. 35, 521-526.]); Uehara et al. (2002[Uehara, K., Hikichi, S. & Akita, M. (2002). J. Chem. Soc. Dalton Trans. pp. 3529-3538.]); Trofimenko (1999[Trofimenko, S. (1999). Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands. London: Imperial College Press.]). For related structures of NiII complexes with dipyridyl­amine, see: Lu et al. (2001[Lu, J. Y., Schroeder, T. J., Babb, A. M. & Olmstead, M. (2001). Polyhedron, 20, 2445-2449.]); Rahaman et al. (2005[Rahaman, S. H., Bose, D., Chowdhury, H., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 1837-1844.]); Uddin et al. (1997[Uddin, M., Hatzidimitriou, A. G., Lalia-Kantouri, M. & Tsiamis, C. (1997). Struct. Chem. 8, 131-139.]). For a discussion on trigonality in five-coordinate complexes, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C45H34BN6)(C10H9N3)]Br·CH2Cl2

  • Mr = 1064.34

  • Triclinic, [P \overline 1]

  • a = 10.3263 (13) Å

  • b = 13.9040 (16) Å

  • c = 17.622 (2) Å

  • α = 91.314 (6)°

  • β = 99.245 (6)°

  • γ = 101.968 (6)°

  • V = 2438.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 150 K

  • 0.39 × 0.38 × 0.32 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.616, Tmax = 0.667

  • 44352 measured reflections

  • 11127 independent reflections

  • 9003 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.161

  • S = 1.11

  • 11127 reflections

  • 631 parameters

  • H-atom parameters constrained

  • Δρmax = 1.40 e Å−3

  • Δρmin = −1.66 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N2 2.006 (2)
Ni1—N8 2.024 (2)
Ni1—N7 2.032 (2)
Ni1—N6 2.072 (2)
Ni1—N4 2.078 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯Br1i 0.88 2.41 3.265 (2) 165
C52—H52⋯Br1i 0.95 2.92 3.706 (3) 140
C31—H31⋯Br1ii 0.95 2.91 3.858 (3) 172
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Tris(pyrazolyl)borates are versatile and popular ligands in coordination chemistry with many complexes now known (Trofimenko, 1999). While neutral half-sandwich complexes are common, [TpRNiX] (TpR = substituted tris(pyrazolyl)borate, X = monoanionic ligand) cationic species are limited to those reported by Akita and co-workers and our research group (Uehara et al., 2002; Harding et al., 2010).

The title compound, [TpPh2Ni(dpa)]Br 1 (dpa = di-2-pyridylamine), crystallizes in the triclinic, P1 space group with one molecule of dicholormethane. The structure is shown in Figure 1 while important bond lengths and angles are given in the supporting tables. The nickel metal centre is five coordinate with the TpPh2 ligand κ3-coordinated resulting in a geometry best described as square pyramidal (τ = 0.23; Addison et al., 1984). The Ni—N bond lengths for the TpPh2 ligand are typical of [TpRNi(N—N)]+ (N—N = neutral nitrogen donor) complexes although the difference between the apical and equatorial Ni—N bond distances is larger; ΔNi-N = 0.07 Å for 1 cf. ΔNi-N = 0.04 Å for [TpPh,MeNi(bpym)]PF6 (Harding et al., 2010). The Ni—N bond lengths are also somewhat shorter than previously reported where values are between 2.029–2.121 Å (Lu et al., 2001; Rahaman et al., 2005; Uddin et al., 1997). The dihedral angle between the two pyridine rings is 22.5° and thus the ligand adopts a boat conformation as found in other Ni-dpa compounds {21.9 and 28.1° in [Ni(dpa)2(N3)2] (Rahaman et al., 2005); 24.7° in [Ni(dpa)2(acac)]NO3 (Uddin et al., 1997)}.

The packing in the structure principally involves an N—H···Br hydrogen bond and two C—H···Br interactions (Table 2). These combine to form one-dimensional chains of nickel cations separated by the bromide anions (Fig. 2). Further chains are found above and below the chain shown with the direction of the chain alternating throughout the structure. Interestingly, the supramolecular motif exhibited by the dpa ligand towards the bromide anion in 1 has previously been reported in the structure of [Ni(oxalate)(dpa)] although in this instance the interactions are between the N—H and C—H groups of the dpa ligand and a coordinated oxygen atom of the oxalate ligand (Lu et al., 2001).

Related literature top

For related structures of NiII complexes with substituted tris(pyrazolyl)borate ligands, see: Harding et al. (2007, 2010); Uehara et al. (2002); Trofimenko (1999). For related structures of NiII complexes with dipyridylamine, see: Lu et al. (2001); Rahaman et al. (2005); Uddin et al. (1997). For a discussion on trigonality in five-coordinate complexes, see: Addison et al. (1984).

Experimental top

TpNiBr (162 mg, 0.20 mmol; Harding et al., 2007) was dissolved in CH2Cl2 (10 ml) giving a deep pink solution and then stirred for 5 min. di-2-pyridylamine (35 mg, 0.20 mmol) was added giving a green solution. The solution was stirred for 2 hrs and filtered through celite. The resulting green solution was layered with hexanes (30 ml). After two days red-brown crystals appeared. These were washed with EtOH (3 × 3 ml) and hexanes (2 × 5 ml) (157 mg, 74%). νmax(KBr)/cm-1 3379, (νNH), 3066w, 3045w, (νCH), 2634w (νBH). m/z (ESI) 898 [M—Br-]+. Anal. Calc. for C56H45N9BBrCl2Ni [TpPh2Ni(pyNHpy)]Br.CH2Cl2: C 63.16, H 4.26, N 11.85%; found: C 63.44, H 4.08, N, 12.02%.

Refinement top

Hydrogen atoms were placed geometrically and refined with a riding model and with Uiso constrained to be 1.2 (CH, NH or BH) or 1.5 (CH2) times Ueq of the carrier atom. The highest residual peak and the deepest hole in the difference Fourier map are located 0.87 and 0.81 Å, respectively, from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Hydrogen atoms have been removed for clarity. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing in the title compound, showing the N—H···Br and C—H···Br interactions that form the one-dimensional chains in the structure. Only selected atoms are labelled or shown for clarity [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x, y, z - 1; (iii) 1 - x, 1 - y, -z; (iv) 1 - x, 1 - y, 2 - z; (v) x, y, z + 1].
(Di-2-pyridylamine-κ2N,N')[hydrotris(3,5-diphenylpyrazol- 1-yl-κN2)borato]nickel(II) bromide dichloromethane monosolvate top
Crystal data top
[Ni(C45H34BN6)(C10H9N3)]Br·CH2Cl2Z = 2
Mr = 1064.34F(000) = 1092
Triclinic, P1Dx = 1.449 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3263 (13) ÅCell parameters from 9896 reflections
b = 13.9040 (16) Åθ = 2.2–27.6°
c = 17.622 (2) ŵ = 1.38 mm1
α = 91.314 (6)°T = 150 K
β = 99.245 (6)°Block, red
γ = 101.968 (6)°0.39 × 0.38 × 0.32 mm
V = 2438.8 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
11127 independent reflections
Radiation source: fine-focus sealed tube9003 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 27.8°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1313
Tmin = 0.616, Tmax = 0.667k = 1818
44352 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1045P)2]
where P = (Fo2 + 2Fc2)/3
11127 reflections(Δ/σ)max = 0.002
631 parametersΔρmax = 1.40 e Å3
0 restraintsΔρmin = 1.66 e Å3
Crystal data top
[Ni(C45H34BN6)(C10H9N3)]Br·CH2Cl2γ = 101.968 (6)°
Mr = 1064.34V = 2438.8 (5) Å3
Triclinic, P1Z = 2
a = 10.3263 (13) ÅMo Kα radiation
b = 13.9040 (16) ŵ = 1.38 mm1
c = 17.622 (2) ÅT = 150 K
α = 91.314 (6)°0.39 × 0.38 × 0.32 mm
β = 99.245 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
11127 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
9003 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.667Rint = 0.061
44352 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.11Δρmax = 1.40 e Å3
11127 reflectionsΔρmin = 1.66 e Å3
631 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.17841 (3)0.77166 (2)0.740382 (18)0.01490 (11)
Br10.71112 (3)0.348348 (18)0.589511 (15)0.02187 (10)
B10.1614 (3)0.7995 (2)0.91011 (17)0.0167 (6)
H10.15240.80860.96530.020*
N10.0212 (2)0.75539 (15)0.86037 (12)0.0154 (5)
N20.0066 (2)0.76151 (15)0.78204 (12)0.0163 (5)
N30.2582 (2)0.72881 (15)0.90199 (12)0.0154 (5)
N40.2806 (2)0.70719 (15)0.82967 (12)0.0175 (5)
N50.2252 (2)0.89938 (15)0.87984 (12)0.0164 (5)
N60.2588 (2)0.90142 (16)0.80706 (12)0.0169 (5)
N70.1159 (2)0.63742 (15)0.68289 (12)0.0159 (5)
N80.1395 (2)0.83385 (15)0.63884 (12)0.0172 (5)
N90.1782 (2)0.69877 (16)0.56775 (13)0.0201 (5)
H90.22200.68530.53130.024*
C10.1233 (3)0.72381 (18)0.75315 (15)0.0167 (5)
C20.1929 (3)0.69319 (19)0.81296 (15)0.0191 (6)
H20.28580.66430.80860.023*
C30.0993 (3)0.71340 (18)0.87993 (15)0.0172 (5)
C40.3598 (3)0.64079 (19)0.83670 (16)0.0181 (6)
C50.3875 (3)0.61909 (19)0.91359 (16)0.0193 (6)
H50.44020.57440.93430.023*
C60.3223 (3)0.67601 (18)0.95385 (15)0.0172 (5)
C70.3332 (3)0.99165 (19)0.80075 (15)0.0183 (6)
C80.3454 (3)1.04946 (19)0.86828 (15)0.0204 (6)
H80.39041.11650.87830.024*
C90.2790 (3)0.98969 (18)0.91788 (15)0.0182 (5)
C100.1756 (3)0.71772 (18)0.66903 (15)0.0172 (5)
C110.2090 (3)0.62684 (19)0.62742 (15)0.0190 (6)
H110.19580.56900.65250.023*
C120.2617 (3)0.6208 (2)0.54935 (16)0.0230 (6)
H120.28400.55890.52120.028*
C130.2819 (3)0.7046 (2)0.51233 (16)0.0268 (7)
H130.31660.70010.45880.032*
C140.2515 (3)0.7950 (2)0.55343 (18)0.0300 (7)
H140.26710.85230.52840.036*
C150.1980 (3)0.8013 (2)0.63165 (16)0.0244 (6)
H150.17670.86330.65970.029*
C160.1198 (3)0.69039 (19)0.95942 (15)0.0194 (6)
C170.2312 (3)0.7111 (2)0.98612 (17)0.0271 (7)
H170.29020.74340.95440.033*
C180.2570 (3)0.6849 (2)1.05885 (19)0.0337 (7)
H180.33350.69931.07650.040*
C190.1708 (3)0.6378 (2)1.10556 (17)0.0305 (7)
H190.18710.62101.15560.037*
C200.0605 (3)0.6154 (2)1.07857 (17)0.0291 (7)
H200.00230.58201.10990.035*
C210.0354 (3)0.6417 (2)1.00588 (16)0.0238 (6)
H210.04020.62630.98780.029*
C220.4052 (3)0.6003 (2)0.76987 (15)0.0182 (6)
C230.4300 (3)0.6555 (2)0.70647 (16)0.0211 (6)
H230.42160.72220.70690.025*
C240.4666 (3)0.6145 (2)0.64297 (17)0.0256 (6)
H240.48230.65280.60010.031*
C250.4805 (3)0.5171 (2)0.64191 (17)0.0263 (7)
H250.50430.48840.59820.032*
C260.4593 (3)0.4626 (2)0.70501 (18)0.0268 (7)
H260.47050.39640.70470.032*
C270.4221 (3)0.5027 (2)0.76876 (16)0.0223 (6)
H270.40810.46410.81170.027*
C280.3184 (3)0.6792 (2)1.03712 (15)0.0181 (6)
C290.2987 (3)0.5906 (2)1.07436 (16)0.0226 (6)
H290.29020.53011.04590.027*
C300.2915 (3)0.5901 (2)1.15211 (17)0.0272 (7)
H300.27810.52961.17660.033*
C310.3041 (3)0.6788 (2)1.19455 (17)0.0277 (7)
H310.29870.67861.24790.033*
C320.3245 (3)0.7671 (2)1.15847 (16)0.0258 (7)
H320.33330.82741.18730.031*
C330.3322 (3)0.7679 (2)1.08051 (16)0.0206 (6)
H330.34690.82881.05640.025*
C340.3926 (3)1.01965 (19)0.73153 (16)0.0195 (6)
C350.4073 (3)1.1167 (2)0.70869 (16)0.0236 (6)
H350.37891.16430.73790.028*
C360.4633 (3)1.1438 (2)0.64353 (17)0.0286 (7)
H360.47181.20950.62800.034*
C370.5063 (3)1.0755 (2)0.60158 (18)0.0320 (7)
H370.54441.09420.55710.038*
C380.4943 (3)0.9794 (2)0.62384 (17)0.0300 (7)
H380.52320.93230.59440.036*
C390.4395 (3)0.9522 (2)0.68946 (16)0.0217 (6)
H390.43420.88700.70560.026*
C400.2741 (3)1.01458 (18)0.99895 (15)0.0172 (5)
C410.1596 (3)0.9867 (2)1.03282 (16)0.0215 (6)
H410.08030.94701.00380.026*
C420.1612 (3)1.0169 (2)1.10893 (17)0.0248 (6)
H420.08300.99801.13160.030*
C430.2772 (3)1.0748 (2)1.15167 (16)0.0260 (7)
H430.27811.09511.20360.031*
C440.3913 (3)1.1028 (2)1.11900 (16)0.0230 (6)
H440.47051.14231.14840.028*
C450.3897 (3)1.07291 (19)1.04271 (16)0.0205 (6)
H450.46811.09241.02020.025*
C460.0691 (3)0.55904 (19)0.72256 (16)0.0186 (6)
H460.05110.57110.77270.022*
C470.0465 (3)0.4634 (2)0.69425 (17)0.0224 (6)
H470.01380.41030.72390.027*
C480.0729 (3)0.4465 (2)0.62035 (16)0.0240 (6)
H480.05910.38110.59900.029*
C490.1187 (3)0.52491 (19)0.57875 (16)0.0206 (6)
H490.13850.51440.52880.025*
C500.1360 (3)0.62104 (19)0.61122 (15)0.0173 (5)
C510.1619 (3)0.79498 (18)0.57285 (15)0.0182 (6)
C520.1712 (3)0.84904 (19)0.50696 (16)0.0214 (6)
H520.19050.82060.46160.026*
C530.1520 (3)0.9442 (2)0.50915 (16)0.0238 (6)
H530.15850.98240.46540.029*
C540.1228 (3)0.98380 (19)0.57604 (16)0.0232 (6)
H540.10761.04880.57850.028*
C550.1166 (3)0.92684 (19)0.63817 (16)0.0207 (6)
H550.09500.95370.68340.025*
C1S0.9342 (3)0.1996 (2)0.72085 (19)0.0298 (7)
H1S10.93970.21960.77570.036*
H1S20.89020.24550.68920.036*
Cl10.83690 (9)0.07892 (6)0.70135 (5)0.0398 (2)
Cl21.09888 (9)0.20725 (6)0.70032 (6)0.0431 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0163 (2)0.01283 (17)0.01686 (19)0.00606 (13)0.00296 (14)0.00015 (13)
Br10.02777 (19)0.01687 (15)0.02382 (17)0.00711 (12)0.00983 (12)0.00051 (11)
B10.0167 (15)0.0161 (14)0.0186 (14)0.0077 (11)0.0019 (12)0.0002 (11)
N10.0170 (12)0.0135 (10)0.0184 (11)0.0083 (8)0.0040 (9)0.0003 (8)
N20.0179 (12)0.0141 (10)0.0180 (11)0.0056 (8)0.0037 (9)0.0014 (8)
N30.0151 (11)0.0163 (10)0.0154 (10)0.0060 (8)0.0008 (8)0.0002 (8)
N40.0207 (12)0.0144 (10)0.0193 (11)0.0071 (9)0.0051 (9)0.0005 (8)
N50.0186 (12)0.0165 (11)0.0162 (10)0.0081 (9)0.0034 (9)0.0000 (8)
N60.0189 (12)0.0161 (10)0.0169 (11)0.0056 (9)0.0040 (9)0.0016 (8)
N70.0153 (11)0.0151 (10)0.0186 (11)0.0068 (8)0.0024 (9)0.0009 (8)
N80.0160 (12)0.0152 (10)0.0211 (11)0.0055 (8)0.0028 (9)0.0004 (9)
N90.0261 (13)0.0185 (11)0.0213 (11)0.0123 (9)0.0105 (10)0.0011 (9)
C10.0167 (14)0.0121 (12)0.0226 (13)0.0068 (10)0.0030 (11)0.0012 (10)
C20.0165 (14)0.0165 (12)0.0251 (14)0.0052 (10)0.0041 (11)0.0001 (10)
C30.0180 (14)0.0120 (11)0.0245 (13)0.0089 (10)0.0048 (11)0.0007 (10)
C40.0163 (14)0.0138 (12)0.0253 (14)0.0050 (10)0.0044 (11)0.0002 (10)
C50.0178 (14)0.0165 (12)0.0265 (14)0.0108 (10)0.0027 (11)0.0015 (10)
C60.0159 (14)0.0145 (12)0.0211 (13)0.0053 (10)0.0004 (11)0.0011 (10)
C70.0189 (14)0.0144 (12)0.0234 (14)0.0087 (10)0.0023 (11)0.0027 (10)
C80.0215 (15)0.0153 (12)0.0243 (14)0.0062 (10)0.0008 (11)0.0006 (10)
C90.0200 (14)0.0129 (12)0.0233 (13)0.0083 (10)0.0024 (11)0.0006 (10)
C100.0151 (14)0.0165 (12)0.0211 (13)0.0061 (10)0.0033 (11)0.0002 (10)
C110.0156 (14)0.0178 (13)0.0247 (14)0.0080 (10)0.0013 (11)0.0010 (11)
C120.0223 (15)0.0237 (14)0.0245 (14)0.0098 (11)0.0037 (12)0.0063 (11)
C130.0294 (17)0.0305 (16)0.0190 (14)0.0055 (13)0.0007 (12)0.0002 (12)
C140.0379 (19)0.0219 (14)0.0289 (16)0.0089 (13)0.0022 (14)0.0074 (12)
C150.0279 (16)0.0156 (13)0.0277 (15)0.0041 (11)0.0002 (12)0.0006 (11)
C160.0226 (15)0.0144 (12)0.0220 (13)0.0050 (10)0.0047 (11)0.0003 (10)
C170.0296 (17)0.0285 (15)0.0284 (15)0.0145 (13)0.0089 (13)0.0059 (12)
C180.0361 (19)0.0382 (18)0.0349 (17)0.0157 (15)0.0188 (15)0.0074 (14)
C190.0322 (18)0.0357 (17)0.0228 (15)0.0042 (14)0.0057 (13)0.0068 (13)
C200.0241 (16)0.0337 (17)0.0276 (16)0.0031 (13)0.0010 (12)0.0115 (13)
C210.0187 (15)0.0257 (14)0.0273 (15)0.0064 (11)0.0023 (12)0.0042 (12)
C220.0124 (13)0.0213 (13)0.0227 (13)0.0100 (10)0.0003 (10)0.0020 (10)
C230.0172 (14)0.0217 (13)0.0273 (14)0.0098 (11)0.0053 (11)0.0013 (11)
C240.0224 (16)0.0322 (16)0.0254 (15)0.0104 (12)0.0070 (12)0.0021 (12)
C250.0197 (15)0.0327 (16)0.0282 (15)0.0106 (12)0.0037 (12)0.0088 (13)
C260.0240 (16)0.0212 (14)0.0385 (17)0.0126 (12)0.0051 (13)0.0039 (12)
C270.0223 (15)0.0208 (14)0.0263 (14)0.0099 (11)0.0048 (12)0.0016 (11)
C280.0138 (13)0.0217 (13)0.0199 (13)0.0086 (10)0.0004 (10)0.0011 (10)
C290.0213 (15)0.0225 (14)0.0253 (14)0.0093 (11)0.0012 (12)0.0029 (11)
C300.0240 (16)0.0310 (16)0.0291 (15)0.0107 (12)0.0035 (12)0.0120 (12)
C310.0245 (16)0.0416 (18)0.0193 (14)0.0123 (13)0.0030 (12)0.0043 (13)
C320.0227 (16)0.0311 (16)0.0235 (14)0.0098 (12)0.0008 (12)0.0044 (12)
C330.0158 (14)0.0211 (13)0.0239 (14)0.0048 (10)0.0005 (11)0.0018 (11)
C340.0166 (14)0.0189 (13)0.0217 (13)0.0030 (10)0.0004 (11)0.0019 (10)
C350.0223 (15)0.0199 (13)0.0263 (14)0.0024 (11)0.0000 (12)0.0043 (11)
C360.0252 (16)0.0254 (15)0.0311 (16)0.0005 (12)0.0010 (13)0.0102 (12)
C370.0265 (17)0.0427 (19)0.0253 (15)0.0014 (14)0.0063 (13)0.0104 (13)
C380.0249 (17)0.0377 (17)0.0284 (16)0.0066 (13)0.0074 (13)0.0002 (13)
C390.0206 (15)0.0217 (14)0.0220 (14)0.0049 (11)0.0010 (11)0.0018 (11)
C400.0209 (14)0.0139 (12)0.0203 (13)0.0128 (10)0.0021 (11)0.0004 (10)
C410.0250 (15)0.0174 (13)0.0241 (14)0.0118 (11)0.0012 (12)0.0004 (11)
C420.0288 (17)0.0235 (14)0.0270 (15)0.0123 (12)0.0103 (13)0.0013 (12)
C430.0383 (18)0.0220 (14)0.0209 (14)0.0157 (13)0.0024 (13)0.0002 (11)
C440.0293 (17)0.0169 (13)0.0212 (14)0.0084 (11)0.0051 (12)0.0023 (11)
C450.0215 (15)0.0161 (13)0.0258 (14)0.0092 (11)0.0027 (12)0.0002 (11)
C460.0171 (14)0.0173 (13)0.0221 (13)0.0066 (10)0.0018 (11)0.0002 (10)
C470.0205 (15)0.0182 (13)0.0288 (15)0.0055 (11)0.0031 (12)0.0026 (11)
C480.0245 (16)0.0181 (13)0.0286 (15)0.0068 (11)0.0003 (12)0.0043 (11)
C490.0214 (15)0.0192 (13)0.0226 (13)0.0091 (11)0.0017 (11)0.0029 (10)
C500.0174 (14)0.0171 (12)0.0193 (13)0.0091 (10)0.0016 (10)0.0003 (10)
C510.0177 (14)0.0149 (12)0.0227 (13)0.0056 (10)0.0036 (11)0.0008 (10)
C520.0247 (16)0.0199 (13)0.0216 (13)0.0082 (11)0.0054 (11)0.0001 (11)
C530.0284 (16)0.0193 (13)0.0235 (14)0.0069 (11)0.0011 (12)0.0047 (11)
C540.0276 (16)0.0137 (12)0.0293 (15)0.0098 (11)0.0011 (12)0.0022 (11)
C550.0220 (15)0.0194 (13)0.0214 (13)0.0083 (11)0.0014 (11)0.0022 (11)
C1S0.0308 (18)0.0207 (14)0.0379 (17)0.0084 (12)0.0032 (14)0.0041 (13)
Cl10.0544 (6)0.0254 (4)0.0350 (4)0.0024 (4)0.0083 (4)0.0012 (3)
Cl20.0340 (5)0.0375 (5)0.0610 (6)0.0136 (4)0.0110 (4)0.0071 (4)
Geometric parameters (Å, º) top
Ni1—N22.006 (2)C22—C271.404 (4)
Ni1—N82.024 (2)C23—C241.384 (4)
Ni1—N72.032 (2)C23—H230.9500
Ni1—N62.072 (2)C24—C251.390 (4)
Ni1—N42.078 (2)C24—H240.9500
B1—N51.553 (4)C25—C261.381 (4)
B1—N31.560 (4)C25—H250.9500
B1—N11.562 (4)C26—C271.385 (4)
B1—H11.0000C26—H260.9500
N1—C31.362 (3)C27—H270.9500
N1—N21.371 (3)C28—C291.402 (4)
N2—C11.346 (3)C28—C331.405 (4)
N3—C61.360 (3)C29—C301.384 (4)
N3—N41.369 (3)C29—H290.9500
N4—C41.350 (4)C30—C311.398 (4)
N5—C91.374 (3)C30—H300.9500
N5—N61.381 (3)C31—C321.389 (4)
N6—C71.345 (3)C31—H310.9500
N7—C501.335 (3)C32—C331.389 (4)
N7—C461.354 (3)C32—H320.9500
N8—C511.345 (3)C33—H330.9500
N8—C551.362 (4)C34—C391.391 (4)
N9—C501.376 (3)C34—C351.402 (4)
N9—C511.385 (3)C35—C361.392 (4)
N9—H90.8800C35—H350.9500
C1—C21.395 (4)C36—C371.376 (5)
C1—C101.488 (4)C36—H360.9500
C2—C31.383 (4)C37—C381.387 (5)
C2—H20.9500C37—H370.9500
C3—C161.482 (4)C38—C391.393 (4)
C4—C51.392 (4)C38—H380.9500
C4—C221.477 (4)C39—H390.9500
C5—C61.390 (4)C40—C411.397 (4)
C5—H50.9500C40—C451.397 (4)
C6—C281.474 (4)C41—C421.393 (4)
C7—C81.394 (4)C41—H410.9500
C7—C341.476 (4)C42—C431.390 (4)
C8—C91.384 (4)C42—H420.9500
C8—H80.9500C43—C441.381 (4)
C9—C401.473 (4)C43—H430.9500
C10—C151.392 (4)C44—C451.395 (4)
C10—C111.396 (3)C44—H440.9500
C11—C121.390 (4)C45—H450.9500
C11—H110.9500C46—C471.370 (4)
C12—C131.385 (4)C46—H460.9500
C12—H120.9500C47—C481.397 (4)
C13—C141.387 (4)C47—H470.9500
C13—H130.9500C48—C491.373 (4)
C14—C151.394 (4)C48—H480.9500
C14—H140.9500C49—C501.407 (3)
C15—H150.9500C49—H490.9500
C16—C211.388 (4)C51—C521.403 (4)
C16—C171.390 (4)C52—C531.378 (4)
C17—C181.392 (4)C52—H520.9500
C17—H170.9500C53—C541.392 (4)
C18—C191.389 (5)C53—H530.9500
C18—H180.9500C54—C551.368 (4)
C19—C201.391 (5)C54—H540.9500
C19—H190.9500C55—H550.9500
C20—C211.390 (4)C1S—Cl11.762 (3)
C20—H200.9500C1S—Cl21.777 (3)
C21—H210.9500C1S—H1S10.9900
C22—C231.397 (4)C1S—H1S20.9900
N2—Ni1—N8102.80 (9)C23—C22—C4122.1 (2)
N2—Ni1—N793.15 (8)C27—C22—C4119.5 (3)
N8—Ni1—N788.45 (9)C24—C23—C22121.1 (3)
N2—Ni1—N689.55 (8)C24—C23—H23119.5
N8—Ni1—N696.98 (9)C22—C23—H23119.5
N7—Ni1—N6173.26 (9)C23—C24—C25120.0 (3)
N2—Ni1—N497.52 (9)C23—C24—H24120.0
N8—Ni1—N4159.63 (9)C25—C24—H24120.0
N7—Ni1—N489.09 (9)C26—C25—C24119.4 (3)
N6—Ni1—N484.44 (9)C26—C25—H25120.3
N5—B1—N3106.6 (2)C24—C25—H25120.3
N5—B1—N1110.5 (2)C25—C26—C27121.1 (3)
N3—B1—N1109.2 (2)C25—C26—H26119.4
N5—B1—H1110.2C27—C26—H26119.4
N3—B1—H1110.2C26—C27—C22120.0 (3)
N1—B1—H1110.2C26—C27—H27120.0
C3—N1—N2109.4 (2)C22—C27—H27120.0
C3—N1—B1132.0 (2)C29—C28—C33118.7 (2)
N2—N1—B1118.5 (2)C29—C28—C6118.9 (2)
C1—N2—N1107.1 (2)C33—C28—C6122.4 (2)
C1—N2—Ni1133.80 (17)C30—C29—C28120.8 (3)
N1—N2—Ni1113.87 (16)C30—C29—H29119.6
C6—N3—N4109.7 (2)C28—C29—H29119.6
C6—N3—B1132.2 (2)C29—C30—C31120.0 (3)
N4—N3—B1117.9 (2)C29—C30—H30120.0
C4—N4—N3107.0 (2)C31—C30—H30120.0
C4—N4—Ni1136.90 (18)C32—C31—C30119.8 (3)
N3—N4—Ni1115.86 (16)C32—C31—H31120.1
C9—N5—N6108.8 (2)C30—C31—H31120.1
C9—N5—B1130.7 (2)C33—C32—C31120.4 (3)
N6—N5—B1119.5 (2)C33—C32—H32119.8
C7—N6—N5107.3 (2)C31—C32—H32119.8
C7—N6—Ni1139.13 (18)C32—C33—C28120.3 (3)
N5—N6—Ni1113.57 (15)C32—C33—H33119.8
C50—N7—C46118.4 (2)C28—C33—H33119.8
C50—N7—Ni1122.66 (17)C39—C34—C35118.6 (3)
C46—N7—Ni1118.26 (16)C39—C34—C7121.2 (2)
C51—N8—C55117.2 (2)C35—C34—C7120.1 (3)
C51—N8—Ni1121.62 (19)C36—C35—C34120.5 (3)
C55—N8—Ni1119.78 (18)C36—C35—H35119.8
C50—N9—C51129.6 (2)C34—C35—H35119.8
C50—N9—H9115.2C37—C36—C35120.0 (3)
C51—N9—H9115.2C37—C36—H36120.0
N2—C1—C2109.6 (2)C35—C36—H36120.0
N2—C1—C10121.9 (2)C36—C37—C38120.4 (3)
C2—C1—C10128.5 (2)C36—C37—H37119.8
C3—C2—C1106.1 (2)C38—C37—H37119.8
C3—C2—H2127.0C37—C38—C39119.8 (3)
C1—C2—H2127.0C37—C38—H38120.1
N1—C3—C2107.8 (2)C39—C38—H38120.1
N1—C3—C16124.3 (2)C34—C39—C38120.7 (3)
C2—C3—C16127.9 (2)C34—C39—H39119.7
N4—C4—C5109.6 (2)C38—C39—H39119.7
N4—C4—C22122.3 (2)C41—C40—C45118.9 (2)
C5—C4—C22128.1 (3)C41—C40—C9123.7 (2)
C6—C5—C4106.1 (2)C45—C40—C9117.3 (2)
C6—C5—H5127.0C42—C41—C40120.3 (3)
C4—C5—H5127.0C42—C41—H41119.8
N3—C6—C5107.6 (2)C40—C41—H41119.8
N3—C6—C28124.7 (2)C43—C42—C41120.0 (3)
C5—C6—C28127.7 (3)C43—C42—H42120.0
N6—C7—C8109.8 (2)C41—C42—H42120.0
N6—C7—C34122.6 (2)C44—C43—C42120.4 (3)
C8—C7—C34127.6 (2)C44—C43—H43119.8
C9—C8—C7106.3 (2)C42—C43—H43119.8
C9—C8—H8126.8C43—C44—C45119.7 (3)
C7—C8—H8126.8C43—C44—H44120.1
N5—C9—C8107.8 (2)C45—C44—H44120.1
N5—C9—C40125.3 (2)C44—C45—C40120.7 (3)
C8—C9—C40126.8 (2)C44—C45—H45119.6
C15—C10—C11119.2 (2)C40—C45—H45119.6
C15—C10—C1120.6 (2)N7—C46—C47123.5 (3)
C11—C10—C1120.1 (2)N7—C46—H46118.2
C12—C11—C10120.1 (3)C47—C46—H46118.2
C12—C11—H11120.0C46—C47—C48117.8 (3)
C10—C11—H11120.0C46—C47—H47121.1
C13—C12—C11120.4 (3)C48—C47—H47121.1
C13—C12—H12119.8C49—C48—C47119.6 (3)
C11—C12—H12119.8C49—C48—H48120.2
C12—C13—C14120.0 (3)C47—C48—H48120.2
C12—C13—H13120.0C48—C49—C50119.0 (3)
C14—C13—H13120.0C48—C49—H49120.5
C13—C14—C15119.7 (3)C50—C49—H49120.5
C13—C14—H14120.1N7—C50—N9120.3 (2)
C15—C14—H14120.1N7—C50—C49121.5 (2)
C10—C15—C14120.6 (3)N9—C50—C49118.2 (2)
C10—C15—H15119.7N8—C51—N9120.6 (2)
C14—C15—H15119.7N8—C51—C52122.3 (2)
C21—C16—C17119.1 (3)N9—C51—C52117.1 (2)
C21—C16—C3121.2 (3)C53—C52—C51118.8 (3)
C17—C16—C3119.5 (3)C53—C52—H52120.6
C16—C17—C18120.7 (3)C51—C52—H52120.6
C16—C17—H17119.7C52—C53—C54119.4 (3)
C18—C17—H17119.7C52—C53—H53120.3
C19—C18—C17119.9 (3)C54—C53—H53120.3
C19—C18—H18120.0C55—C54—C53118.4 (3)
C17—C18—H18120.0C55—C54—H54120.8
C18—C19—C20119.6 (3)C53—C54—H54120.8
C18—C19—H19120.2N8—C55—C54123.7 (3)
C20—C19—H19120.2N8—C55—H55118.1
C21—C20—C19120.1 (3)C54—C55—H55118.1
C21—C20—H20120.0Cl1—C1S—Cl2111.10 (16)
C19—C20—H20120.0Cl1—C1S—H1S1109.4
C16—C21—C20120.6 (3)Cl2—C1S—H1S1109.4
C16—C21—H21119.7Cl1—C1S—H1S2109.4
C20—C21—H21119.7Cl2—C1S—H1S2109.4
C23—C22—C27118.4 (2)H1S1—C1S—H1S2108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···Br1i0.882.413.265 (2)165
C52—H52···Br1i0.952.923.706 (3)140
C31—H31···Br1ii0.952.913.858 (3)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C45H34BN6)(C10H9N3)]Br·CH2Cl2
Mr1064.34
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)10.3263 (13), 13.9040 (16), 17.622 (2)
α, β, γ (°)91.314 (6), 99.245 (6), 101.968 (6)
V3)2438.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.39 × 0.38 × 0.32
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.616, 0.667
No. of measured, independent and
observed [I > 2σ(I)] reflections
44352, 11127, 9003
Rint0.061
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.161, 1.11
No. of reflections11127
No. of parameters631
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.40, 1.66

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni1—N22.006 (2)Ni1—N62.072 (2)
Ni1—N82.024 (2)Ni1—N42.078 (2)
Ni1—N72.032 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···Br1i0.882.413.265 (2)165.2
C52—H52···Br1i0.952.923.706 (3)140.3
C31—H31···Br1ii0.952.913.858 (3)172.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors gratefully acknowledge the Thailand Research Fund (grant No. RMU5080029) for supporting this work.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarding, D. J., Harding, P., Adams, H. & Tuntulani, T. (2007). Inorg. Chim. Acta, 360, 3335–3340.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarding, D. J., Harding, P., Kivnang, J. & Adams, H. (2010). Transition Met. Chem. 35, 521–526.  CrossRef CAS Google Scholar
First citationLu, J. Y., Schroeder, T. J., Babb, A. M. & Olmstead, M. (2001). Polyhedron, 20, 2445–2449.  Web of Science CSD CrossRef CAS Google Scholar
First citationRahaman, S. H., Bose, D., Chowdhury, H., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 1837–1844.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrofimenko, S. (1999). Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands. London: Imperial College Press.  Google Scholar
First citationUddin, M., Hatzidimitriou, A. G., Lalia-Kantouri, M. & Tsiamis, C. (1997). Struct. Chem. 8, 131–139.  CrossRef CAS Google Scholar
First citationUehara, K., Hikichi, S. & Akita, M. (2002). J. Chem. Soc. Dalton Trans. pp. 3529–3538.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m477-m478
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds